中国农业科学 ›› 2023, Vol. 56 ›› Issue (12): 2262-2273.doi: 10.3864/j.issn.0578-1752.2023.12.003

• 耕作栽培·生理生化·农业信息技术 • 上一篇    下一篇

长期定位条件下栽培模式对麦田土壤理化性质和氮素平衡的影响

郭鑫虎1(), 马静1, 李仲峰1, 初金鹏1, 徐海成2, 贾殿勇3, 代兴龙1(), 贺明荣1()   

  1. 1 山东农业大学农学院/作物生物学国家重点实验室/农业农村部作物生理生态与耕作重点实验室,山东泰安 271018
    2 潍坊科技学院,山东潍坊 262799
    3 南阳师范学院,河南南阳 473061
  • 收稿日期:2022-10-21 接受日期:2023-01-08 出版日期:2023-06-16 发布日期:2023-06-27
  • 通信作者: 代兴龙,E-mail:adaisdny@163.com。贺明荣,E-mail:mrhe@sdau.edu.cn
  • 联系方式: 郭鑫虎,E-mail:xinhuguo@163.com。
  • 基金资助:
    山东省重点研发计划(LJNY202103); 国家重点研发计划(2016YFD0300403)

Effects of Cultivation Modes on Soil Physicochemical Properties and Nitrogen Balance in Wheat Fields Under Long-Term Positioning Conditions

GUO XinHu1(), MA Jing1, LI ZhongFeng1, CHU JinPeng1, XU HaiCheng2, JIA DianYong3, DAI XingLong1(), HE MingRong1()   

  1. 1 College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology/Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural Affairs, Taian 271018, Shandong
    2 Weifang University of Science and Technology, Weifang 262799, Shandong
    3 Nanyang Normal University, Nanyang 473061, Henan
  • Received:2022-10-21 Accepted:2023-01-08 Published:2023-06-16 Online:2023-06-27

摘要:

【目的】基于2009—2010小麦生长季开始设置的长期定位试验,研究栽培模式对土壤理化性质、冬小麦氮素营养指数、麦田氮素供需平衡状况、氮素吸收利用和籽粒产量的影响,以期为进一步优化土壤-作物系统综合管理模式提供理论指导。【方法】试验共设置当地农户模式(T1)、农户基础上的改良模式(T2)、不计生产成本的高产更高产模式(T3)和土壤-作物系统综合管理模式(T4)4个栽培模式。【结果】历经13个小麦-玉米生长季后,T1、T2、T3、T4模式小麦播前容重分别降低6.21%、9.80%、12.25%和13.56%,有机质含量分别提高21.88%、26.80%、32.05%和36.39%,全氮含量分别提高34.16%、12.38%、39.60%和20.79%,碱解氮含量分别提高47.85%、48.87%、74.49%和62.21%,速效磷含量分别提高62.73%、36.56%、297.93%和68.68%,速效钾含量分别提高14.36%、40.00%、221.20%和59.60%。0—100 cm土层无机氮积累量分别提高了33.96%、10.32%、52.77%和19.49%。pH分别从最初的7.50下降至6.28、6.68、5.35和6.64。2020—2022生长季4个栽培模式间籽粒产量和氮素的吸收利用差异显著。与T1模式相比,T2、T3、T4模式的籽粒产量分别提高14.14%、27.65%、22.52%,氮素利用率分别提高54.80%、19.97%、49.15%,氮肥利用率分别提高72.95%、37.54%、48.15%,氮素表观损失量分别降低49.76%、11.62%、44.14%,氮素表观损失率分别降低24.63%、11.62%、26.68%。T4模式开花期的整株和成熟期的穗子处于氮素供需平衡。【结论】历经13个小麦-玉米生长季后,4个栽培模式0—20 cm土层土壤酸化趋势明显,表层土壤容重降低,有机质、全氮、速效氮磷钾养分含量升高,0—100 cm土层无机氮积累量相应升高。与其他3种模式相比,T4模式更有利于实现土壤理化性状、小麦籽粒产量和氮素吸收利用的协同改善,但其氮肥利用率仍有待进一步提高,且在现有基础上仅通过降低施氮量无法实现其产量和氮素吸收利用的进一步协同优化。

关键词: 土壤理化性质, 小麦籽粒产量, 氮素利用率, 氮素营养指数, 氮素平衡

Abstract:

【Objective】 From the 2009-2010 wheat growing season, four cultivation modes were designed and set up. The effects of cultivation modes on soil physical and chemical properties, nitrogen nutrition index of winter wheat, nitrogen supply and demand balance in wheat field, uptake and utilization of nitrogen and grain yield were investigated, in order to provide a theoretical guidance for further optimizing the soil-crop system integrated management mode.【Method】Four cultivation modes were designed: local farmer mode (T1), improvement mode based on farmers (T2), high-yield and higher-yield mode regardless of production cost (T3), and soil-crop system integrated management mode (T4).【Result】After 13 wheat-maize growing seasons, the soil bulk density of surface soil for T1, T2, T3 and T4 modes decreased by 6.21%, 9.80%, 12.25% and 13.56%, respectively; the content of organic matter for four modes increased by 21.88%, 26.80%, 32.05% and 36.39%, respectively; the corresponding increases were 34.16%, 12.38%, 39.60% and 20.79% for the contents of total nitrogen; 47.85%, 48.87%, 74.49% and 62.21% for the contents of alkali-hydrolysable nitrogen, respectively; 62.73%, 36.56%, 297.93% and 68.68% for the contents of available phosphorus; 14.36%, 40.00%, 221.20% and 59.60% for the contents of available potassium, respectively. The increases of 33.96%, 10.32%, 52.77% and 19.49% were observed in the inorganic nitrogen accumulation in the 0-100 cm soil layer, respectively. Correspondingly, the pH for T1, T2, T3 and T4 modes decreased from 7.50 to 6.28, 6.68, 5.35 and 6.64, respectively. There were significant differences in grain yield and nitrogen uptake and utilization among the four cultivation modes in 2020-2022 growing season. Compared with T1 mode, the grain yield of T2, T3 and T4 modes increased by 14.14%, 27.65% and 22.52%, respectively; the nitrogen use efficiency increased by 54.80%, 19.97% and 49.15%, respectively; the nitrogen recovery efficiency increased by 72.95%, 37.54% and 48.15%, respectively; the nitrogen surplus decreased by 49.76%, 11.62% and 44.14%, respectively; the nitrogen surplus rate decreased by 24.63%, 11.62% and 26.68%, respectively. The whole plant at anthesis stage and spikes at maturity stage under T4 mode were in nitrogen supply and demand balance.【Conclusion】After 13 wheat-maize growing seasons, the soil acidification trend of 0-20 cm was obvious, and the bulk density of surface soil decreased, but the contents of organic matter, total nitrogen and available nutrients such as nitrogen, phosphorus, potassium increased for the all four cultivation modes. Meanwhile, the accumulation of inorganic nitrogen in 0-100 cm soil layer increased accordingly. Compared with other three cultivation modes, a synergistic improvement was obtained under T4 mode in soil physicochemical properties, wheat grain yield and nitrogen use efficiency. However, the nitrogen use efficiency at present under T4 mode was not high enough and still needed to be further improved. As showed by present study, further synergistic optimization in grain yield and nitrogen use efficiency could not be achieved only by reducing nitrogen input.

Key words: soil physicochemical property, wheat grain yield, nitrogen use efficiency, nitrogen nutrition index, nitrogen balance