中国农业科学 ›› 2023, Vol. 56 ›› Issue (3): 508-518.doi: 10.3864/j.issn.0578-1752.2023.03.009
王壮壮1,2(), 董邵云1(), 周琪1, 苗晗1, 刘小萍1, 徐奎鹏2, 顾兴芳1(), 张圣平1()
收稿日期:
2022-04-13
接受日期:
2022-06-13
出版日期:
2023-02-01
发布日期:
2023-02-14
通信作者:
顾兴芳,E-mail:guxingfang@caas.cn。 张圣平,E-mail:zhangshengping@caas.cn
联系方式:
王壮壮,E-mail:wangzhuangz2021@163.com。董邵云,E-mail:dongshaoyun@caas.cn。王壮壮和董邵云为同等贡献作者。
基金资助:
WANG ZhuangZhuang1,2(), DONG ShaoYun1(), ZHOU Qi1, MIAO Han1, LIU XiaoPing1, XU KuiPeng2, GU XingFang1(), ZHANG ShengPing1()
Received:
2022-04-13
Accepted:
2022-06-13
Published:
2023-02-01
Online:
2023-02-14
摘要:
【目的】鉴定调控黄瓜果实中L-半乳糖途径维生素C(Vc)合成相关基因的位置、数量及表达特征,同时对关键基因进行克隆分析,旨在为黄瓜果实中Vc合成调控研究奠定基础。【方法】根据已报道的拟南芥中L-半乳糖途径合成Vc相关基因,利用蛋白编码的氨基酸序列在黄瓜9930_V2参考基因组数据库中进行BLAST比对,确定黄瓜中的同源基因,借助TBtools软件绘制基因在染色体上的位置。通过qRT-PCR分析上述基因在果实Vc含量差异显著的两份黄瓜材料中的表达量。利用PCR扩增对限速酶GDP-L-半乳糖磷酸化酶(GGP)及GDP-甘露糖-3′ 5′-差向酶(GME)同源基因进行克隆,测序分析这些基因在高Vc含量与低Vc含量黄瓜果实中的序列差异。构建系统进化树,分析黄瓜果实GME、GGP与其他物种中同源基因的亲缘关系。【结果】在黄瓜基因组中比对到21个参与L-半乳糖途径合成Vc相关酶PMI、PMM、GMPase、GME、GGP、GPP、GalDH、GalLDH的同源基因,7条染色体均有分布,在5号染色体和1号染色体上分布最多。通过对21个基因在两份果实Vc含量高低差异显著的两份材料CG45(高Vc含量)和R48(低Vc含量)的表达量分析,发现调控PMI、PMM、GMPase、GME、GalLDH这5个酶的基因在CG45和R48中有极显著的表达差异。对Vc合成限速酶GGP和GME相关基因在CG45和R48两份材料中进行克隆发现,CsGME2在R48中基因全长为3 537 bp,在CG45中基因全长为3 541 bp,该基因在两份材料存在多个SNP位点差异和Indel差异,有一个突变位点位于CDS区,且导致了氨基酸序列的改变。通过对调控Vc合成限速酶GME、GGP蛋白性质分析,发现限速酶GME、GGP在不同物种的蛋白性质差异不大,均为亲水性蛋白,功能相对保守。进化树分析发现不同物种亲缘关系较近的聚类在一起,进化过程高度保守。【结论】鉴定出21个分布于7条染色体上的黄瓜果实Vc合成的L-半乳糖途径相关基因,推测关键酶PMI、PMM、GMPase、GME、GalLDH、GGP可能影响黄瓜果实中Vc含量变化,调控Vc合成限速步骤关键酶GME、GGP功能相对保守,Vc合成限速步骤关键酶GME基因CsGME2在高Vc和低Vc两份材料中的一个SNP位点变异导致氨基酸序列的变化。
王壮壮, 董邵云, 周琪, 苗晗, 刘小萍, 徐奎鹏, 顾兴芳, 张圣平. 黄瓜果实维生素C合成关键基因克隆与分析[J]. 中国农业科学, 2023, 56(3): 508-518.
WANG ZhuangZhuang, DONG ShaoYun, ZHOU Qi, MIAO Han, LIU XiaoPing, XU KuiPeng, GU XingFang, ZHANG ShengPing. Cloning and Analysis of Key Genes for Vitamin C Synthesis in Cucumber Fruit[J]. Scientia Agricultura Sinica, 2023, 56(3): 508-518.
