中国农业科学 ›› 2025, Vol. 58 ›› Issue (19): 3837-3856.doi: 10.3864/j.issn.0578-1752.2025.19.004

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

花后高温胁迫对小麦氮素同化利用及产量形成的影响

雷毕欣(), 余勇波, 张明通, 崔国际, 洪嘉雯, 胡涛, 犹艾欣, 张文静, 马尚宇, 黄正来(), 樊永惠()   

  1. 安徽农业大学农学院/农业农村部黄淮南部小麦生物学与遗传育种重点实验室,合肥 230036
  • 收稿日期:2025-03-18 接受日期:2025-07-22 出版日期:2025-10-01 发布日期:2025-10-10
  • 通信作者:
    黄正来,E-mail:
    樊永惠,E-mail:
  • 联系方式: 雷毕欣,E-mail:lbx18287687872@163.com。
  • 基金资助:
    国家重点研发计划(2023YFD2300202-03); 国家自然科学基金面上项目(32472232); 国家自然科学基金联合基金项目(U19A2021); 安徽省科技重大专项(202003a06020014); 江苏省现代作物生产协同创新中心(JCIC-MCP)

Impact of Post-Anthesis Heat Stress on Nitrogen Use Efficiency and Yield Components in Wheat

LEI BiXin(), YU YongBo, ZHANG MingTong, CUI GuoJi, HONG JiaWen, HU Tao, YOU AiXin, ZHANG WenJing, MA ShangYu, HUANG ZhengLai(), FAN YongHui()   

  1. College of Agriculture, Anhui Agricultural University/Key Laboratory of Wheat Biology and Genetic Breeding in the Southern Huang-Huai Region, Ministry of Agriculture and Rural Affairs, Hefei 230036
  • Received:2025-03-18 Accepted:2025-07-22 Published:2025-10-01 Online:2025-10-10

摘要:

【目的】探究花后高温环境下不同耐热型小麦产量的形成过程以及氮素同化能力的变化,为小麦抗逆稳产栽培提供理论支撑。【方法】于2022—2024年,在安徽农业大学国家高新技术农业园开展试验。本试验采用三因素裂区设计,温度作为主区因素,设置高温胁迫(HT)与常温(CK)2个水平;氮肥和品种作为副区因素,其中氮肥设置不施氮(N0)、112.5 kg·hm-2(N1)和225.0 kg·hm-2(N2)3个水平;供试材料为6个小麦品种,包括淮麦33(HM33)、龙科1109(LK1109)、安农1589(AN1589)3个耐高温型品种,以及泛麦5号(FM5)、泰农19(TN19)和皖垦1702(WK1702)3个敏感型品种。于小麦花后进行高温胁迫,采用直接称重法测定产量,利用美国LI-6800便携式光合速率测定仪测定光合参数,并通过分光光度法测定氮代谢关键酶活性等指标。【结果】花后高温胁迫对小麦生长发育及生理代谢产生显著抑制效应,导致产量、干物质重量、相对叶绿素含量(SPAD)、叶面积指数(LAI)、净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、硝酸还原酶(NR)活性、谷氨酰胺合成酶(GS)活性,以及氮积累量、氮素利用率、氮素吸收效率和氮肥利用率均显著下降。花后高温胁迫下的产量降幅表现出显著的品种耐热性差异与施氮量效应:耐高温品种HM33、LK1109、AN1589在N0、N1和N2处理下的2年平均产量降幅分别为9.71%—6.13%、9.91%—6.24%和11.87%—6.42%,低于敏感型品种FM5、TN19、WK1702的15.26%—10.38%、12.56%—9.84%和12.93%—11.17%。生理机制方面,花后高温胁迫显著降低各施氮处理中小麦品种的Pn,且降幅随施氮量的增加呈现N0>N1>N2的梯度减小趋势,GsTr的变化规律与Pn一致。同时,花后高温胁迫显著降低各施氮处理中小麦旗叶NR和GS活性,而增施氮肥可有效缓解酶活性下降,N2处理下酶活性较高。花后高温胁迫下小麦氮素利用率的降幅也存在品种间差异:耐热型品种HM33的氮素利用率在N2处理下降幅最小,为20.00%;而敏感型品种FM5在N2处理下降幅最大,为31.55%。【结论】花后高温胁迫显著降低小麦产量,增施氮肥(112.5、225.0 kg·hm-2)可有效缓解此效应。耐热品种通过维持氮代谢酶活性、优化氮同化与转运,减轻小麦产量损失。适量增氮(225.0 kg·hm-2)显著提升小麦氮素利用效率与籽粒同化物积累。表明协同利用品种耐热性与氮肥管理可增强小麦高温抗性,为小麦稳产栽培提供理论依据。

