中国农业科学 ›› 2021, Vol. 54 ›› Issue (3): 662-674.doi: 10.3864/j.issn.0578-1752.2021.03.019
• 畜牧·兽医·资源昆虫 • 上一篇
收稿日期:
2020-02-23
接受日期:
2020-07-29
出版日期:
2021-02-01
发布日期:
2021-02-01
通讯作者:
武瑞
作者简介:
王雍,Tel:13251599676;E-mail: 基金资助:
WANG Yong(),LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui()
Received:
2020-02-23
Accepted:
2020-07-29
Online:
2021-02-01
Published:
2021-02-01
Contact:
Rui WU
摘要:
【目的】评估牛白血病病毒(BLV)来源的miRNAs跨界调控人源基因的风险。对BLV-miRNA可能带来的食品安全问题及对人体健康可能造成何种影响进行前瞻性研究,为未来实际生产中地方流行性白血病防控措施执行的必要性研究奠定基础,对BLV与人类疾病间关联性的研究提供理论指导。【方法】首先使用mirbase网站对BLV miRNA的成熟序列进行查询,通过miRanda软件对BLV编码的10种miRNA(BLV-miR-B1-3P,5P、BLV-miR-B2-3P,5P、BLV-miR-B3-3P,5P、BLV-miR-B4-3P,5P、BLV-miR-B5-3P,5P)进行靶基因预测,并选取每个BLV-miRNA评分前10的候选靶基因(去除重复基因后共88个)进行功能分析,对受到多个BLV miRNA共同调控的候选靶基因使用RNAhybrid软件进行二次预测验证,并对其功能进行分析。【结果】 BLV编码的10种miRNA经预测后分别获得1 630—16 383个靶基因不等。对评分前十的共计88个候选靶基因进行功能分析后发现,其中18个基因无相关功能报道;36个候选靶基因与肿瘤性疾病的发生发展存在相关性。2个候选靶基因可以对细胞周期起调控作用;16个候选靶基因参与细胞信号转导的调控;14个候选靶基因在细胞结构/骨架蛋白的形成中发挥作用;细胞的增殖与凋亡的功能表现成拮抗关系,往往促进增殖的基因同时也可以抑制细胞凋亡,共有13个基因对细胞的增殖和凋亡起调节作用,有趣的是,这13的候选靶基因对细胞增殖凋亡功能的调节是双向性的,但不能明确BLV miRNA对细胞的调节到底是更趋向于增殖还是凋亡,因此仍需要后续研究深入探讨;2个候选靶基因对细胞分化起调节作用;16个候选靶基因对细胞的迁移/侵袭功能起调节作用,再次提示BLV miRNA与肿瘤性疾病可能存在更重要的关联性。7个候选靶基因可能在乳腺细胞的分化、迁移、侵袭过程中发挥重要作用,提示BLV与人乳腺癌相关性的研究中,可以从BLV miRNA的角度深入探讨;BLV-B4-3P的2个候选靶基因Ⅰ型胶原α1链基因(COL1A1)、断裂点簇集区(BCR)对人急性淋巴细胞白血病(ALL)具有调节作用。此外,可以被多个BLV miRNA共同靶向的候选靶基因均属于黏蛋白家族(MUC5B、MUC12和 MUC16),且均可以在结肠中表达,对结肠黏膜的形成产生影响。【结论】外源性BLV miRNA可能跨界调控细胞周期、信号转导、结构/骨架、增殖、凋亡、分化、迁移/侵袭相关等细胞功能相关基因,破坏细胞结构;BLV miRNA与人乳腺癌的相关性可能表现在人乳腺癌细胞的分化、迁移、和侵袭过程中;而BLV-miR-B4-3p本身与白血病相关miR 29a共享同一种子区域,可能对人急性淋巴细胞白血病的发生发展造成影响;外源性BLV miRNA具有靶向抑制黏蛋白基因(MUC5B、MUC12、MUC16)表达,通过破坏肠黏膜形成这一途径,跨界调控人源基因的风险。
王雍,李思妍,何思锐,张迪,连帅,王建发,武瑞. BLV-miRNA跨界调控人类靶基因预测及生物信息学分析[J]. 中国农业科学, 2021, 54(3): 662-674.
WANG Yong,LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui. Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes[J]. Scientia Agricultura Sinica, 2021, 54(3): 662-674.