表1
L-半乳糖途径同源基因荧光定量引物"
基因 Gene | 正向引物 Forward primer (5′-3′) | 反向引物 Reverse primer (5′-3′) |
---|---|---|
Csa1G181570 | TTATCTCAAGGACCATTATCCC | TCCATCAAGAGGATCAACG |
Csa1G183590 | ATTGGACCATTCGACACC | TAACAGCATCCATCACCG |
Csa1G006280 | CACCAGTTTGGAGAGTTGATT | TCGAAACACCTTGAATTGTG |
Csa1G600810 | CCTGAGGATGTTGGAACC | CTACAGCACCATTCCGTCT |
Csa2G011460 | TCTAGTGCTTGCATCTATCCTG | AGCTTCTCCAGACCGTAGG |
Csa2G013230 | TGAAAGGCAGGGAATGTATC | CCATGCCCAATAATCGAA |
Csa2G249820 | CAAGCAGCAGAGGAGTCTATG | CATCAATGGGATCTAAAACCC |
Csa3G300600 | AAGTCTGCTCTAAGGTTGGC | TTCCTTGGCTGTTAATTGC |
Csa3G829100 | GCTGATCCGGTCACTAATG | CCTTCCCGATGAATTGAG |
Csa3G133160 | ACCTGATAGCCGATTTGC | GATTAGCAGCACACCACG |
Csa4G236360 | AAGTGAGGAAGCCATACAGC | TCAAGGGCAAGTAGTTTATCG |
Csa4G015100 | CTCTATTATCAACATCGGATCG | TGGGATGAACTGCATGAG |
Csa5G011690 | TCGAAATGGGATGCTTAAC | CTCCCGAAGGATAGAAACC |
Csa5G167200 | TTGGCGAGATCCTTGAAC | AACTTCTCTGCATCAGCACA |
Csa5G182060 | TTAGAAGTTGCTACGATGAAGG | TTGCTAACAACACGACCG |
Csa5G512920 | CACTGGATCGAAGGATAACTTG | GGCAAGCAAGATGGTATATTTG |
Csa5G272920 | TGTATGGGCTTGACTGGAG | TCAGTGCCAACCAGGATT |
Csa6G008750 | GCGAGCCATTCTTTGTCC | CACACCGTATTTGGAAGGC |
Csa6G511690 | ATGGAGCTGACTGATGAGC | AACTGTTGGAACTTTGCCA |
Csa7G067450 | GGTGACAAGGAGCATTGAC | GGAATCGTCTCGTTCACAC |
Csa7G219200 | AGGTCCTCTTCCGGTTTG | CAATAGTGGCGCAACCAC |
Actin | TCCACGAGACTACCTACAACTC | GCTCATACGGTCAGCGAT |
表2
GME、GGP相关基因扩增引物"
引物名称 Primer name | 正向引物 Forward | 反向引物 Reverse |
---|---|---|
CsGME1-1 | TGTCTGAGTCCAAGAGAACG | GCATCTGACTCCTTCAAGCT |
CsGME1-2 | TGAGGAAGAAAGTACGCAAC | TGAGTTACGACCACGGACAC |
CsGME1-3 | AGACTTCCGTGAGCCAGTGA | ACGGTGGACCTCATAATATC |
CsGME2-1 | TTAGGCAGCCAATCGTCGGA | CTGTCCACTAGATGAGAGCCA |
CsGME2-2 | TCCTTGTGTGACAATCATC | CAGTCAATGGTTCGCTACTGC |
CsGME2-3 | ACATATGGACCGAGAATGA | AGTAGTGGCATGAGTCGAGA |
CsGGP-1 | CCCTAGAAGATTCGAAGTA | GCCAGATATCTTGTTCAGC |
CsGGP-2 | GCTTTCATTCCTAGTGGATA | ATCCGTTGCCCACAATCAGC |
CsGGP-3 | GATGGAGTGATCATCTCTGA | AGGACCATTAGTGATAGGTA |
表3
黄瓜中Vc合成关键酶及相关基因"
酶 Enzyme | 登录号(拟南芥) Accession No. (Arabidopsis) | 登录号(黄瓜) Accession No. (cucumber) | 基因名称 Gene name | 染色体位置 Chromosome | 物理位置 Location (bp) |
---|---|---|---|---|---|
PMI | AT3G02570 | Csa3G300600 Csa5G167200 | CsPMI1 CsPMI2 | Chr3 Chr5 | 17101685-17104783 (+) 6525799-6529720 (-) |
PMM | AT2G45790 | Csa5G011690 | CsPMM | Chr5 | 410127-419862 (+) |
GMPase | AT2G39770 | Csa6G008750 Csa3G829100 Csa1G006280 Csa2G013230 Csa1G600810 | CsGMPase1 CsGMPase2 CsGMPase3 CsGMPase4 CsGMPase5 | Chr6 Chr3 Chr1 Chr2 Chr1 | 901131-904917 (+) 901131-904917 (+) 1169141-1173256 (+) 2269704-2282961 (-) 23233328-23240457 (+) |