关键词: 小麦, 高温胁迫, 施氮量, 氮素利用率, 产量

Abstract:

【Objective】This study aimed to investigate the impact of post-anthesis heat stress on yield formation and nitrogen assimilation capacity in wheat genotypes differing in heat tolerance, so as to provide a theoretical foundation for resilient and stable-yielding cultivation strategies.【Method】Field experiments were conducted from 2022 to 2024 at the National High-Tech Agricultural Park of Anhui Agricultural University using a split-plot design. Temperature was set as the main factor with two levels, including high temperature stress (HT) and ambient control (CK), while three nitrogen rates (no nitrogen (N0), 112.5 kg·hm-2 (N1), and 225.0 kg·hm-2 (N2)) and six wheat cultivars (three heat-tolerant: HM33, LK1109, AN1589; three heat-sensitive: FM5, TN19, WK1702) were arranged as subplot factors. High temperature stress was applied after anthesis. Grain yield, photosynthetic parameters (LI-6800), and activities of key nitrogen metabolism enzymes (spectrophotometry) were determined.【Result】High-temperature stress after anthesis significantly inhibited wheat growth, development, and physiological metabolism, leading to a marked decrease in yield, dry matter weight, relative chlorophyll content (SPAD), leaf area index (LAI), net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), nitrate reductase (NR) activity, and glutamine synthetase (GS) activity, as well as nitrogen accumulation, nitrogen use efficiency, nitrogen absorption efficiency, and nitrogen fertilizer use efficiency. The yield reduction due to high-temperature stress exhibited significant varietal heat tolerance differences and nitrogen application effects: the two-year average yield reduction of heat-tolerant varieties of HM33, LK1109, and AN1589 under N0, N1, and N2 treatments were 9.71%-6.13%, 9.91%-6.24%, and 11.87%-6.42%, respectively, lower than the reductions in sensitive varieties of FM5, TN19, and WK1702, which were 15.26%-10.38%, 12.56%-9.84%, and 12.93%-11.17%, respectively. In terms of physiological mechanisms, high-temperature stress after anthesis significantly reduced Pn across all nitrogen treatments, with the reduction showing a decreasing gradient as nitrogen levels increased: N0>N1>N2. The changes in Gs and Tr followed the same pattern as Pn. Furthermore, high-temperature stress significantly reduced NR and GS activity in the flag leaves across all nitrogen treatments, but increased nitrogen fertilization effectively and alleviated the decline in enzyme activity, with the highest enzyme activity observed under the N2 treatment. The reduction in nitrogen use efficiency under high-temperature stress also showed varietal differences: the nitrogen use efficiency of the heat-tolerant variety HM33 decreased the least under the N2 treatment (by 20.00%), while the sensitive variety FM5 exhibited the greatest decrease (31.55%) under the same treatment.【Conclusion】Post-flowering high temperature stress significantly reduced wheat yield, while the application of nitrogen fertilizers (112.5 and 225.0 kg·hm-2) effectively mitigated this decline. Heat-tolerant varieties minimized yield losses by maintaining the activity of key nitrogen-metabolizing enzymes and optimizing nitrogen assimilation and transport. Increased nitrogen application, particularly at the 225.0 kg·hm-2, significantly enhanced nitrogen use efficiency and promoted the accumulation of assimilates in grains. These results demonstrated that combining heat-tolerant genotypes with appropriate nitrogen management could improve thermotolerance in wheat, which provided a theoretical foundation for cultivating high and stable yields under heat stress.

Key words: wheat, high temperature stress, nitrogen application rate, nitrogen use efficiency, yield