表1
BLV miRNAs成熟序列"
miRNA名称 miRNA name | 成熟序列 Mature sequence |
---|---|
BLV-miR-B1-3P | UCAGUGUACCAUCACAAGCCUCU |
BLV-miR-B1-5P | AGGCUGUGGUGGUGCACUGGCUU |
BLV-miR-B2-3P | UGCGUGUCGCUCAGUCAUUUU |
BLV-miR-B2-5P | AUGACUGAGUGUAGCGCAGAGA |
BLV-miR-B3-3P | UAACGCUGACGGGGGCGAUUUCU |
BLV-miR-B3-5P | AUCCCCCUGCCAGCGUUGGUC |
BLV-miR-B4-3P | UAGCACCACAGUCUCUGCGCCUUU |
BLV-miR-B4-5P | GCGGGAGGCUCUGGUGCUGG |
BLV-miR-B5-3P | CUCGAGCCGCAACCUCCCUUUCU |
BLV-miR-B5-5P | AGGAAGGUUGUGGCUCAGAGGU |
表3
参与细胞信号转导的候选靶基因"
序号 Number | 基因名称 Gene name | miRNA miRNA | 评分 Score | 与信号转导关系 Relationship with signal transduction |
---|---|---|---|---|
1 | NOTCH3 | BLV-miR-B1-3p | 600 | 编码果蝇I型膜蛋白缺口的人类同源物,建立细胞间信号传导途径,其在神经发育中起关键作用 The human homologues encoding gaps in Drosophila type I membrane proteins, establishing intercellular signal transduction pathways, which play a key role in neural development |
2 | MUC12 | BLV-miR-B1-5p | 4260 | 编码膜糖蛋白,在细胞内信号传导中发挥作用/黏液素在上皮表面形成的保护性黏液屏障中起重要作用 It encodes membrane glycoproteins and plays a role in intracellular signaling, and mucin plays an important role in the protective mucus barrier formed by the epithelial surface |
3 | MUC21 | BLV-miR-B1-5p | 3738 | 膜结合糖蛋白,在上皮表面形成保护性黏膜屏障中起重要作用,也在细胞内信号传导中起作用 Membrane-bound glycoproteins play an important role in the formation of a protective mucosal barrier on the epithelial surface and in intracellular signaling |
4 | ATF3 | BLV-miR-B2-5p | 180 | 编码哺乳动物激活转录因子;参与细胞应激反应 Encode mammalian activation transcription factors and participate in cellular stress response |
5 | NR2C2 | BLV-miR-B2-5p | 179 | 该基因编码属于核激素受体家族的蛋白质,该家族的成员充当配体激活的转录因子 The gene encodes proteins belonging to the nuclear hormone receptor family, members of which act as ligand-activated transcription factors |
6 | OR14I1 | BLV-miR-B2-5p | 187 | 负责识别和G蛋白介导的气味信号转导 Responsible for recognition and G protein-mediated odor signal transduction |
7 | POU3F3 | BLV-miR-B2-3p | 444 | 该基因编码含有POU结构域的蛋白质,该蛋白质起着转录因子的作用 The gene encodes a protein containing a POU domain, which acts as a transcription factor |
8 | TIAL1-201 | BLV-miR-B2-5p | 180 | 该基因编码的蛋白质是RNA结合蛋白家族的成员,调节各种活动,包括翻译控制,剪接和凋亡 The gene encodes proteins that are members of the RNA-binding protein family and regulate various activities including translation control, splicing, and apoptosis |
9 | TXNL1-204 | BLV-miR-B2-5p | 175 | TXNL1- XRCC1是一种新型的调控途径,氧化还原传感器TXNL1在液相内吞中起调节作用[ TXNL1- XRCC1 is a new regulatory approach, and the redox sensor TXNL1 plays a regulatory role in liquid phase endocytosis |
10 | MUC12 | BLV-miR-B3-3p | 1893 | 编码膜糖蛋白,在细胞内信号传导中发挥作用/黏液素在上皮表面形成的保护性黏液屏障中起重要作用 It encodes membrane glycoproteins and plays a role in intracellular signaling, and mucin plays an important role in the protective mucus barrier formed by the epithelial surface |
11 | AHNAK2 | BLV-miR-B3-5p | 6265 | 编码的蛋白质可通过与钙通道蛋白结合而在钙信号传导中起作用 The encoded protein can play a role in calcium signaling by binding to calcium channel proteins |
12 | EPN1 | BLV-miR-B4-5p | 1506 | 促进囊泡的内吞作用[ |
13 | TSPAN14 | BLV-miR-B4-5p | 1052 | 作为跨膜蛋白,可调节内质网出口[ As a transmembrane protein, it can regulate the export of endoplasmic reticulum |
14 | MUC12 | BLV-miR-B4-5p | 1045 | 编码膜糖蛋白,在细胞内信号传导中发挥作用/黏液素在上皮表面形成的保护性黏液屏障中起重要作用 It encodes membrane glycoproteins and plays a role in intracellular signaling, and mucin plays an important role in the protective mucus barrier formed by the epithelial surface |
15 | MUC12 | BLV-miR-B5-3p | 506 | 编码膜糖蛋白,在细胞内信号传导中发挥作用/黏液素在上皮表面形成的保护性黏液屏障中起重要作用 It encodes membrane glycoproteins and plays a role in intracellular signaling, and mucin plays an important role in the protective mucus barrier formed by the epithelial surface |
16 | MUC12 | BLV-miR-B5-5p | 3373 | 编码膜糖蛋白,在细胞内信号传导中发挥作用/黏液素在上皮表面形成的保护性黏液屏障中起重要作用 It encodes membrane glycoproteins and plays a role in intracellular signaling, and mucin plays an important role in the protective mucus barrier formed by the epithelial surface |
表4
参与合成细胞结构/骨架蛋白的候选靶基因"
序号 Number | 基因名称 Gene name | miRNA miRNA | 评分 Score | 与结构/骨架关系 Relationship with structure / skeleton |
