中国农业科学 ›› 2025, Vol. 58 ›› Issue (19): 3919-3931.doi: 10.3864/j.issn.0578-1752.2025.19.009

• 土壤肥料·节水灌溉·农业生态环境 • 上一篇    下一篇

施氮对不同轮作模式下油菜和小麦根际土壤中有机氮矿化功能基因的影响

赵剑(), 任涛, 方娅婷, 杨昕, 盛倩男, 李小坤, 朱俊(), 鲁剑巍   

  1. 华中农业大学资源与环境学院/农业农村部长江中下游耕地保育重点实验室,武汉 430070
  • 收稿日期:2024-10-21 接受日期:2025-02-28 出版日期:2025-10-01 发布日期:2025-10-10
  • 通信作者:
    朱俊,E-mail:
  • 联系方式: 赵剑,E-mail:zjian@webmail.hzau.edu.cn。
  • 基金资助:
    国家自然科学基金(32372817)

Effect of Nitrogen Application on Organic Nitrogen Mineralization Functional Genes in Rapeseed and Wheat Rhizosphere Soils Under Different Rotation Patterns

ZHAO Jian(), REN Tao, FANG YaTing, YANG Xin, SHENG QianNan, LI XiaoKun, ZHU Jun(), LU JianWei   

  1. College of Resources and Environment, Huazhong Agricultural University/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070
  • Received:2024-10-21 Accepted:2025-02-28 Published:2025-10-01 Online:2025-10-10

摘要:

【目的】土壤氮素转化受微生物活动的调控,并受作物类型和施肥措施的调节。阐明稻油和稻麦轮作模式下施氮对冬季作物根际土壤有机氮矿化作用功能基因丰度的影响,加深对不同作物制度和氮肥投入下根际土壤有机氮矿化过程的理解。【方法】利用定位试验,在第7年采集稻油和稻麦两种轮作模式中不施氮和施氮处理下油菜和小麦根际土壤,分析根际有机质组分和氮的有效性的差异,并利用宏基因组测序分析根际土壤有机氮矿化功能基因的丰度。【结果】与不施氮相比,施氮显著提高了根际土壤中潜在矿化氮(PMN)、有机碳(SOC)、全氮(TN)、溶解性有机碳/氮(DOC、DON)、颗粒态有机碳/氮(POC、PON)和矿物结合态有机碳/氮(MAOC、MAON)的含量。相同施肥处理下,稻油和稻麦两种轮作模式下油菜和小麦根际土壤中有机质组分和氮的有效性之间无显著差异。与不施氮相比,施氮降低了根际土壤中编码蛋白酶(K14645)、几丁质酶(K01183)、脲酶(K01429和K01430)和精氨酸酶(K01476)功能基因的丰度,但提高了编码谷氨酸脱氢酶(K00260)功能基因的丰度。施氮处理,稻油轮作模式的油菜根际土壤编码蛋白酶(K14645)和精氨酸酶(K01476)功能基因的丰度显著高于稻麦轮作模式的小麦根际土壤。参与有机氮矿化功能基因微生物以变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)和绿弯菌门(Chloroflexi)为主。施氮显著影响根际土壤编码蛋白酶功能基因的微生物群落结构,稻油和稻麦两种模式下油菜和小麦根际土壤参与有机氮矿化功能基因的微生物群落结构无显著差异。根际土壤中PMN和SOC是影响根际土壤有机氮矿化功能基因丰度和微生物群落结构的主要驱动因子。编码蛋白酶和精氨酸酶的功能基因丰度与PMN和SOC呈显著负相关。【结论】不同作物制度和氮肥投入都能够改变根际土壤中参与有机氮矿化功能基因的丰度,潜在矿化氮(PMN)和有机碳(SOC)是影响根际土壤中有机氮矿化功能基因丰度的主要因子。

关键词: 施氮, 稻油轮作, 稻麦轮作, 根际土壤, 有机质组分, 矿化功能基因, 宏基因组

Abstract:

【Objective】Soil nitrogen transformation was affected by microbial activities and modulated by crop types and fertilization practices. Understanding the effect of nitrogen application on the abundance of functional genes involved in organic nitrogen mineralization in the rhizosphere of winter crops under rice-oilseed and rice-wheat rotations, enhanced our understanding of the organic nitrogen mineralization process across different cropping systems and nitrogen fertilization regimes.【Method】A localized field experiment was conducted to collect rhizosphere soils from rapeseed and wheat in the seventh year of rice-rapeseed and rice-wheat rotation systems, under both nitrogen application and no nitrogen treatments. This analysis focused on differences in organic matter fractions and nitrogen availability. Furthermore, metagenomic sequencing was employed to analyze the abundance of functional genes mediating organic nitrogen mineralization in the rhizosphere soil.【Result】The results indicate that, compared to the no nitrogen treatment, nitrogen addition significantly increased the concentrations of potential mineralizable nitrogen (PMN), soil organic carbon (SOC), total nitrogen (TN), dissolved organic carbon/nitrogen (DOC, DON), particulate organic carbon/nitrogen (POC, PON), and mineral-associated organic carbon/nitrogen (MAOC, MAON) in rhizosphere soil. Under identical fertilization treatments, no significant differences were observed in the organic matter fractions and nitrogen availability between the rapeseed and wheat rhizosphere soils in the rice-oilseed and rice-wheat rotation systems. Compared to the no nitrogen treatment, nitrogen application reduced the abundance of functional genes encoding protease (K14645), chitinase (K01183), urease (K01429, K01430), and arginase (K01476), while increasing the abundance of functional genes encoding glutamate dehydrogenase (K00260). In the nitrogen application treatment, the abundance of functional genes encoding protease and arginase in rapeseed rhizosphere soil within the rice-oilseed rotation system was significantly higher than that in wheat rhizosphere soil within the rice-wheat rotation system. Microorganisms involved in organic nitrogen mineralization functional genes predominantly belonged to the phyla Proteobacteria, Acidobacteria, and Chloroflexi. Nitrogen addition significantly influenced the microbial community structure of protease-encoding functional genes in rhizosphere soil, whereas no significant differences were observed in the microbial community structure of organic nitrogen mineralization functional genes between rapeseed and wheat rhizosphere soils in the rice-oilseed and rice-wheat rotation systems. PMN and SOC in rhizosphere soil were identified as the primary drivers influencing the abundance of organic nitrogen mineralization functional genes and the structure of the microbial community. The abundance of functional genes encoding protease and arginase exhibited a significant negative correlation with PMN and SOC.【Conclusion】The results of this study demonstrate that both crop species and nitrogen application under different crop rotation systems can significantly influence the abundance of functional genes involved in organic nitrogen mineralization in rhizosphere soil, while also identifying the primary factors driving the abundance of these genes in rhizosphere soil.

Key words: nitrogen application, rice-rapeseed rotation, rice-wheat rotation, rhizosphere soil, organic matter components, mineralization functional genes, metagenomics