中国农业科学 ›› 2018, Vol. 51 ›› Issue (20): 3928-3940.doi: 10.3864/j.issn.0578-1752.2018.20.011

• 技术应用 • 上一篇    下一篇

不同缓/控释氮肥对春玉米氮素吸收利用、 土壤无机氮变化及氮平衡的影响

侯云鹏(), 李前, 孔丽丽, 秦裕波, 王蒙, 于雷, 王立春(), 尹彩侠()   

  1. 吉林省农业科学院农业资源与环境研究所/农业部东北植物营养与农业环境重点实验室,长春 130033
  • 收稿日期:2018-01-18 接受日期:2018-06-20 出版日期:2018-10-16 发布日期:2018-10-16
  • 作者简介:

    联系方式:侯云鹏,Tel:0431-87063630;E-mail:exceedfhvfha@163.com

  • 基金资助:
    国家重点研发计划(2017YFD0300604)、国家公益性行业(农业)专项(201303103)

Effects of Different Slow/Controlled Release Nitrogen Fertilizers on Spring Maize Nitrogen Uptake and Utilization, Soil Inorganic Nitrogen and Nitrogen Balance

YunPeng HOU, Qian LI, LiLi KONG, YuBo QIN, Meng WANG, Lei YU, LiChun WANG(), CaiXia YIN()   

  1. Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Agro-Environment in Northeast China, Ministry of Agriculture, Changchun 130033
  • Received:2018-01-18 Accepted:2018-06-20 Online:2018-10-16 Published:2018-10-16

摘要:

【目的】通过研究不同类型缓/控释氮肥对吉林省中部地区春玉米产量、关键生长节点氮素积累特征以及生育期内土壤无机氮含量变化和氮素平衡等多方面的影响,筛选出适宜吉林省中部玉米主产区的缓/控释氮肥类型,以期为该区域缓/控释氮肥合理施用提供理论依据。【方法】于2014年和2015年在吉林省中部玉米主产区设置大田试验,以不施氮肥为对照(CK),在相同用量和施用方式下,设普通尿素(CU)、硫包衣尿素(SCU)、树脂包膜尿素(CRF)、稳定性尿素(SU)和脲甲醛(UF)6个处理,测定指标包括玉米产量、不同生育时期植株氮含量和土壤无机氮含量,并计算作物吸氮量、氮素利用效率、土壤无机氮积累量和土壤-作物系统的氮素平衡状况。【结果】各缓/控释氮肥处理玉米产量显著高于普通尿素处理,以树脂包膜尿素处理玉米产量最高,较普通尿素处理分别提高19.6%(2014年)和18.8%(2015年)。与普通尿素处理相比,各缓/控释氮肥处理显著提高了玉米氮素当季回收率、农学利用率和偏生产力,提高幅度依次为44.8%—72.6%、70.8%—147.7%、9.6%—19.6%(2014年)和29.2%—48.0%、47.7%—86.5%、10.4%—18.9%(2015年),且均以树脂包膜尿素处理最高。施氮显著提高了玉米各生育期氮积累量,其中灌浆期至成熟期氮积累量以树脂包膜尿素处理最高。与普通尿素处理相比,各缓/控释氮肥处理提高了玉米开花期至成熟期0—30 cm土壤无机氮含量,其中玉米开花期至灌浆期土壤无机氮含量以树脂包膜尿素处理最高,成熟期土壤无机氮含量以脲甲醛处理最高。玉米收获后0—180 cm土壤剖面无机氮含量随土层深度增加呈逐渐下降的趋势;与普通尿素处理相比,各缓/控释氮肥处理显著提高了0—30 cm土壤无机氮含量,其中以脲甲醛处理最高。相关分析表明,玉米氮素总积累量、产量与玉米大喇叭口期至成熟期土壤无机氮含量呈显著或极显著的正向相关性;氮素利用效率与玉米开花期至成熟期土壤无机氮含量呈显著或极显著的正向相关性,其中玉米开花期土壤无机氮含量与玉米氮素总积累量、产量和氮素利用效率的相关性最强。施氮显著提高了玉米收获后0—90 cm土壤中残留无机氮积累量;与普通尿素处理相比,各缓/控释氮肥处理显著降低了氮素表观损失量,降低幅度分别为27.4%—42.9%(2014年)和28.4%—45.4%(2015年),其中树脂包膜尿素处理氮素表观损失量最低。【结论】在相同用量和施用方式下,施用缓/控释氮肥可较普通尿素显著提高了玉米产量、玉米灌浆至成熟期氮积累量、氮素当季回收率、农学利用率和偏生产力,并在提高玉米开花期至成熟期0—30 cm土层无机氮含量的同时,显著降低了成熟期0—90 cm土层氮素表观损失量,且以树脂包膜尿素的效果最好。因此,在吉林省中部地区,树脂包膜尿素是高产高效的肥料类型。

