[1] |
PITINO M, ARMSTRONG C M, DUAN Y. Rapid screening for citrus canker resistance employing pathogen-associated molecular pattern- triggered immunity responses. Horticulture Research, 2015, 2:15042.
doi: 10.1038/hortres.2015.42
|
[2] |
杨枫, 陈传武, 范七君, 石春梅, 谢宗周, 郭大勇, 刘继红. 温度和多胺对柑橘溃疡病发生的影响及作用机制. 中国农业科学, 2018, 51(10): 1899-1907.
|
|
YANG F, CHEN C W, FAN Q J, SHI C M, XIE Z Z, GUO D Y, LIU J H. Influence of temperature and polyamines on occurrence of citrus canker disease and underlying mechanisms. Scientia Agricultura Sinica, 2018, 51(10): 1899-1907. (in Chinese)
|
[3] |
姚廷山, 胡军华, 唐科志, 冉春, 李中安, 周常勇. 利用rep-PCR技术研究我国9省柑橘溃疡病菌遗传多样性. 果树学报, 2010, 27(5): 819-822.
|
|
YAO T S, HU J H, TANG K Z, RAN C, LI Z A, ZHOU C Y. Primary analysis on genomic diversities of Xanthomonas axnopodis pv. citri in nine provinces of China. Journal of Fruit Science, 2010, 27(5): 819-822. (in Chinese)
|
[4] |
向旭. 柑桔抗病分子育种研究进展. 分子植物育种, 2006, 4(2): 262-268.
|
|
XIANG X. Progresses on molecular breeding for citrus disease resistance. Molecular Plant Breeding, 2006, 4(2): 262-268. (in Chinese)
|
[5] |
彭爱红. 根癌农杆菌介导甲型肝炎病毒(HAV)衣壳蛋白融合基因转化柑桔的研究[D]. 重庆: 西南大学, 2006.
|
|
PENG A H. Agrobacterium-mediated transformation of citrus with hepatitis A virus capsid protein fusion gene[D]. Chongqing: Southwest University, 2006. (in Chinese)
|
[6] |
李鼎立. 柑橘遗传转化受体系统优化与抗溃疡病转基因植株培育[D]. 武汉: 华中农业大学, 2008.
|
|
LI D L. Optimization of transformation system and production of transgenic plants with Xa21 gene in citrus[D]. Wuhan: Huazhong Agricultural University, 2008. (in Chinese)
|
[7] |
STICHER L, MAUCH-MANI B, METRAUX J P. Systemic acquired resistance. Annual Review of Phytopathology, 1997, 35:235-270.
doi: 10.1146/annurev.phyto.35.1.235
|
[8] |
AN C, MOU Z. Salicylic acid and its function in plant immunity. Journal of Integrative Plant Biology, 2011, 53(6): 412-428.
doi: 10.1111/jipb.2011.53.issue-6
|
[9] |
FU Z Q, YAN S, SALEH A, WANG W, RUBLE J, OKA N, MOHAN R, SPOEL S H, TADA Y, ZHENG N, DONG X. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature, 2012, 486(7402): 228-232.
doi: 10.1038/nature11162
|
[10] |
WU Y, ZHANG D, CHU J Y, BOYLE P, WANG Y, BRINDLE I D, DE LUCA V, DESPRÉS C. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Reports, 2012, 1(6): 639-647.
doi: 10.1016/j.celrep.2012.05.008
|
[11] |
DING Y, SUN T, AO K, PENG Y, ZHANG Y, LI X, ZHANG Y. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell, 2018, 173(6): 1454-1467.
doi: 10.1016/j.cell.2018.03.044
|
[12] |
MOU Z, FAN W, DONG X. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 2003, 113(7): 935-944.
doi: 10.1016/S0092-8674(03)00429-X
|
[13] |
DESPRES C, DELONG C, GLAZE S, LIU E, FOBERT P R. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. The Plant Cell, 2000, 12(2): 279-290.
doi: 10.1105/tpc.12.2.279
|
[14] |
ZHANG X, FRANCIS M I, DAWSON W O, GRAHAM J H, ORBOVIĆ V, TRIPLETT E W, MOU Z. Over-expression of the Arabidopsis NPR1 gene in citrus increases resistance to citrus canker. European Journal of Plant Pathology, 2010, 128:91-100.
doi: 10.1007/s10658-010-9633-x
|
[15] |
DUTT M, BARTHE G, IREY M, GROSSER J. Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; citrus greening). PLoS ONE, 2015, 10(9): e0137134.
doi: 10.1371/journal.pone.0137134
|
[16] |
CHEN X, BARNABY J Y, SREEDHARAN A, HUANG X, ORBOVIĆ V, GROSSER J W, WANG N, DONG X, SONG W Y. Over-expression of the citrus gene CtNH1 confers resistance to bacterial canker disease. Physiological and Molecular Plant Pathology, 2013, 84:115-122.