GME | AT5G28840 | Csa2G011460 Csa5G182060 Csa5G512920 | CsGME1 CsGME2 CsGME3 | Chr2 Chr5 Chr5 | 2039207-2042353 (+) 8093540-8097076 (+) 17891804-17895624 (-) |
GGP | AT4G26850 AT5G55120 | Csa7G219200 | CsGGP | Chr7 | 7788896-7792047 (+) |
GPP | AT3G02870 | Csa1G181570 Csa6G511690 Csa1G183590 Csa2G249820 | CsGPP1 CsGPP2 CsGPP3 CsGPP4 | Chr1 Chr6 Chr1 Chr2 | 11166020-11169584 (+) 26388577-26391259 (-) 11213505-11222521 (+) 12197999-12203006 (+) |
GalDH | AT4G33670 | Csa7G067450 Csa5G272920 Csa4G015100 Csa3G133160 | CsGalDH1 CsGalDH2 CsGalDH3 CsGalDH4 | Chr7 Chr5 Chr4 Chr3 | 4137998-4141177 (+) 11505791-11512104 (+) 1982420-1984762 (+) 8687749-8692048 (-) |
GalLDH | AT3G47930 | Csa4G236360 | CsGalLDH | Chr4 | 10080624-10094987 (+) |
表4
不同物种GME理化性质"
物种 Species | 氨基酸长度 Length (aa) | 蛋白质量 Mw (kD) | 等电点 pI | 不稳定系数 II | 总平均疏水性 GRAVY | 序列号 Accession |
---|---|---|---|---|---|---|
黄瓜 Cucumis sativus | 376 | 42.52 | 5.94 | 41.85 | -0.411 | XP_004139232 |
甜瓜 Cucumis melo var. makuwa | 409 | 46.50 | 6.05 | 49.3 | -0.429 | TYK18415.1 |
冬瓜 Benincasa hispida | 376 | 42.62 | 5.94 | 42.09 | -0.432 | XP_038890351 |
南瓜 Cucurbita moschata | 376 | 42.54 | 6.05 | 41.96 | -0.415 | XP_022946492 |
苦瓜 Momordica charantia | 376 | 42.51 | 5.81 | 39.45 | -0.414 | XP_022143153 |
银葫芦亚种 Cucurbita argyrosperma subsp. sororia | 397 | 44.78 | 5.74 | 43.98 | -0.409 | KAG6586308 |
桑葚 Morus notabilis | 379 | 42.87 | 6.21 | 40.5 | -0.437 | XP_024025147 |
向日葵 Helianthus annuus | 376 | 42.60 | 5.84 | 43.02 | -0.408 | XP_022002729 |
开心果 Pistacia vera | 376 | 42.48 | 5.93 | 39.46 | -0.410 | XP_031268788 |
石榴 Punica granatum | 386 | 43.47 | 6.16 | 38.39 | -0.383 | OWM82038 |
表5
不同物种GGP理化性质"
物种 Species | 氨基酸长度 Length (aa) | 蛋白质量 Mw (kD) | 等电点 pI | 不稳定系数 II | 总平均疏水性 GRAVY | 序列号 Accession |
---|---|---|---|---|---|---|
黄瓜 Cucumis sativus | 445 | 49.99 | 5.18 | 44.23 | -0.224 | XP_004139797.1 |
甜瓜 Cucumis melo var. makuwa | 537 | 60.04 | 5.13 | 45.37 | -0.174 | TYK23075.1 |
冬瓜 Benincasa hispida | 448 | 50.23 | 5.24 | 43.20 | -0.163 | XP_038897875.1 |
苦瓜 Momordica charantia | 446 | 49.77 | 4.86 | 48.18 | -0.206 | XP_022139724.1 |
南瓜 Cucurbita moschata | 445 | 49.58 | 5.14 | 49.30 | -0.167 | XP_022940636.1 |
银葫芦亚种 Cucurbita argyrosperma subsp. sororia | 445 | 49.61 | 5.09 | 48.32 | -0.165 | KAG7037363.1 |
西葫芦 Cucurbita pepo subsp. pepo | 445 | 49.57 | 5.10 | 48.71 | -0.162 | XP_023524925.1 |
开心果 Pistacia vera | 449 | 50.05 | 4.77 | 48.15 | -0.222 | XP_031282295.1 |
核桃 Juglans regia | 449 | 49.83 | 5.16 | 46.50 | -0.180 | XP_018812019.2 |
桑葚 Morus notabilis | 443 | 49.28 | 5.07 | 40.97 | -0.126 | XP_010096115.1 |