---|---|---|---|---|
1 | MYO19 | BLV-miR-B1-3p | 596 | 肌球蛋白,为肌肉收缩,胞质分裂和细胞器运输等过程提供动力[ It is myosin that powers muscle contraction, cytokinesis and organelle transport |
2 | BSN | BLV-miR-B1-5p | 2197 | 编码的tau蛋白是神经细胞的骨架成分 The encoded tau protein is a skeleton component of nerve cells |
3 | KLC1 | BLV-miR-B1-5p | 2308 | 与肌动蛋白重链结合、参与了囊泡、线粒体和高尔基体等物质的结合 It binds to actin heavy chains and is involved in the binding of vesicles, mitochondria and golgi bodies |
4 | OBSCN | BLV-miR-B1-5p | 2921 | 该基因编码的Obscurins蛋白可作为巨噬细胞的骨架蛋白[ Obscurins encoded by this gene can be regarded as the cytoskeleton protein of macrophages |
5 | EPPK1 | BLV-miR-B3-5p | 920 | 在细胞骨架结构中起作用[ It plays a role in the cytoskeletal structure |
6 | CDC42 | BLV-miR-B4-5p | 925 | 细胞骨架结构中发挥作用[ It plays a role in the cytoskeletal structure |
7 | LTBP3 | BLV-miR-B4-5p | 1074 | 编码的蛋白质与转化生长因子β(TGF-β)形成复合物,在细胞外基质中发挥结构作用 The encoded protein forms a complex with transforming growth factor β (TGF-β) and plays a structural role in the extracellular matrix |
8 | DNAJC14 | BLV-miR-B5-3p | 316 | 是一种热休克蛋白,有助于Hsp70介导的蛋白质折叠[ Is a heat shock protein that helps Hsp70-mediated protein folding |
9 | OBSCN | BLV-miR-B5-5p | 1061 | 该基因编码的Obscurins蛋白可作为巨噬细胞的骨架蛋白[ Obscurins encoded by this gene can be regarded as the cytoskeleton protein of macrophages |
10 | FNBP1L | BLV-miR-B2-5p | 1469 | 该基因编码的蛋白质与CDC42和N-WASP结合,通过激活N-WASP-WIP复合物来促进CDC42诱导的肌动蛋白聚合 The protein encoded by this gene binds to CDC42 and N-WASP, and promotes CDC42-induced actin polymerization by activating the N-WASP-WIP complex |
11 | GAS2L1-208 | BLV-miR-B2-5p | 178 | 该蛋白结合细胞骨架的成分,并可能参与介导微管和微丝之间的相互作用;GAS2L1,一种微管和肌动蛋白结合蛋白,参与中心粒动力学和中心体分离[ The protein binds to cytoskeletal components and is involved in mediating the interaction between microtubules and microfilaments. GAS2L1, a microtubule and actin binding protein, involved in centrosome dynamics and centrosome separation. Gas2 is a growth stagnation specific protein and a component of the microfilament network system |
12 | CLEC16A | BLV-miR-B2-3p | 439 | 该基因编码包含C型凝集素结构域的家族的成员 The gene encodes a member of a family that contains the type C lectin domain |
13 | HERC5-201 | BLV-miR-B2-5p | 175 | 该基因是泛素连接酶HERC家族的成员,编码具有HECT结构域和5个RCC1重复序列的蛋白质 The gene is a member of the ubiquitin ligase HERC family that encodes proteins with HECT domains and five RCC1 repeats |
14 | MAST1 | BLV-miR-B2-3p | 304 | 该基因是微管相关丝氨酸/苏氨酸激酶(MAST)家族的成员。由该基因编码的蛋白质具有N端丝氨酸/苏氨酸激酶结构域 This gene is a member of the microtubule-associated serine/threonine kinase (MAST) family, and the protein encoded by this gene has an N-terminal serine/threonine kinase domain |
表5
参与细胞增殖/凋亡的候选靶基因"
序号 Number | 基因名称 Gene name | miRNA miRNA | 评分 Score | 与增殖关系 Relationship with proliferation |
---|---|---|---|---|
1 | RPS6KA5 | BLV-miR-B1-3p | 618 | 抑制细胞增殖[ |
2 | SHPRH | BLV-miR-B1-3p | 590 | 抑制细胞增殖[ |
3 | EVC | BLV-miR-B1-5p | 2266 | 该基因发生突变可能通过下调Hh途径活性导致心肌细胞的增殖能力降低[ Mutation of this gene may reduce the proliferation of cardiomyocytes by down-regulating Hh pathway activity. The anti-apoptotic ability of cardiomyocytes was decreased |
4 | BIRC6 | BLV-miR-B2-3p | 908 | 诱导细胞增殖[ |
5 | EGFR | BLV-miR-B2-3p | 1049 | 诱导细胞增殖 Inducing cell proliferation |
6 | COL16A1 | BLV-miR-B3-5p | 1031 | 通过上调内皮受体VEGFR1,VEGFR2和uPAR触发血管生成[ Angiogenesis is triggered by upregulation of endothelial receptors VEGFR1, VEGFR2, and uPAR |
7 | KMT2D | BLV-miR-B3-5p | 1203 | 下调抑制胃癌的增殖[ Down-regulating gastric cancer proliferation and inducing apoptosis |
8 | TET3 | BLV-miR-B4-3p | 1691 | 细胞增殖[ |
9 | CDC42 | BLV-miR-B4-5p | 925 | 促进肿瘤生长[ |
4 | TRO | BLV-miR-B4-3p | 1374 | 通过PKC-δ诱导人子宫内膜上皮细胞的凋亡 Apoptosis of human endometrial epithelial cells was induced by PKC-δ |
5 | COL1A2 | BLV-miR-B4-3p | 2543 | 通过PI3K-Akt信号通路抑制胃癌细胞凋亡[ The apoptosis of gastric cancer cells was inhibited by pi3K-Akt signaling pathway |
6 | COL3A1 | BLV-miR-B4-3p | 2098 | 拮抗细胞凋亡功能[ |
7 | TIAL1-201 | BLV-miR-B2-5p | 180 | 该基因编码的蛋白质是RNA结合蛋白家族的成员,调节各种活动,包括翻译控制,剪接和凋亡 The gene encodes proteins that are members of the RNA-binding protein family and regulate various activities, including translation control, splicing, and apoptosis |