关键词: 缓/控释氮肥, 春玉米, 氮素利用效率, 土壤无机氮含量, 氮素平衡

Abstract:

【Objective】This research aimed to evaluate the effects of different types slow/controlled release nitrogen fertilizer treatments on spring maize yield, nitrogen accumulation characteristics at key growth periods, soil inorganic nitrogen change, nitrogen balance, and other aspects at the middle region of Jilin province, so as to select the suitable slow/controlled release nitrogen fertilizer type and provide the theoretical basis on reasonable application of slow/controlled release nitrogen fertilizers.【Method】 Two field experiments were conducted in the middle maize production regions of Jilin province in 2014 and 2015 with 6 treatments, including no nitrogen fertilization control (CK), common urea (CU), sulfur-coated urea (SCU), polymer-coated urea (CRF), stability urea (SU) and urea formaldehyde (UF). Grain yield, N content in different growth period and soil inorganic nitrogen content were measured, and N uptake, nitrogen utilization efficiency, soil inorganic N accumulation and N balance were also calculated. 【Result】The maize yield under slow/controlled release nitrogen fertilizer treatments was significantly higher than that under CU treatment, with 19.6% (2014) and 18.8% (2015), respectively, and the maize yield in the CRF treatment was the highest. N recovery efficiency, agronomic efficiency and partial factor productivity were significantly increased under the slow/controlled release N fertilizer treatments by 44.8%-72.6%, 70.8%-147.7%, 9.6%-19.6% (2014) and 29.2%-48.0%, 47.7%-86.5%, 10.4%-18.9% (2015), respectively, and which of CRF treatment were the highest. N accumulation was significantly increased with N fertilizer application, which of CRF treatment was the highest from filling stage to mature stage. Compared with CU treatment, soil inorganic nitrogen content was significantly increased from flowering stage to mature stage in 0-30 cm soil, that of CRF treatment was the highest from flowering stage to filling stage, and that of UF treatment was the highest in mature stage. The contents of inorganic nitrogen decreased with the increase of soil depth in 0-180 cm soil profile after maize harvest. Compared with CU treatment, slow/controlled release nitrogen fertilizer treatments improved the contents of inorganic nitrogen in 0-30 cm soil, and that of UF treatment was the highest. Correlation analysis results showed that there were significant and extremely significant positive correlation between total N accumulation, grain yield and soil inorganic nitrogen content from bell stage to mature stage, N utilization efficiency was significant and extremely significant positive correlation with soil inorganic nitrogen content from flowering stage to mature stage, and soil inorganic nitrogen content was the most correlated with N total accumulation, grain yield and N utilization efficiency from flowering stage to mature stage. Soil residue inorganic nitrogen content in 0-90 cm was significantly increased with N fertilizer application after harvest. N apparent loss content was significantly reduced under the slow/controlled release N fertilizer treatments with the less of 27.4%-42.9% (2014) and 28.4%-45.4% (2015) than that under the CU treatment, and that under the CRF treatment was the lowest. 【Conclusion】Under the same application amount and methods, the slow/controlled release nitrogen fertilizer significantly improved the maize yield, the amount of nitrogen accumulation from filling stage to mature stage, N recovery efficiency, agronomic efficiency, partial factor productivity and improved the content of inorganic nitrogen in 0-30 cm soil layer from flowering stage to mature stage, compared to normal urea. At the same time, the slow/controlled release nitrogen fertilizer significantly reduced the apparent loss of nitrogen in 0-90 cm soil layer in mature stage. The effect of CRF was the best in all treatments, so that CRF was the fertilizer type of high-yield and high efficiency in the middle area of Jilin province.

Key words: slow/controlled release N fertilizer, spring maize, nitrogen utilization efficiency, soil inorganic nitrogen content, nitrogen balance