棉花 Gossypium hirsutum | 450 | 50.55 | 5.10 | 54.38 | -0.230 | XP_040942951.1 |
[1] |
FOYER C H, KYNDT T, HANCOCK R D. Vitamin C in plants: Novel concepts, new perspectives, and outstanding issues. Antioxid Redox Signal, 2020, 32(7): 463-485.
doi: 10.1089/ars.2019.7819 |
[2] |
ALVES R C, ROSSATTO D R, SILVA J S, CHECCHIO M V, OLIVEIRA K R, OLIVEIRA F D A, DE QUEIROZ S F, DA CRUZ M A P, GRATAO P L. Seed priming with ascorbic acid enhances salt tolerance in micro-tom tomato plants by modifying the antioxidant defense system components. Biocatalysis and Agricultural Biotechnology, 2021, 31: 101927.
doi: 10.1016/j.bcab.2021.101927 |
[3] |
KHAZAEI Z, ESTAJI A. Effect of foliar application of ascorbic acid on sweet pepper (Capsicum annuum) plants under drought stress. Acta Physiologiae Plantarum, 2020, 42(7): 118.
doi: 10.1007/s11738-020-03106-z |
[4] | LUKATKIN A S, ANJUM N A. Control of cucumber (Cucumis sativus L.) tolerance to chilling stress - Evaluating the role of ascorbic acid and glutathione. Frontiers in Environmental Science, 2014, 2. https://doi.org/10.3389/fcns.2014.00062. |
[5] |
LYKKESFELDT J. On the effect of vitamin C intake on human health: How to (mis)interprete the clinical evidence. Redox Biology, 2020, 34: 101532.
doi: 10.1016/j.redox.2020.101532 |
[6] | RIVELLI A R, CARUSO M C, MARIA S D, GALGANO F. Vitamin C content in leaves and roots of horseradish (Armoracia rusticana): Seasonal variation in fresh tissues and retention as affected by storage conditions. Emirates Journal of Food and Agriculture, 2017, 29(10): 799-806. |
[7] |
孙小娟, 刘庆帅, 员盎然, 张妍, 霍俊伟, 秦栋, 姜婷. 黑穗醋栗果实生长发育过程中抗坏血酸含量及相关酶活性的变化. 中国农业科学, 2019, 52(1): 98-110. doi: 10.3864/j.issn.0578-1752.2019.01.010.
doi: 10.3864/j.issn.0578-1752.2019.01.010 |
SUN X J, LIU Q S, YUAN A R, ZHANG Y, HUO J W, QIN D, JIANG T. The changes in the contents of ascorbic acid and the activities of related enzymes in black currant fruits during the process of its growth and development. Scientia Agricultura Sinica, 2019, 52(1): 98-110. doi: 10.3864/j.issn.0578-1752.2019.01.010. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2019.01.010 |
|
[8] | KINYI H W, TIRWOMWE M, NINSIIMA H I, MIRUKA C O, ADADI P, PARISE A. Effect of cooking method on vitamin C loses and antioxidant activity of indigenous green leafy vegetables consumed in western Uganda. International Journal of Food Science, 2022, 2022: 2088034. |
[9] | https://www.fao.org/faostat/zh/#data. |
[10] |
SMIRNOFF N, WHEELER G L, JONES M A. The biosynthetic pathway of vitamin C in higher plants. Nature, 1998, 393(6683): 365-369.
