[1] |
付靖波, 张红霞, 朱海英. 颗粒细胞凋亡调控机制及其在卵泡发育中的作用. 中国临床医学, 2020(5):857-860. doi: 10.12025/j.issn.1008-6358.2020.20191161.
doi: 10.12025/j.issn.1008-6358.2020.20191161
|
|
FU J B, ZHANG H X, ZHU H Y. Regulation mechanisms of granulosa cells apoptosis and its role in follicular development. Chinese Journal of Clinical Medicine, 2020(5):857-860. doi: 10.12025/j.issn.1008-6358.2020.20191161.(in Chinese)
doi: 10.12025/j.issn.1008-6358.2020.20191161
|
[2] |
ASSELIN E, XIAO C W, WANG Y F, TSANG B K. Mammalian follicular development and atresia: role of apoptosis. Biological Signals & Receptors, 2000, 9(2): 87-95.
|
[3] |
徐子雯, 杨珖, 姚桂东. 微小RNA在卵巢卵泡发育中的调控作用. 中华生殖与避孕杂志, 2020(10):847-852. doi: 10.3760/cma.j.cn101441-20191008-00440.
doi: 10.3760/cma.j.cn101441-20191008-00440
|
|
XU Z W, YANG G, YAO G D. Regulation of microRNA in ovarian follicular development. Chinese Journal of Reproduction and Contraception, 2020(10):847-852. doi: 10.3760/cma.j.cn101441-20191008-00440. (in Chinese)
doi: 10.3760/cma.j.cn101441-20191008-00440
|
[4] |
范冰峰, 赵向远, 韩玉萍, 李文, 李晓霞, 许保增. 颗粒细胞对卵母细胞成熟和排卵影响研究进展. 特产研究, 2020(5): 78-83.
|
|
FAN B F, ZHAO X Y, HAN Y P, LI W, LI X X, XU B Z. Research progress on effects of granulosa cells on oocyte maturation and ovulation. Special Wild Economic Animal and Plant Research, 2020(5): 78-83. (in Chinese)
|
[5] |
PIPER L R, BINDON B M, DAVIS G H. The single gene inheritance of the high litter size of the Booroola Merino//LAND R B, ROBINSON D W. eds. Genetics of Reproduction in Sheep. London, UK: Butterworths, 1985:115-125.
|
[6] |
SILVA J R, VAN DEN HURK R, VAN TOL H T, ROELEN B A, FIGUEIREDO J R. Expression of growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), and BMP receptors in the ovaries of goats. Molecular Reproduction and Development, 2005, 70(1): 11-19. doi: 10.1002/mrd.20127.
doi: 10.1002/mrd.20127
|
[7] |
PRAMOD R K, SHARMA S K, SINGHI A, PAN S, MITRA A. Differential ovarian morphometry and follicular expression of BMP15, GDF9 and BMPR1B influence the prolificacy in goat. Reproduction in Domestic Animals, 2013, 48: 803-809.
doi: 10.1111/rda.12165
|
[8] |
WANG W, ZHANG X, ZHOU X, ZHANG Y, LA Y, ZHANG Y, LI C, ZHAO Y, LI F, LIU B, JIANG Z. Deep genome resequencing reveals artificial and natural selection for visual deterioration, plateau adaptability and high prolificacy in Chinese domestic sheep. Frontiers in Genetics, 2019, 10: 300. doi: 10.3389/fgene.2019.00300.
doi: 10.3389/fgene.2019.00300
|
[9] |
POKHAREL K, PEIPPO J, HONKATUKIA M, SEPPÄLÄ A, RAUTIAINEN J, GHANEM N, HAMAMA T M, CROWE M A, ANDERSSON M, LI M H, KANTANEN J. Integrated ovarian mRNA and miRNA transcriptome profiling characterizes the genetic basis of prolificacy traits in sheep (Ovis aries). BMC Genomics, 2018, 19(1): 104. doi: 10.1186/s12864-017-4400-4.
doi: 10.1186/s12864-017-4400-4
|
[10] |
MIAO X, LUO Q, ZHAO H, QIN X. Ovarian proteomic study reveals the possible molecular mechanism for hyperprolificacy of Small Tail Han sheep. Scientific Reports, 2016, 6: 27606. doi: 10.1038/srep27606.
