[1] |
SARDANS J, JANSSENS I A, CIAIS P, OBERSTEINER M, PEÑUELAS J. Recent advances and future research in ecological stoichiometry. Perspectives in Plant Ecology, Evolution and Systematics, 2021, 50: 125611.
|
[2] |
张康, 李佳佳, 魏振浩, 樊妙春, 上官周平. 利用土壤化学计量学和酶计量学揭示刺槐林土壤微生物的养分限制状况. 应用生态学报, 2024, 35(7): 1799-1806.
doi: 10.13287/j.1001-9332.202407.004
|
|
ZHANG K, LI J J, WEI Z H, FAN M C, SHANGGUAN Z P. Revealing nutrient limitation status of microorganisms in the soil of Robinia pseudoacacia plantation through soil stoichiometry and enzyme metrology. Chinese Journal of Applied Ecology, 2024, 35(7): 1799-1806. (in Chinese)
doi: 10.13287/j.1001-9332.202407.004
|
[3] |
CUI Y X, FANG L C, GUO X B, WANG X, ZHANG Y J, LI P F, ZHANG X C. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China. Soil Biology and Biochemistry, 2018, 116: 11-21.
|
[4] |
|
|
ZHU C W, MENG W W, SHI K, NIU R Z, JIANG G Y, SHEN F M, LIU F, LIU S L. The characteristics of soil nutrients and soil enzyme activities during wheat growth stage under different tillage patterns. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251. doi: 10.3864/j.issn.0578-1752.2022.21.011. (in Chinese)
|
[5] |
SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, AHMED B, ALLISON S D, CRENSHAW C, CONTOSTA A R, CUSACK D, FREY S, GALLO M E, GARTNER T B, HOBBIE S E, HOLLAND K, KEELER B L, POWERS J S, STURSOVA M, TAKACS-VESBACH C, WALDROP M P, WALLENSTEIN M D, ZAK D R, ZEGLIN L H. Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 2008, 11(11): 1252-1264.
doi: 10.1111/j.1461-0248.2008.01245.x
pmid: 18823393
|
[6] |
SINSABAUGH R L, HILL B H, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462(7274): 795-798.
|
[7] |
SINSABAUGH R L, MANZONI S, MOORHEAD D L, RICHTER A. Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecology Letters, 2013, 16(7): 930-939.
doi: 10.1111/ele.12113
pmid: 23627730
|
[8] |
LIU Y L, GE T D, VAN GROENIGEN K J, YANG Y H, WANG P, CHENG K, ZHU Z K, WANG J K, LI Y, GUGGENBERGER G, SARDANS J, PENUELAS J, WU J S, KUZYAKOV Y, Rice paddy soils are a quantitatively important carbon store according to a global synthesis. Communications Earth & Environment, 2021, 2: 154.
|
[9] |
LIU Y L, GE , ZHU Z K, LIU S L, LUO Y, LI Y, WANG P, GAVRICHKOVA O, XU X L, WANG J K, WU J S, GUGGENBERGER G, KUZYAKOV Y. Carbon input and allocation by rice into paddy soils: A review. Soil Biology and Biochemistry, 2019, 133: 97-107.
|
[10] |
邬佳玲, 魏亮, 祝贞科, 葛体达, 吴金水, 毛瑢. 碳和养分添加对亚热带稻田土壤酶活性化学计量学特征的影响. 土壤与作物, 2020, 9(3): 231-239.
|
|
WU J L, WEI L, ZHU Z K, GE , WU J S, MAO R. Effects of carbon and nutrient addition on soil enzyme activities and their stoichiometry in subtropical paddy soils. Soils and Crops, 2020, 9(3): 231-239. (in Chinese)
|
[11] |
XIE Y N, OUYANG Y, HAN S, SE J, TANG S, YANG Y F, MA Q X, WU L H. Crop rotation stage has a greater effect than fertilisation on soil microbiome assembly and enzymatic stoichiometry. Science of the Total Environment, 2022, 815: 152956.
|
[12] |
ZHU Z K, GE , LUO Y, LIU S L, XU X L, TONG C L, SHIBISTOVA O, GUGGENBERGER G, WU J S. Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil. Soil Biology and Biochemistry, 2018, 121: 67-76.
|
[13] |
LIU Y L, DONG Y Q, GE , HUSSAIN Q, WANG P, WANG J K, LI Y, GUGGENBERGER G, WU J S. Impact of prolonged rice cultivation on coupling relationship among C, Fe, and Fe-reducing bacteria over a 1000-year paddy soil chronosequence. Biology and Fertility of Soils, 2019, 55(6): 589-602.
|
[14] |
MOORHEAD D L, SINSABAUGH R L, HILL B H, WEINTRAUB M N. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biology and Biochemistry, 2016, 93: 1-7.
|
[15] |
SINSABAUGH R L, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution, and Systematics, 2012, 43: 313-343.
|
[16] |
|
|
ZHANG L, ZHANG S Q, REN K Y, LI J J, DUAN Y H, XU M G. Soil ecoenzymatic stoichiometry and relationship with microbial biomass in fluvo-aquic soils with various fertilities. Scientia Agricultura Sinica, 2020, 53(20): 4226-4236. doi: 10.3864/j.issn.0578-z1752.2020.20.011. (in Chinese)
|
[17] |
WU L P, MA H, ZHAO Q L, ZHANG S R, WEI W L, DING X D. Changes in soil bacterial community and enzyme activity under five years straw returning in paddy soil. European Journal of Soil Biology, 2020, 100: 103215.