doi: 10.1038/30728 |
[11] |
LORENCE A, CHEVONE B I, MENDES P, NESSLER C L. Myo- inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiology, 2004, 134(3): 1200-1205. doi: 10.1104/pp.103.033936.
doi: 10.1104/pp.103.033936 |
[12] |
DAVEY M W, GILOT C, PERSIAU G, STERGAARD J, HAN Y, BAUW G C, VAN MONTAGU M C. Ascorbate biosynthesis in Arabidopsis cell suspension culture. Plant Physiology, 1999, 121(2): 535-543.
doi: 10.1104/pp.121.2.535 |
[13] | WAGNER C, SEFKOW M, KOPKA J. Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry, 2003, 62(6): 887-900. |
[14] | SMIRNOFF N, DOWDLE J, ISHIKAWA T. The role of VTC2 in vitamin C biosynthesis in Arabidopsis thaliana. Comparative Biochemistry and Physiology. Part A. Molecular & Integrative Physiology, 2007, 146(4): S250. |
[15] |
DOWDLE J, ISHIKAWA T, GATZEK S, ROLINSKI S, SMIRNOFF N. Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant Journal, 2007, 52(4): 673-689.
doi: 10.1111/j.1365-313X.2007.03266.x |
[16] | TAO J J, HAO Z, HUANG C H. Molecular evolution of GDP-L- galactose phosphorylase, a key regulatory gene in plant ascorbate biosynthesis. AoB Plants, 2020, 12(6): 55. |
[17] |
YOSHIMURA K, NAKANE T, KUME S, SHIOMI Y, MARUTA T, ISHIKAWA T, SHIGEOKA S. Transient expression analysis revealed the importance of VTC2 expression level in light/dark regulation of ascorbate biosynthesis in Arabidopsis. Bioscience, Biotechnology, and Biochemistry, 2014, 78(1): 60-66. doi: 10.1080/09168451.2014.877831.
doi: 10.1080/09168451.2014.877831 |
[18] |
BULLEY S M, RASSAM M, HOSER D, OTTO W, SCHÜNEMANN N, WRIGHT M, MACRAE E, GLEAVE A, LAING W. Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. Journal of Experimental Botany, 2009, 60(3): 765-778. doi: 10.1093/jxb/ern327.
doi: 10.1093/jxb/ern327 |
[19] | 苑志明, 劳杉杉, 秦智伟, 周秀艳. 黄瓜L-半乳糖-1,4-内酯脱氢酶cDNA全长的克隆和遗传转化. 东北农业大学学报, 2012, 43(7): 100-103. |
YUAN Z M, LAO S S, QIN Z W, ZHOU X Y. Cloning and genetic transformation of cDNA full-length of L-galactono-1,4-lactone dehydrogenase from Cucumis sativus. Journal of Northeast Agricultural University, 2012, 43(7): 100-103. (in Chinese) | |
[20] |
LIU P, LI Q, GAO Y N, WANG H, CHAI L, YU H J, JIANG W J. A new perspective on the effect of UV-B on l-ascorbic acid metabolism in cucumber seedlings. Journal of Agricultural and Food Chemistry, 2019, 67(16): 4444-4452.
doi: 10.1021/acs.jafc.9b00327 pmid: 30939238 |
[21] |
ZHANG X, YU H J, ZHANG X M, YANG X Y, ZHAO W C, LI Q, JIANG W J. Effect of nitrogen deficiency on ascorbic acid biosynthesis and recycling pathway in cucumber seedlings. Plant Physiology and Biochemistry, 2016, 108(7): 222-230.
doi: 10.1016/j.plaphy.2016.07.012 |
[22] |
BULLEY S, LAING W. The regulation of ascorbate biosynthesis. Current Opinion in Plant Biology, 2016, 33: 15-22.
doi: S1369-5266(16)30067-X pmid: 27179323 |
[23] |
高海荣, 赵爱娟, 王睿颖, 穆兵. 紫外法快速测定中原地区12种蔬菜VC含量. 湖北农业科学, 2017, 56(6): 1131-1133, 1136. doi: 10.14088/j.cnki.issn0439-8114.2017.06.035.