doi: 10.1038/srep27606
|
[11] |
CONCANNON C G, TUFFY L P, WEISOVÁ P, BONNER H P, DÁVILA D, BONNER C, DEVOCELLE M C, STRASSER A, WARD M W, PREHN J H. AMP kinase-mediated activation of the BH3-only protein Bim couples energy depletion to stress-induced apoptosis. Journal of Cell Biology, 2010, 189(1):83-94.
|
[12] |
KILBRIDE S M, FARRELLY A M, BONNER C, WARD M W, NYHAN K C, CONCANNON C G, WOLLHEIM C B, BYRNE M M, PREHN J H. AMP-activated protein kinase mediates apoptosis in response to bioenergetic stress through activation of the pro-apoptotic Bcl-2 homology domain-3-only protein BMF. The Journal of Biological Chemistry, 2010, 285(46): 36199-36206. doi: 10.1074/jbc.m110.138107.
doi: 10.1074/jbc.m110.138107
|
[13] |
O’CONNOR L, STRASSER A, O’REILLY L A, HAUSMANN G, ADAMS J M, CORY S, HUANG D C. Bim: A novel member of the Bcl-2 family that promotes apoptosis. EMBO Journal, 1998, 17(2): 384-395.
doi: 10.1093/emboj/17.2.384
|
[14] |
PERIER C, BOVÉ J, WU D C, DEHAY B, CHOI D K, JACKSON- LEWIS V, RATHKE-HARTLIEB S, BOUILLET P, STRASSER A, SCHULZ J B, PRZEDBORSKI S, VILA M. Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(19): 8161-8166.
|
[15] |
WANG H, SHA L, HUANG L, YANG S, ZHOU Q, LUO X, SHI B. LINC00261 functions as a competing endogenous RNA to regulate BCL2L11 expression by sponging miR-132-3p in endometriosis. American Journal of Translational Research, 2019, 11(4): 2269-2279.
|
[16] |
QU H M, QU L P, PAN X Z, MU L S. Upregulated miR-222 targets BCL2L11 and promotes apoptosis of mesenchymal stem cells in preeclampsia patients in response to severe hypoxia. International Journal of Clinical and Experimental Pathology, 2018, 11(1): 110-119.
|
[17] |
ZHAI M, XIE Y, LIANG H, LEI X, ZHAO Z. Comparative profiling of differentially expressed microRNAs in estrous ovaries of Kazakh sheep in different seasons. Gene, 2018, 664: 181-191. doi: 10.1016/j.gene.2018.04.025.
doi: 10.1016/j.gene.2018.04.025
|
[18] |
ZHOU C F, MA J, HUANG L, YI H Y, ZHANG Y M, WU X G, YAN R M, LIANG L, ZHONG M, YU Y H, WU S, WANG W. Cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1. Oncogene, 2019, 38(8): 1256-1268. doi: 10.1038/s41388-018-0511-x
doi: 10.1038/s41388-018-0511-x
|
[19] |
WEI W F, ZHOU C F, WU X G, HE L N, WU L F, CHEN X J, YAN R M, ZHONG M, YU Y H, LIANG L, WANG W. microRNA-221-3p, a TWIST2 target, promotes cervical cancer metastasis by directly targeting THBS2. Cell Death & Disease, 2017, 8(12): 3220. doi: 10.1038/s41419-017-0077-5.
doi: 10.1038/s41419-017-0077-5
|
[20] |
LUBUSKY M, PROCHAZKA M, DHAIFALAH I, HORAK D, GEIEROVA M, SANTAVY J. Fetal enterolithiasis: Prenatal sonographic and MRI diagnosis in two cases of urorectal septum malformation (URSM) sequence. Prenatal Diagnosis, 2006, 26(4): 345-349. doi: 10.1002/pd.1415.
doi: 10.1002/pd.1415
|
[21] |
HUGHES F M, GOROSPE W C. Biochemical identification of apoptosis (programmed cell death) in granulosa cells: Evidence for a potential mechanism underlying follicular atresia. Endocrinology, 1991, 129(5): 2415-2422.