表7
参与细胞迁移/侵袭的候选靶基因"
序号 Score | 基因名称 Gene name | miRNA miRNA | 评分 Score | 与迁移关系 Relationship with migration |
---|---|---|---|---|
1 | NOTCH3 | BLV-miR-B1-3p | 600 | 促进转移[ |
2 | RICTOR | BLV-miR-B1-3p | 592 | 促癌细胞转移[ |
3 | TNXB | BLV-miR-B1-3p | 747 | 具有抗黏附作用 |
4 | RPS6KA5 | BLV-miR-B1-3p | 618 | 肿瘤侵袭有关[ |
5 | FOCAD | BLV-miR-B3-3p | 446 | FOCAD编码一种在胶质瘤中具有肿瘤抑制功能的粘着斑蛋白[ FOCAD encodes a focal adhesion proteins of an tumor inhibitory function in glioma |
6 | PLEKHG3 | BLV-miR-B3-3p | 444 | 激活细胞前端的肌动蛋白丝来增强极化细胞迁移[ Activating the actin filaments at the cell front for enhancing the polarized migration of cells |
7 | EPPK1 | BLV-miR-B3-5p | 920 | 在伤口愈合期间加速角质形成细胞迁移 Promoting keratinocyte migration during wound healing |
8 | COL16A1 | BLV-miR-B3-5p | 1031 | COL16A1在炎症晚期时在肠上皮下肌成纤维细胞(ISEMF)表面表达增加,导致细胞扩散[ COL16A1 expression increasing in cell surface which led to cell diffusion |
9 | COL1A2 | BLV-miR-B4-3p | 2543 | 促进胃癌细胞迁移和侵袭[ |
10 | TRO | BLV-miR-B4-3p | 1374 | 介导滋养细胞和子宫内膜上皮细胞之间的细胞黏附 It mediates cell adhesion between endometrial epithelial cells and trophoblast |
11 | CDC42 | BLV-miR-B4-5p | 925 | 影响细胞间黏附、肿瘤细胞形成过程的细胞迁移和侵袭[ Affecting cell adhesion and cell migration and invasion during the tumor cell formation |
12 | EPN1 | BLV-miR-B4-5p | 1506 | 可能降低癌细胞稳定性 It may have decreased cancer cells stability |
13 | LTBP3 | BLV-miR-B4-5p | 1074 | 促进癌细胞传播过程中的早期转移[ |
14 | DNAH17 | BLV-miR-B5-3p | 320 | DNAH17编码动力蛋白轴索重链,参与细胞运动[ DNAH17 encodes a dynein heavy chain motor protein and participates in cell motility |
15 | ATP11A | BLV-miR-B2-3p | 563 | 编码的蛋白质是完整的膜,是结直肠癌异时转移的独立预测因子[ The protein encoded was an independent predictor of colorectal cancer metastasis |
16 | ENPP7 | BLV-miR-B2-3p | 580 | 编码的蛋白质锚定在细胞膜中,它可能起到保护肠黏膜免受炎症和肿瘤发生的作用 It protects the intestinal mucosa against injuries inflammation and tumorigenesis to encoding protein which is anchored to the inner face of cellular membrane |
表8
参与调控人急性淋巴细胞白血病的候选靶基因"
序号 Score | 基因名称 Gene name | miRNA miRNA | 评分 Score | 与白血病关系 Relationship with leukemia |
---|---|---|---|---|
1 | COL1A1 | BLV-miR-B4-3p | 2603 | ALL患者的骨骼发育异常与Col1A1 Sp1结合位点基因多态性存在相关性[ There is a correlation between ALL patients have dysfunctional bone development and Col1A1 Sp1 binding site gene polymorphism |
2 | BCR | BLV-miR-B4-3p | 320 | ALL的融合转录本[ |
表9
参与调控人乳腺癌的候选靶基因"
序号 Score | 基因名称 Gene name | miRNA miRNA | 评分 Score | 与乳腺癌关系 Relationship with breast cancer |
---|---|---|---|---|
1 | NOTCH3 | BLV-miR-B1-3p | 600 | 在癌症转移过程中起作用[ |
2 | RICTOR | BLV-miR-B1-3p | 592 | 在癌症转移过程中起作用[ |
3 | RPS6KA5 | BLV-miR-B1-3p | 618 | 调节乳腺癌中腔细胞分化和转移性休眠,增加骨归巢和生长能力,与肿瘤侵袭有关[ It regulates the differentiation of luminal cells and metastatic dormancy in breast cancer, increases bone homing and growth capacity and is related to tumor invasion |
4 | OBSCN | BLV-miR-B1-5p | 2921 | OBSCN缺失会导致细胞间接触被破坏,在体内外均会导致肿瘤的发生,迁移和侵袭[ These cells contacts are disrupted by OBSCN defecting and leaded to cancer cell migration and invasion in vivo and in vitro |
5 | COL1A1 | BLV-miR-B4-3p | 2603 | 癌症来源的miR-218通过调控COL1A1在血液水平上乳腺癌向骨的转移过程起作用[ MiR-218 of cancer work in transfer process with breast cancer metastasis to bone at the blood level by regulatory COL1A1 |
6 | OBSCN | BLV-miR-B5-5p | 1061 | OBSCN缺失会导致细胞间接触被破坏,在体内外均会导致肿瘤的发生,迁移和侵袭[ These cells contacts are disrupted by OBSCN defecting and leaded to cancer cell migration and invasion in vivo and in vitro |
7 | ATF3 | BLV-miR-B2-5p | 180 | 乳腺癌期间的病理状况下,已经观察到ATF3的持续和延长表达[ ATF3 will prolonge and sustaine expression under pathological situations in breast cancer |
[1] | GILLET N, FLORINS A, BURTEAU C, NIGRO A, VANDERMEERS F, BALON H, BOUZAR A, DEFOICHE J, BURNY A, REICHERT M, KETTMANN R, WILLEMS L. Mechanisms of leukemogenesis induced by bovine leukemia virus: Prospects for novel anti-retroviral therapies in human. Retrovirology, 2007,4:18. |
[2] | 杨奕. 牛白血病病毒分子流行病学调查及其致病性的研究[D]. 扬州:扬州大学, 2018. |