doi: 10.14088/j.cnki.issn0439-8114.2017.06.035 |
GAO H R, ZHAO A J, WANG R Y, MU B. The rapid determination of vitamin C content in 12 kinds of central plains vegetables by UV spectrophotometry. Hubei Agricultural Sciences, 2017, 56(6): 1131-1133, 1136. doi: 10.14088/j.cnki.issn0439-8114.2017.06.035. (in Chinese)
doi: 10.14088/j.cnki.issn0439-8114.2017.06.035 |
|
[24] |
JAROSOVA J, KUNDU J K. Validation of reference genes as internal control for studying viral infections in cereals by quantitative real- time RT-PCR. BMC Plant Biology, 2010, 10(1): 146.
doi: 10.1186/1471-2229-10-146 |
[25] |
TORABINEJAD J, DONAHUE J L, GUNESEKERA B N, ALLEN- DANIELS M J, GILLASPY G E. VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants. Plant Physiology, 2009, 150(2): 951-961. doi: 10.1104/pp.108.135129.
doi: 10.1104/pp.108.135129 pmid: 19339506 |
[26] |
苗田田, 李强, 余宏军, 刘鹏, 郝佳, 蒋卫杰. 外施肌醇对黄瓜幼苗低温抗性的影响. 中国蔬菜, 2021(2): 72-79. doi: 10.19928/j.cnki.1000-6346.2021.1001.
doi: 10.19928/j.cnki.1000-6346.2021.1001 |
MIAO T T, LI Q, YU H J, LIU P, HAO J, JIANG W J. Effects of exogenous myo-inositol on low temperature resistance of cucumber seedlings. China Vegetables, 2021(2): 72-79. doi: 10.19928/j.cnki.1000-6346.2021.1001. (in Chinese)
doi: 10.19928/j.cnki.1000-6346.2021.1001 |
|
[27] |
MUNIR S, MUMTAZ M A, AHIAKPA J K, LIU G Z, CHEN W F, ZHOU G L, ZHENG W, YE Z B, ZHANG Y Y. Genome-wide analysis of Myo-inositol oxygenase gene family in tomato reveals their involvement in ascorbic acid accumulation. BMC Genomics, 2020, 21(1): 284.
doi: 10.1186/s12864-020-6708-8 pmid: 32252624 |
[28] |
WOLUCKA B A, VAN MONTAGU M. GDP-mannose 3',5'- epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. The Journal of Biological Chemistry, 2003, 278(48): 47483-47490.
doi: 10.1074/jbc.M309135200 |
[29] |
STEVENS R, BURET M, DUFFÉ P, GARCHERY C, BALDET P, ROTHAN C, CAUSSE M. Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiology, 2007, 143(4): 1943-1953. doi: 10.1104/pp.106.091413.
doi: 10.1104/pp.106.091413 pmid: 17277090 |
[30] |
WOLUCKA B A, VAN MONTAGU M, The VTC2 cycle and the de novo biosynthesis pathways for vitamin C in plants: An opinion. Phytochemistry, 2007, 68(21): 2602-2613.
pmid: 17950389 |
[31] |
ALEGRE M L, STEELHEART C, BALDET P, ROTHAN C, JUST D, OKABE Y, EZURA H, SMIRNOFF N, GERGOFF GROZEFF G E, BARTOLI C G. Deficiency of GDP-l-galactose phosphorylase, an enzyme required for ascorbic acid synthesis, reduces tomato fruit yield. Planta, 2020, 251(2): 54.
doi: 10.1007/s00425-020-03345-x pmid: 31970534 |
[32] |
BULLEY S, WRIGHT M, ROMMENS C, YAN H, RASSAM M, LIN-WANG K, ANDRE C, BREWSTER D, KARUNAIRETNAM S, ALLAN A C, LAING W A. Enhancing ascorbate in fruits and tubers through over-expression of the l-galactose pathway gene GDP-l- galactose phosphorylase. Plant Biotechnology Journal, 2012, 10(4): 390-397.
doi: 10.1111/j.1467-7652.2011.00668.x |
[33] |
ZHANG G Y, LIU R R, ZHANG C Q, TANG K X, SUN M F, YAN G H, LIU Q Q. Manipulation of the rice L-galactose pathway: Evaluation of the effects of transgene overexpression on ascorbate accumulation and abiotic stress tolerance. PLoS ONE, 2015, 10(5): e0125870.
doi: 10.1371/journal.pone.0125870 |
[34] |
LI J, LIANG D, LI M J, MA F W. Light and abiotic stresses regulate the expression of GDP-L-galactose phosphorylase and levels of ascorbic acid in two kiwifruit genotypes via light-responsive and stress-inducible cis-elements in their promoters. Planta, 2013, 238(3): 535-547.