doi: 10.1210/endo-129-5-2415
|
[22] |
FU X, HE Y, WANG X, PENG D, CHEN X, LI X, WAN Q. microRNA-16 promotes ovarian granulosa cell proliferation and suppresses apoptosis through targeting PDCD4 in polycystic ovarian syndrome. Cellular Physiology and Biochemistry, 2018, 48(2): 670-682. doi: 10.1159/000491894.
doi: 10.1159/000491894
|
[23] |
MATSUDA F, INOUE N, MAEDA A, CHENG Y, SAI T, GONDA H, GOTO Y, SAKAMAKI K, MANABE N. Expression and function of apoptosis initiator FOXO3 in granulosa cells during follicular atresia in pig ovaries. The Journal of Reproduction and Development, 2011, 57(1): 151-158. doi: 10.1262/jrd.10-124h.
doi: 10.1262/jrd.10-124h
|
[24] |
LIU J, LI X, YAO Y, LI Q, PAN Z, LI Q. miR-1275 controls granulosa cell apoptosis and estradiol synthesis by impairing LRH-1/CYP19A1 axis. Biochimica et Biophysica Acta Gene Regulatory Mechanisms, 2018, 1861(3): 246-257. doi: 10.1016/j.bbagrm.2018.01.009.
doi: 10.1016/j.bbagrm.2018.01.009
|
[25] |
ZHUANG R J, BAI X X, LIU W. MicroRNA-23a depletion promotes apoptosis of ovarian cancer stem cell and inhibits cell migration by targeting DLG2. Cancer Biology & Therapy, 2019, 20(6): 897-911.
|
[26] |
CAO R, WU W J, ZHOU X L, XIAO P, WANG Y, LIU H L. Expression and preliminary functional profiling of the let-7 family during porcine ovary follicle atresia. Molecules and Cells, 2015, 38(4): 304-311. doi: 10.14348/molcells.2015.2122.
doi: 10.14348/molcells.2015.2122
|
[27] |
MILANI R, BROGNARA E, FABBRI E, MANICARDI A, CORRADINI R, FINOTTI A, GASPARELLO J, BORGATTI M, COSENZA L C, LAMPRONTI I, DECHECCHI M C, CABRINI G, GAMBARI R. Targeting miR1555p and miR2213p by peptide nucleic acids induces caspase3 activation and apoptosis in temozolomide resistant T98G glioma cells. International Journal of Oncology, 2019, 55(1): 59-68. doi: 10.3892/ijo.2019.4810.
doi: 10.3892/ijo.2019.4810
|
[28] |
蒋鹏飞, 覃艮艳, 彭晓芳, 张又玮, 彭俊, 彭清华. 密蒙花颗粒剂对去势雄兔泪腺细胞凋亡因子Bax、Caspase-3、Fas和FasL的影响. 时珍国医国药, 2019(12): 2820-2822.
|
|
JIANG P F, QIN G Y, PENG X F, ZHANG Y W, PENG J, PENG Q H. Effects of Mimenghua granules on apoptosis factors bax, caspase-3, FasL in lacrimal gland cells of ovariectomized male rabbits. Lishizhen Medicine and Materia Medica Research, 2019(12): 2820-2822. (in Chinese)
|
[29] |
YANG W, COOKE M, DUCKETT C S, YANG X, DORSEY J F. Distinctive effects of the cellular inhibitor of apoptosis protein c-IAP2 through stabilization by XIAP in glioblastoma multiforme cells. Cell Cycle (Georgetown, Tex), 2014, 13(6): 992-1005. doi: 10.4161/cc.27880.
doi: 10.4161/cc.27880
|
[30] |
吴夏梦, 刘进辉, 王英, 雷磊, 周展波, 王水莲, 张虹亮. CRABP1过表达载体的构建及其对猪卵泡颗粒细胞凋亡的影响. 中国畜牧杂志, 2021(6): 172-177.
|
|
WU X M, LIU J H, WANG Y, LEI L, ZHOU Z B, WANG S L, ZHANG H L. Construction of CRABP1 overexpression vector and its effect on porcine granulosa cell apoptosis. Chinese Journal of Animal Science, 2021(6): 172-177. (in Chinese)
|