YANG Y. Molecular epidemiological investigation and pathogenicity of bovine leukemia virus[D]. Yangzhou: Yangzhou University, 2018. (in Chinese) | |
[3] | OTT S, JOHNSON R, WELLS S. Association between Bovine- Leukosis virus seroprevalence and herd-level productivity on US dairy farms. Preventive Veterinary Medicine, 2003,61(4):249-262. |
[4] | ERSKINE R, BARLETT P C, BYREM T M, RENDER C L, FEBVAY C, HOUSEMAN J T. Association between bovine leukemia virus, production, and population age in Michigan dairy herds. Journal of Dairy Science, 2012,95:727-734. |
[5] | FRIE M, SPORER K, WALLACE J, MAES R, SORDILLO L, BARTLETT P, COUSSENS P. Reduced humoral immunity and atypical cell-mediated immunity in response to vaccination in cows naturally infected with bovine leukemia virus. Veterinary Immunology and Immunopathology, 2016,182:125-135. |
[6] | MCCLURE H M, KEELING M E, CUSTER R P, MARSHAK R R, ABT D A, FERRER J F. Erythroleukemia in two infant chimpanzees fed milk from cows naturally infected with the bovine C-type virus. Cancer Research, 1974,34(10):2745-2757. |
[7] | MARTINEZ C L, PAMELA L, NIETO F M, DOLCINI G L, CERIANI C. Can bovine leukemia virus be related to human breast cancer? A review of the evidence. Journal of Mammary Gland Biology and Neoplasia, 2018,23(3):101-107. |
[8] | BUEHRING G C, DELANEY A, SHEN H, et al. Bovine leukemia virus discovered in human blood. BMC Infectious Diseases, 2019,19(1):297. |
[9] | KINCAID R P, BURKE J M, SULLIVAN C S, CHU D L C, RAZAVIAN N, SCHWARTZ D A, DEMKOVICH Z R, BATES M N. RNA virus microRNA that mimics a B-cell oncomiR. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(8):3077-3082. |
[10] | NICOLAS R, MÉLANIE M, KEITH D, HARUKO T, FLORIAN C, YVETTE C, CÉLINE V, FRANCK M, ERIC W, ARSÈNE B, MICHEL G, ANNE V. Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leukemia/lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(6):2306-2311. |
[11] | MOULES V, POMIER C, SIBON D, GABET A S, REICHERT M, KERKHOFS P, WILLEMS L, MORTREUX F, WATTEL E. Fate of premalignant clones during the asymptomatic phase preceding lymphoid malignancy. Cancer Research, 2005,65(4):1234-1243. |
[12] | MERIMI M, KLENER P, SZYNAL M, CLEUTER Y, KERKHOFS P, BURNY A, MARTIAT P, VAN DEN BROEKE A. Suppression of viral gene expression in bovine leukemia virus-associated B-cell malignancy: interplay of epigenetic modifications leading to chromatin with a repressive histone code. Journal of Virology, 2007,81(11):5929-5939. |
[13] | SAFARI R, HAMAIDIA M, DE BROGNIEZ A, GILLET N, WILLEMS L. Cis-drivers and trans-drivers of bovine leukemia virus oncogenesis. Current Opinion in Virology, 2017,26:15-19. |
[14] | GILLET N A, HAMAIDIA M, DE BROGNIEZ A, GUTIÉRREZ G, RENOTTE N, REICHERT M, TRONO K, WILLEMS L. Bovine leukemia virus small noncoding rnas are functional elements that regulate replication and contribute to oncogenesis in vivo. PLoS Pathogens, 2016,12(4):e1005588. |
[15] | ROSEWICK N, DURKIN K, ARTESI M, MARÇAIS A, HAHAUT V, GRIEBEL P, ARSIC N, AVETTAND-FENOEL V, BURNY A, CHARLIER C, HERMINE O, GEORGES M, VAN DEN BROEKE A. Cis-perturbation of cancer drivers by the HTLV-1/BLV proviruses is an early determinant of leukemogenesis. Nature Communications, 2017,8(1):15264. |
[16] | ZHANG L, HOU D, LI D, ZHU L Y, ZHANG Y J, LI J, BIAN Z, LIANG X Y, CAI X, YIN Y, WANG C, ZHANG T F, ZHU D H, ZHANG D M, XU J, CHEN Q, BA Y, LIU J, ZHANG C Y. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Research, 2011,22:107-126. |
[17] | IZUMI H, TSUDA M, SATO Y, KOSAKA N, OCHIYA T, IWAMOTO H, NAMBA K, TAKEDA Y. Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. Journal of Dairy Science, 2015,98(5):2920-2933. |
[18] | REHMSMEIER M, STEFFEN P, HOCHSMANN M, GIEGERICH R. Fast and effective prediction of microRNA/target duplexes. RNA -A Publication of The RNA Society, 2004,10(10):1507-1517. |
[19] |
MUKHERJEE R, MAJUMDER P, CHAKRABARTI O. MGRN1- mediated ubiquitination of alpha-tubulin regulates microtubule dynamics and intracellular transport. Traffic, 2017,18(12):791-807.
