中国农业科学 ›› 2018, Vol. 51 ›› Issue (24): 4700-4709.doi: 10.3864/j.issn.0578-1752.2018.24.010

• 园艺 • 上一篇    下一篇

尿素配施不同用量纳米碳对桃幼树生长及 氮素吸收利用的影响

王国栋(),肖元松(),彭福田(),张亚飞,郜怀峰,孙希武,贺月   

  1. 山东农业大学园艺科学与工程学院/作物生物学国家重点实验室,山东泰安 271018
  • 收稿日期:2018-06-05 接受日期:2018-07-27 出版日期:2018-12-16 发布日期:2018-12-16
  • 基金资助:
    国家现代农业产业技术体系建设专项资金(CARS-30-2-02);国家重点研发计划(2018YFD0201407);山东省自然科学基金(ZR2017BC017);山东省“双一流”建设奖补资金(SYL2017YSTD10)

Effects of Urea Application Combined with Different Amounts of Nano-Carbon on Plant Growth Along with Nitrogen Absorption and Utilization in Young Peach Trees

WANG GuoDong(),XIAO YuanSong(),PENG FuTian(),ZHANG YaFei,GAO HuaiFeng,SUN XiWu,HE Yue   

  1. College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong
  • Received:2018-06-05 Accepted:2018-07-27 Online:2018-12-16 Published:2018-12-16

摘要:

目的 明确纳米碳对桃树生长的作用并筛选出纳米碳与尿素配施的最佳比例,为果树栽培过程中施用纳米碳材料及提高氮素肥效提供理论依据。方法 试验采用同位素示踪技术,以2年生‘瑞蟠21’/毛桃为试材,在盆栽条件下利用 15N尿素配施不同用量(设5个处理:CK:0,T1:5 mL,T2:10 mL,T3:15 mL,T4:20 mL)的纳米碳溶胶进行试验,探究纳米碳对土壤理化性状、桃树生长发育及氮素吸收利用的影响。测定盆土的pH、氧化还原电位、电导率,植株嫁接口上部2 cm处干径及植株各器官干重,叶片的叶绿素SPAD值、净光合速率,根系构型、植株各部分全氮含量及 15N丰度。 结果 施用纳米碳显著降低了土壤pH,提高了土壤氧化还原电位,影响了土壤溶液的氧化还原状态;土壤电导率随纳米碳用量的增加呈现处理前期降低后期增大的趋势。纳米碳的施用促进了桃幼树须根系的生长;显著提高了桃树叶片净光合速率、叶绿素含量及干径增量;桃幼树总物质积累量以T3处理最高,为778.0 g,比对照提高了28.4%。纳米碳的施用提高了桃树细根、粗根、侧枝、春梢叶等器官的Ndff值;与对照相比,T1处理显著提高了主干、中心干的氮素分配率,T3、T4处理降低了主干的氮素分配率;施用纳米碳对桃植株的氮素利用率均有显著提高,以T3处理的植株氮素利用率最高,为45.2%,比对照提高了66.5%;随纳米碳用量增加,土壤氮素残留率显著提高,T1、T2、T3、T4处理分别为对照的1.06、1.35、1.62和1.70倍,氮素损失率明显降低。结论 尿素配施纳米碳可改善土壤理化性状,有效吸附土壤中的氮素,显著降低氮素损失率,显著提高植株氮素利用率和土壤氮素残留率,促进桃树须根系的生长和植株形态建成。

关键词: 纳米碳, 桃幼树, 15N, 氮素利用率, 氮素损失率

Abstract:

【Objective】 In order to clarify whether carbon nanoscale could promote the growth of peach trees and to screen out the optimum application ratio of carbon and urea, it was expected to provide a theoretical basis for the application of carbon nanomaterials to improve the nitrogen fertilizer efficiency in the process of fruit tree cultivation. 【Method】 The experiment was conducted by using isotope tracer technology. The 2-year-old Rui pan 21/peaches was used as a test material and 15N urea was used in different doses under potting conditions (5 treatments: CK: 0 mL, T1: 5 mL, T2: 10 mL, T3: 15 mL, and T4: 20 mL). And the nano-carbon sol was tested to investigate the effects of nanocarbon on soil physical and chemical properties, peach growth and development, and nitrogen absorption and utilization. The pH value, redox potential and electrical conductivity of the soil, the dry diameter of 2 cm at the upper part of the plant and the dry weight of each part of the plant, the chlorophyll SPAD value of the leaf, the net photosynthetic rate, the structure of the root system, the total N content, and the 15N abundance of each part of the plant were measured. 【Result】 Application of nano-carbon significantly reduced soil pH value, increased soil oxidation-reduction potential, and affected the redox state of soil solution; with the increase of the amount of nano-carbon, the soil conductivity showed a tendency of decreasing at the early stage of treatment and increasing at a later stage. The application of nano-carbon promoted the growth of the root system of young peach trees. The net photosynthetic rate, chlorophyll content of peach leaves and diameter were increased. The total biomass accumulation of peach trees was highest under T3 treatment, which was 778 g and was 28.4% higher than that under CK. The application of nano-carbon increased the Ndff value of fine roots, coarse roots, lateral branches, spring shoot leaves and other organs of peach trees. Compared with CK, T1 treatment significantly increased the nitrogen distribution rate of the main trunk and the central trunk, while T3 and T4 treatment decreased the nitrogen distribution rate of the main trunk. The nitrogen utilization rate of peach plants was increased significantly with the application of nano-carbon, and the treated with T3 was the highest, being 45.2%, which was 66.5% higher than that under CK. With the increase the amount of carbon nanoscale, the nitrogen residue rate of soil increased. The treatments of T1, T2, T3 and T4 were 1.06 times, 1.35 times, 1.62 times and 1.70 times of CK, respectively, and the nitrogen loss rate decreased significantly. 【Conclusion】 The application of urea with nano-carbon could improve soil physical and chemical properties, effectively adsorb nitrogen in soil, significantly reduce nitrogen loss rate, increase plant nitrogen utilization and soil nitrogen residue, and promote root growth and plant morphology of peach trees.

Key words: nano-carbon, peach, 15N, nitrogen utilization rate, nitrogen loss rate