doi: 10.1016/j.pmpp.2013.07.002
|
[17] |
LIU G, HOLUB E B, ALONSO J M, ECKER J R, FOBERT P R. An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. The Plant Journal, 2005, 41(2): 304-318.
doi: 10.1111/tpj.2005.41.issue-2
|
[18] |
ZHANG Y, CHENG Y T, QU N, ZHAO Q, BI D, LI X. Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs. The Plant Journal, 2006, 48(5): 647-656.
doi: 10.1111/tpj.2006.48.issue-5
|
[19] |
WANG Y, ZHOU L, YU X, STOVER E, LUO F, DUAN Y. Transcriptome profiling of Huanglongbing (HLB) tolerant and susceptible citrus plants reveals the role of basal resistance in HLB tolerance. Frontiers in Plant Science, 2016, 7:933.
|
[20] |
PENG A, ZOU X, HE Y, CHEN S, LIU X, ZHANG J, ZHANG Q, XIE Z, LONG J, ZHAO X. Overexpressing a NPR1-like gene from Citrus paradisi enhanced Huanglongbing resistance in C. sinensis. Plant Cell Reports, 2021, 40(3): 529-541.
doi: 10.1007/s00299-020-02648-3
|
[21] |
DAS A K. Citrus canker-A review. Journal of Applied Horticulture, 2003, 5(1): 52-60.
doi: 10.37855/jah.2003.v05i01.15
|
[22] |
PENG A, XU L, HE Y, LEI T, YAO L, CHEN S, ZOU X. Efficient production of marker-free transgenic ‘Tarocco’ blood orange (Citrus sinensis Osbeck) with enhanced resistance to citrus canker using a Cre/loxP site-recombination system. Plant Cell, Tissue and Organ Culture, 2015, 123:1-13.
doi: 10.1007/s11240-015-0799-y
|
[23] |
DUAN S, JIA H, PANG Z, TEPER D, WHITE F, JONES J, ZHOU C, WANG N. Functional characterization of the citrus canker susceptibility gene CsLOB1. Molecular Plant Pathology, 2018, 19(8): 1908-1916.
doi: 10.1111/mpp.2018.19.issue-8
|
[24] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ct method. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262
|
[25] |
XU Q, CHEN L L, RUAN X A, CHEN D J, ZHU A D, CHEN C L, BERTRAND D, JIAO W B, HAO B H, LYON M P, et al. The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 2013, 45(1): 59-66.
doi: 10.1038/ng.2472
|
[26] |
GÓMEZ-MUÑOZ N, VELÁZQUEZ K, VIVES M C, RUIZ-RUIZ S, PINA J A, FLORES R, MORENO P, GUERRI J. The resistance of sour orange to citrus tristeza virus is mediated by both the salicylic acid and RNA silencing defence pathways. Molecular Plant Pathology, 2017, 18(9): 1253-1266.
doi: 10.1111/mpp.2017.18.issue-9
|
[27] |
SHU L J, LIAO J Y, LIN N C, CHUNG C L. Identification of a strawberry NPR-like gene involved in negative regulation of the salicylic acid-mediated defense pathway. PLoS ONE, 2018, 13(10): e0205790.
doi: 10.1371/journal.pone.0205790
|
[28] |
LIU X, LIU Z, NIU X, XU Q, YANG L. Genome-wide identification and analysis of the NPR1-like gene family in bread wheat and its relatives. International Journal of Molecular Science, 2019, 20(23): 5974.
doi: 10.3390/ijms20235974
|
[29] |
YAMADA S, KANO A, TAMAOKI D, MIYAMOTO A, SHISHIDO H, MIYOSHI S, TANIGUCHI S, AKIMITSU K, GOMI K. Involvement of OsJAZ8 in jasmonate-induced resistance to bacterial blight in rice. Plant and Cell Physiology, 2012, 53(12): 2060-2072.
doi: 10.1093/pcp/pcs145
|
[30] |
YUAN Y, ZHONG S, LI Q, ZHU Z, LOU Y, WANG L, WANG J, WANG M, LI Q, YANG D, HE Z. Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnology Journal, 2007, 5(2): 313-324.
doi: 10.1111/pbi.2007.5.issue-2
|
[31] |
SPOEL S H, KOORNNEEF A, CLAESSENS S M C, KORZELIUS J P, VAN PELT J A, MUELLER M J, BUCHALA A J, MÉTRAUX J P, BROWN R, KAZAN K, VAN LOON L C, DONG X, PIETERSE C M J. NPR1 modulates cross-talk between salicylate- and jasmonate- dependent defense pathways through a novel function in the cytosol. The Plant Cell, 2003, 15(3): 760-770.
doi: 10.1105/tpc.009159
|
[32] |
ZHANG Y, FAN W, KINKEMA M, LI X, DONG X. Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR1 gene. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(11): 6523-6528.
|