doi: 10.1111/tra.12527 pmid: 28902452 |
[20] | XIAO X H, LV L C, DUAN J, WU Y M, HE S J, HU Z Z, XIONG L X. Regulating Cdc42 and its signaling pathways in cancer: Small molecules and microrna as new treatment candidates. Molecules, 2018,23(4):787. |
[21] |
FeLBERBAUM-CORTI M, MOREL E, CAVALLI V, VILBOIS F, GRUENBERG J. The redox sensor TXNL1 plays a regulatory role in fluid phase endocytosis. PLoS ONE, 2007,2(11):e1144.
doi: 10.1371/journal.pone.0001144 pmid: 17987124 |
[22] | LIU Z, ZHENG Y. A requirement for epsin in mitotic membrane and spindle organization. Journal of Cell Biology, 2009,186(4):473-480. |
[23] | DORNIER E, COUMAILLEAU F, OTTAVI J F, et al. TspanC8 tetraspanins regulate ADAM10 / Kuzbanian trafficking and promote Notch activation in flies and mammals. Journal of Cell Biology, 2012,199(3):481-496. |
[24] | QUINTERO O A, DIVITO M M, ADIKES R C, KORTAN M B, CASE L B, LIER A J, PANARETOS N S, SLATER S Q, RENGARAJAN M, FELIU M, CHENEY R E. Human Myo19 is a novel myosin that associates with mitochondria. Current Biology, 2009,19(23):2008-2013. |
[25] |
SHRIVER M, STROKA K M, VITOLO M I, MARTIN S, HUSO D L, KONSTANTOPOULOS K, KONTROGIANNI-KONSTANTOPOULOS A. Loss of giant obscurins from breast epithelium promotes epithelial- to-mesenchymal transition, tumorigenicity and metastasis. Oncogene, 2015,34(32):4248-4259.
pmid: 25381817 |
[26] | JANG S I, KALININ A, TAKAHASHI K, MAREKOV L N, STEINERT P M. Characterization of human epiplakin: RNAi-mediated epiplakin depletion leads to the disruption of keratin and vimentin IF networks. Journal of Cell Science, 2005,118(Pt 4):781-793. |
[27] |
JUNG J, KIM J, ROH S H, JUN I, SAMPSON R D, GEE H Y, CHOI J Y, LEE M G. The HSP70 co-chaperone DNAJC14 targets misfolded pendrin for unconventional protein secretion. Nature Communications, 2016,7:11386.
pmid: 27109633 |
[28] |
AU F K, JIA Y, JIANG K, GRIGORIEV I, HAU B K, SHEN Y, DU S, AKHMANOVA A, QI R Z. GAS2L1 Is a centriole-associated protein required for centrosome dynamics and disjunction. Developmental Cell, 2017,40(1):81-94.
pmid: 28017616 |
[29] | BRANCOLINI C, BOTTEGA S, SCHNEIDER C. Gas2, a growth arrest-specific protein, is a component of the microfilament network system. Journal of Cell Biology, 1992,117(6):1251-1261. |
[30] |
FU X, FAN X, HU J, ZOU H, CHEN Z, LIU Q, NI B, TAN X, SU Q, WANG J, WANG L, WANG J. Overexpression of MSK1 is associated with tumor aggressiveness and poor prognosis in colorectal cancer. Digestive and Liver Disease, 2017,49(6):683-691.
doi: 10.1016/j.dld.2017.02.009 pmid: 28314603 |
[31] |
ZHANG M, HUANG N, YANG X, LUO J, YAN S, XIAO F, CHEN W, GAO X, ZHAO K, ZHOU H, LI Z, MING L, XIE B, ZHANG N. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene, 2018,37(13):1805-1814.
pmid: 29343848 |
[32] |
LIU F, LIU X, XU Z, YUAN P, ZHOU Q, JIN J, YAN X, XU Z, CAO Q, YU J, CHENG Y, WAN R, HONG K. Molecular mechanisms of Ellisvan Creveld gene variations in ventricular septal defect. Molecular Medicine Reports, 2018,17(1):1527-1536.
doi: 10.3892/mmr.2017.8088 pmid: 29257216 |
[33] |
WANG Z, LUO H, FANG Z, FAN Y, LIU X, ZHANG Y, RUI S, CHEN Y, HONG L, GAO J, ZHANG M. MiR-204 acts as a potential therapeutic target in acute myeloid leukemia by increasing BIRC6-mediated apoptosis. BMB Reports, 2018,51(9):444-449.
pmid: 29764561 |
[34] | MCCLURE H M, KEELING M E, CUSTER R P, MARSHAK R R, ABT D A, FERRER J F. Erythroleukemia in two infant chimpanzees fed milk from cows naturally infected with the bovine C-type virus. Cancer Research, 1974,34(10):2745-2757. |
[35] |
BEDAL K B, GRASSEL S, SPANIER G, REICHERT T E, BAUER R J. The NC11 domain of human collagen XVI induces vasculogenic mimicry in oral squamous cell carcinoma cells. Carcinogenesis, 2015,36(11):1429-1439.
doi: 10.1093/carcin/bgv141 pmid: 26424749 |
[36] | XIONG W, DENG Z, TANG Y, DENG Z, LI M. Downregulation of KMT2D suppresses proliferation and induces apoptosis of gastric cancer. Biochemical and Biophysical Research Communications, 2018,504(1):129-136. |
[37] |
FB U B, CAU L, TAFAZZOLI A, MECHIN M C, WOLF S, ROMANO M T, VALENTIN F, WIEGMANN H, HUCHENQ A, KANDIL R, et al. Mutations in three genes encoding proteins involved in hair shaft formation cause uncombable hair syndrome. American Journal of Human Genetics, 2016,99(6):1292-1304.