|
[18] |
|
|
LÜ B, WANG Y H, XIA H, YAO Z H, JIANG C C. Effects of biochar and other amendments on the cabbage growth and soil fertility in yellow-brown soil and red soil. Scientia Agricultura Sinica, 2018, 51(22): 4306-4315. doi: 10.3864/j.issn.0578-1752.2018.22.009. (in Chinese)
|
[19] |
刘彦伶, 李渝, 张雅蓉, 黄兴成, 朱华清, 杨叶华, 张萌, 蒋太明, 张文安. 长期施肥对黄壤稻田和旱地土壤磷酸酶活性的影响. 土壤通报, 2022, 53(4): 948-955.
|
|
LIU Y L, LI Y, ZHANG Y R, HUANG X C, ZHU H Q, YANG Y H, ZHANG M, JIANG T M, ZHANG W A. Effects of long-term fertilization on phosphatase activities in paddy and dryland of yellow soil. Chinese Journal of Soil Science, 2022, 53(4): 948-955. (in Chinese)
|
[20] |
DAI X L, ZHOU W, LIU G R, LIANG G Q, HE P, LIU Z B. Soil C/N and pH together as a comprehensive indicator for evaluating the effects of organic substitution management in subtropical paddy fields after application of high-quality amendments. Geoderma, 2019, 337: 1116-1125.
|
[21] |
HODGE A, CAMPBELL C D, FITTER A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 2001, 413(6853): 297-299.
|
[22] |
吴金水, 葛体达, 胡亚军. 稻田土壤关键元素的生物地球化学耦合过程及其微生物调控机制. 生态学报, 2015, 35(20): 6626-6634.
|
|
WU J S, GE , HU Y J. A review on the coupling of bio- geochemical process for key elements and microbial regulation mechanisms in paddy rice ecosystems. Acta Ecologica Sinica, 2015, 35(20): 6626-6634. (in Chinese)
|
[23] |
PENG X Q, WANG W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China. Soil Biology and Biochemistry, 2016, 98: 74-84.
|
[24] |
ALLISON S D, VITOUSEK P M. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology and Biochemistry, 2005, 37(5): 937-944.
|
[25] |
YANG Y, LIANG C, WANG Y Q, CHENG H, AN S S, CHANG S X. Soil extracellular enzyme stoichiometry reflects the shift from P- to N-limitation of microorganisms with grassland restoration. Soil Biology and Biochemistry, 2020, 149: 107928.
|
[26] |
胡琛, 贺云龙, 黄金莲, 雷静品, 崔鸿侠, 唐万鹏, 马国飞. 神农架4种典型针叶人工林土壤酶活性及其生态化学计量特征. 林业科学研究, 2020, 33(4): 143-150.
|
|
HU C, HE Y L, HUANG J L, LEI J P, CUI H X, TANG W P, MA G F. Soil enzyme activity and its ecological stoichiometry in four typical coniferous planted forests in Shennongjia national nature reserve, China. Forest Research, 2020, 33(4): 143-150. (in Chinese)
|
[27] |
吴际友, 叶道碧, 王旭军. 长沙市城郊森林土壤酶活性及其与土壤理化性质的相关性. 东北林业大学学报, 2010, 38(3): 97-99.
|
|
WU J Y, YE D B, WANG X J. Soil enzyme activity and its correlation with soil physical and chemical properties in suburban forests in Changsha City. Journal of Northeast Forestry University, 2010, 38(3): 97-99. (in Chinese)
|
[28] |
HE Q Q, WU Y H, BING H J, ZHOU J, WANG J P. Vegetation type rather than climate modulates the variation in soil enzyme activities and stoichiometry in subalpine forests in the eastern Tibetan Plateau. Geoderma, 2020, 374: 114424.
|
[29] |
|
|
DONG X, ZHANG Y, MUNYAMPIRWA T, TAO H N, SHEN Y Y. Effects of long-term conservation tillage on soil carbon content and invertase activity in dry farmland on the Loess Plateau. Scientia Agricultura Sinica, 2023, 56(5): 907-919. doi: 10.3864/j.issn.0578-1752.2023.05.008. (in Chinese)
|
[30] |
张海鑫, 曾全超, 安韶山, 王宝荣, 白雪娟. 子午岭典型植被凋落叶-土壤养分与酶活性特征. 生态学报, 2018, 38(7): 2262-2270.
|
|
ZHANG H X, ZENG Q C, AN S S, WANG B R, BAI X J. Soil enzyme activities, soil and leaf litter nutrients of typical vegetation in Ziwuling Mountain. Acta Ecologica Sinica, 2018, 38(7): 2262-2270. (in Chinese)
|
[31] |
LI J J, ZHENG Y M, YAN J X, LI H J, HE J Z. Succession of plant and soil microbial communities with restoration of abandoned land in the Loess Plateau, China. Journal of Soils and Sediments, 2013, 13(4): 760-769.
|