doi: 10.1007/s00425-013-1915-z pmid: 23775440 |
[35] |
YABUTA Y, MIEDA T, RAPOLU M, NAKAMURA A, MOTOKI T, MARUTA T, YOSHIMURA K, ISHIKAWA T, SHIGEOKA S. Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. Journal of Experimental Botany, 2007, 58(10): 2661-2671. doi: 10.1093/jxb/erm124.
doi: 10.1093/jxb/erm124 |
[1] | 张开京, 何帅帅, 贾利, 胡玉超, 杨德坤, 陆晓民, 张其安, 严从生. 黄瓜DIR家族基因的全基因组鉴定及其表达分析[J]. 中国农业科学, 2023, 56(4): 711-728. |
[2] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[3] | 李青林,张文涛,徐慧,孙京京. 低磷胁迫下黄瓜木质部与韧皮部汁液的代谢物变化[J]. 中国农业科学, 2022, 55(8): 1617-1629. |
[4] | 李桂香,李秀环,郝新昌,李智文,刘峰,刘西莉. 山东省多主棒孢对三种常用杀菌剂的敏感性监测及对氟吡菌酰胺的抗性[J]. 中国农业科学, 2022, 55(7): 1359-1370. |
[5] | 李世佳,吕紫敬,赵锦. 枣R2R3-MYB亚家族基因鉴定及其在果实发育中的表达分析[J]. 中国农业科学, 2022, 55(6): 1199-1212. |
[6] | 赖春旺, 周小娟, 陈燕, 刘梦雨, 薛晓东, 肖学宸, 林文忠, 赖钟雄, 林玉玲. 龙眼乙烯合成途径基因鉴定及响应ACC处理的分析[J]. 中国农业科学, 2022, 55(3): 558-574. |
[7] | 李雨泽,朱嘉伟,林蔚,蓝茉莹,夏黎明,张艺粒,罗聪,黄桂香,何新华. 香水柠檬RHF2A的克隆与互作蛋白的筛选[J]. 中国农业科学, 2022, 55(24): 4912-4926. |
[8] | 康忱,赵雪芳,李亚栋,田哲娟,王鹏,吴志明. 黄瓜CC-NBS-LRR家族基因鉴定及在霜霉病和白粉病胁迫下的表达分析[J]. 中国农业科学, 2022, 55(19): 3751-3766. |
[9] | 渠成,王然,李峰奇,罗晨. 烟粉虱味觉受体基因BtabGR1和BtabGR2的克隆与表达模式分析[J]. 中国农业科学, 2022, 55(13): 2552-2561. |
[10] | 张莉,张楠,江虎强,吴帆,李红亮. 中华蜜蜂NPC2基因家族克隆及表达模式分析[J]. 中国农业科学, 2022, 55(12): 2461-2471. |
[11] | 陈茜,刘英杰,董勇浩,刘金燕,李炜,徐蓬军,臧云,任广伟. 黄瓜花叶病毒侵染烟草对烟蚜生长发育、取食和选择行为的影响[J]. 中国农业科学, 2021, 54(8): 1673-1683. |
[12] | 张璐,宗亚奇,徐维华,韩蕾,孙浈育,陈朝晖,陈松利,张凯,程杰山,唐美玲,张洪霞,宋志忠. 葡萄Fe-S簇装配基因的鉴定、克隆和表达特征分析[J]. 中国农业科学, 2021, 54(23): 5068-5082. |
[13] | 谭永安,姜义平,赵静,肖留斌. 绿盲蝽G蛋白偶联受体激酶2基因(AlGRK2)的表达分析及在绿盲蝽生长发育中的功能[J]. 中国农业科学, 2021, 54(22): 4813-4825. |
[14] | 王娜,赵资博,高琼,何守朴,马晨辉,彭振,杜雄明. 陆地棉盐胁迫应答基因GhPEAMT1的克隆及功能分析[J]. 中国农业科学, 2021, 54(2): 248-260. |
[15] | 王君正,张琪,高子星,马雪强,屈锋,胡晓辉. 两种微生物菌剂对有机基质袋培秋黄瓜产量、品质及根际环境的影响[J]. 中国农业科学, 2021, 54(14): 3077-3087. |
|