pmid: 27866708 |
[38] |
AO R, GUAN L, WANG Y, WANG J N. Silencing of COL1A2, COL6A3, and THBS2 inhibits gastric cancer cell proliferation, migration, and invasion while promoting apoptosis through the PI3k-Akt signaling pathway. Journal of Cellular Biochemistry, 2018,119(6):4420-4434.
pmid: 29143985 |
[39] |
ROHN J L, PATEL J V, NEUMANN B, BULKESCHER J, MCHEDLISHVILI N, MCMULLAN R C, QUINTERO O A, ELLENBERG J, BAUM B. Myo19 ensures symmetric partitioning of mitochondria and coupling of mitochondrial segregation to cell division. Current Biology, 2014,24(21):2598-2605.
doi: 10.1016/j.cub.2014.09.045 pmid: 25447992 |
[40] | GAWRZAK S, RINALDI L, GREGORIO S, ARENAS E J, SALVADOR F, UROSEVIC J, FIGUERAS-PUIG C, ROJO F, DEL BARCO BARRANTES I, CEJALVO J M, et al. MSK1 regulates luminal cell differentiation and metastatic dormancy in ER(+) breast cancer. Nature Cell Biology, 2018,20(2):211-221. |
[41] | LEONTOVICH A A, JALALIRAD M, SALISBURY J L, MILLS L, HADDOX C, SCHROEDER M, TUMA A, GUICCIARDI M E, ZAMMATARO L, GAMBINO M W, et al. NOTCH3 expression is linked to breast cancer seeding and distant metastasis. Breast Cancer Reserach, 2018,20(1):105. |
[42] |
EL SHAMIEH S, SALEH F, MOUSSA S, KATTAN J, FARHAT F. RICTOR gene amplification is correlated with metastasis and therapeutic resistance in triple-negative breast cancer. Pharmacogenomics, 2018,19(9):757-760.
doi: 10.2217/pgs-2018-0019 pmid: 29790419 |
[43] |
BROCKSCHMIDT A, TROST D, PETERZIEL H, ZIMMERMANN K, EHRLER M, GRASSMANN H, PFENNING P N, WAHA A, WOHLLEBER D, BROCKSCHMIDT F F, et al. KIAA1797/FOCAD encodes a novel focal adhesion protein with tumour suppressor function in gliomas. Brain, 2012,135(Pt 4):1027-1041.
doi: 10.1093/brain/aws045 pmid: 22427331 |
[44] | NGUYEN T T, PARK W S, PARK B O, KIM C Y, OH Y, KIM J M, CHOI H, KYUNG T, KIM C H, LEE G, et al. PLEKHG3 enhances polarized cell migration by activating actin filaments at the cell front. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(36):10091-10096. |
[45] |
RATZINGER S, EBLE J A, PASOLDT A, OPOLKA A, ROGLER G, GRIFKA J, GRASSEL S. Collagen XVI induces formation of focal contacts on intestinal myofibroblasts isolated from the normal and inflamed intestinal tract. Matrix Biology, 2010,29(3):177-193.
doi: 10.1016/j.matbio.2009.11.004 pmid: 19931388 |
[46] |
DERYUGINA E I, ZAJAC E, ZILBERBERG L, MURAMATSU T, JOSHI G, DABOVIC B, RIFKIN D, QUIGLEY J P. LTBP3 promotes early metastatic events during cancer cell dissemination. Oncogene, 2018,37(14):1815-1829.
doi: 10.1038/s41388-017-0075-1 pmid: 29348457 |
[47] |
ZHU C, YANG Q, XU J, ZHAO W, ZHANG Z, XU D, ZHANG Y, ZHAO E, ZHAO G. Somatic mutation of DNAH genes implicated higher chemotherapy response rate in gastric adenocarcinoma patients. Journal of Translational Medicine, 2019,17(1):109.
doi: 10.1186/s12967-019-1867-6 pmid: 30944005 |
[48] |
MIYOSHI N, ISHII H, MIMORI K, TANAKA F, NAGAI K, UEMURA M, SEKIMOTO M, DOKI Y, MORI M. ATP11A is a novel predictive marker for metachronous metastasis of colorectal cancer. Oncology Reports, 2010,23(2):505-510.
pmid: 20043114 |
[49] |
ZHANG Z, FANG C, WANG Y, ZHANG J, YU J, ZHANG Y, WANG X, ZHONG J. COL1A1: A potential therapeutic target for colorectal cancer expressing wild-type or mutant KRAS. International Journal of Oncology, 2018,53(5):1869-1880.
doi: 10.3892/ijo.2018.4536 pmid: 30132520 |
[50] |
CHOPRA A, SONI S, VERMA D, KUMAR D, DWIVEDI R, VISHWANATHAN A, VISHWAKAMA G, BAKHSHI S, SETH R, GOGIA A, KUMAR L, KUMAR R. Prevalence of common fusion transcripts in acute lymphoblastic leukemia: A report of 304 cases. Asia-Pacific Journal of Clinical Oncology, 2015,11(4):293-298.
doi: 10.1111/ajco.12400 pmid: 26264145 |
[51] |
SCHMIDT K M, DIETRICH P, HACKL C, GUENZLE J, BRONSERT P, WAGNER C, FICHTNER-FEIGL S, SCHLITT H J, GEISSLER E K, HELLERBRAND C, LANG S A. Inhibition of mTORC2/RICTOR impairs melanoma hepatic metastasis. Neoplasia, 2018,20(12):1198-1208.
doi: 10.1016/j.neo.2018.10.001 pmid: 30404068 |
[52] |
ROHINI M, HARITHA MENON A, SELVAMURUGAN N. Role of activating transcription factor 3 and its interacting proteins under physiological and pathological conditions. International Journal of Biological Macromolecules, 2018,120(Pt A):310-317.
doi: 10.1016/j.ijbiomac.2018.08.107 pmid: 30144543 |
[53] |
URSIN G, BJELKE E, HEUCH I, VOLLSET S E. Milk consumption and cancer incidence: a Norwegian prospective study. British Journal of Cancer, 1990,61(3):454-459.
doi: 10.1038/bjc.1990.100 pmid: 2328215 |
[54] | SANTANAM U, ZANESI N, EFANOV A, COSTINEAN S, PALAMARCHUK A, HAGAN J P, VOLINIA S, ALDER H, RASSENTI L, KIPPS T, CROCE C M, PEKARSKY Y. Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(27):12210-12215. |
[55] | BJORKMAN K, MUSTONEN H, KAPRIO T, HAGLUND C, BOCKELMAN C. Mucin 16 and kallikrein 13 as potential prognostic factors in colon cancer: Results of an oncological 92-multiplex immunoassay. Tumour Biology, 2019,41(7):1010428319860728. |
[1] | 吴艳,张昊,梁振华,潘爱銮,申杰,蒲跃进,黄涛,皮劲松,杜金平. circ-13267通过let-7-19/ERBB4通路调控蛋鸭卵泡颗粒细胞凋亡[J]. 中国农业科学, 2022, 55(8): 1657-1666. |
[2] | 李世佳,吕紫敬,赵锦. 枣R2R3-MYB亚家族基因鉴定及其在果实发育中的表达分析[J]. 中国农业科学, 2022, 55(6): 1199-1212. |
[3] | 李宁,柳坤,刘彤彤,史雨刚,王曙光,杨进文,孙黛珍. 小麦响应干旱胁迫环状RNA的鉴定[J]. 中国农业科学, 2022, 55(23): 4583-4599. |
[4] | 陈凤琼, 陈秋森, 林佳昕, 王雅亭, 刘汉林, 梁冰若诗, 邓艺茹, 任春元, 张玉先, 杨凤军, 于高波, 魏金鹏, 王孟雪. 番茄DIR基因家族鉴定及其对非生物胁迫响应的分析[J]. 中国农业科学, 2022, 55(19): 3807-3821. |
[5] | 杜宇,范小雪,蒋海宾,王杰,冯睿蓉,张文德,余岢骏,隆琦,蔡宗兵,熊翠玲,郑燕珍,陈大福,付中民,徐国钧,郭睿. 微小RNA介导意大利蜜蜂工蜂对东方蜜蜂微孢子虫的跨界调控[J]. 中国农业科学, 2021, 54(8): 1805-1820. |
[6] | 葛欣竺,史宇星,王莎莎,刘智慧,蔡文杰,周敏,王世贵,唐斌. 异色瓢虫丙酮酸激酶基因序列分析及其调控海藻糖代谢功能[J]. 中国农业科学, 2021, 54(23): 5021-5031. |
[7] | 陈慧芳,黄绮亮,胡智超,潘晓婷,吴志胜,白银山. 外泌体microRNA在猪成熟和闭锁卵泡中的表达差异及功能分析[J]. 中国农业科学, 2021, 54(21): 4664-4676. |
[8] | 徐欢欢,李逸,高伟,王永勤,刘乐承. 洋葱γ-谷氨酰转肽酶AcGGT的克隆与鉴定[J]. 中国农业科学, 2021, 54(19): 4169-4178. |
[9] | 禹保军,邓占钊,辛国省,蔡正云,顾亚玲,张娟. 静原鸡肌肉组织肌苷酸特异性沉积相关LNC_003828- gga-miR-107-3p-MINPP1的关联分析[J]. 中国农业科学, 2021, 54(19): 4229-4242. |
[10] | 谭照国,李艳梅,白建芳,郭昊宇,栗婷婷,段文静,刘子涵,苑少华,张天豹,张风廷,陈兆波,赵福永,赵昌平,张立平. 小麦TaBG的克隆及其在花药开裂中的潜在功能[J]. 中国农业科学, 2021, 54(13): 2710-2723. |
[11] | 陈露露,王会,王吉坤,王嘉博,柴志欣,陈智华,钟金城. 藏黄牛与宣汉黄牛心脏miRNA表达谱比较[J]. 中国农业科学, 2020, 53(8): 1677-1687. |
[12] | 孟淑君,张雪海,王琪月,张稳,黄力,丁冬,汤继华. 水稻根系盐胁迫响应miRNA和tRF的鉴定[J]. 中国农业科学, 2020, 53(4): 669-682. |
[13] | 邢启凯,李铃仙,曹阳,张玮,彭军波,燕继晔,李兴红. 可可毛色二孢全基因组分泌蛋白的预测及分析[J]. 中国农业科学, 2020, 53(24): 5027-5038. |
[14] | 朱静静,周晓龙,汪涵,李向臣,赵阿勇,杨松柏. 靶向猪内质网应激通路的microRNAs预测与验证[J]. 中国农业科学, 2020, 53(15): 3169-3179. |
[15] | 王欣悦,石田培,赵志达,胡文萍,尚明玉,张莉. 基于绵羊胚胎骨骼肌蛋白质组学的PI3K-AKT信号通路分析[J]. 中国农业科学, 2020, 53(14): 2956-5963. |
|