中国农业科学 ›› 2021, Vol. 54 ›› Issue (21): 4585-4600.doi: 10.3864/j.issn.0578-1752.2021.21.009
赵卫松(),郭庆港,董丽红,王培培,苏振贺,张晓云,鹿秀云,李社增,马平(
)
收稿日期:
2021-03-21
接受日期:
2021-05-31
出版日期:
2021-11-01
发布日期:
2021-11-09
通讯作者:
马平
作者简介:
联系方式:赵卫松,E-mail: 基金资助:
ZHAO WeiSong(),GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping(
)
Received:
2021-03-21
Accepted:
2021-05-31
Online:
2021-11-01
Published:
2021-11-09
Contact:
Ping MA
摘要:
【目的】棉花根系分泌物L-脯氨酸是影响生防菌株定殖的关键因素之一,前期研究发现L-脯氨酸能够提高枯草芽孢杆菌(Bacillus subtilis)NCD-2生物膜形成能力。通过高通量测序技术分析L-脯氨酸调控枯草芽孢杆菌NCD-2生物膜形成和生防潜力相关的基因,为深入认识棉花根系分泌物与生防菌株的分子互作关系打下基础。【方法】以枯草芽孢杆菌NCD-2菌株为供试材料,外源添加浓度为10 mg·mL-1的L-脯氨酸共培养24 h后,分别进行转录组(RNA-seq)和同位素标记相对定量蛋白质组技术(iTRAQ)分析,对所获得的转录组和蛋白质组数据进行生物信息学分析,利用实时荧光定量PCR(RT-qPCR)验证不同代谢通路中部分差异基因的表达情况。 【结果】转录组分析发现,L-脯氨酸和NCD-2菌株共培养后,获得1 071个差异表达基因(DEG),其中602个基因上调,469个基因下调。GO分析发现在生物过程、细胞组分和分子功能方面分别有49、14和30个功能条目显著富集。KEGG代谢通路主要富集在化合物代谢、鞭毛组装、细菌运动和趋化作用。蛋白质组学分析发现,筛选到211个差异表达蛋白(DEP),其中118个蛋白上调,93个蛋白下调。GO分析发现在生物过程和分子功能方面分别有13和8个功能条目显著富集。KEGG代谢通路主要富集在氨基酸代谢、碳水化合物类代谢、鞭毛组装和ABC转运蛋白。进一步转录-蛋白质组学联合分析发现,在L-脯氨酸作用下,检测到共有的显著差异表达基因(或蛋白)112个,其中38个基因(或蛋白)下调,74个基因(或蛋白)上调。GO功能显著富集主要集中在营养库活性、催化活性、细胞膜、定位、细胞脂质代谢过程、氧化还原过程、sigma因子活性、转运活性、芽孢形成9个方面。KEGG代谢通路主要富集在能量代谢、ABC转运蛋白、抗生素生物合成、鞭毛组装、运动或趋化作用和双组分系统方面。RTqPCR验证了26个差异表达显著基因,结果发现在表达量上存在一定的差异,但表达趋势与RNAseq和iTRAQ组学分析结果基本一致。【结论】棉花根系分泌物L-脯氨酸与枯草芽孢杆菌NCD-2之间的互作存在一个复杂的生物过程,依赖于不同代谢通路网络中的多个基因。双组分系统、抗生素生物合成、能量代谢、运动或趋化作用、鞭毛组装和ABC转运蛋白通路中的差异基因(或蛋白)可能在棉花根系分泌物与枯草芽孢杆菌互作过程方面发挥着重要作用。
赵卫松,郭庆港,董丽红,王培培,苏振贺,张晓云,鹿秀云,李社增,马平. 枯草芽孢杆菌NCD-2对棉花根系分泌物L-脯氨酸响应的转录-蛋白质组学联合分析[J]. 中国农业科学, 2021, 54(21): 4585-4600.
ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates[J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
表1
引物及其碱基序列"
基因 Gene | 序列Sequence (5′ to 3′) | 基因 Gene | 序列Sequence (5′ to 3′) | ||
---|---|---|---|---|---|
fliF | F | ACCGAAAGCGGGAACTAC | opuCC | F | GCAAGGAAGCGGAGAAAG |
R | CATCAGGCGGCTCTACCA | R | AGCCGTAGGAATCAAACCA | ||
gInQ | F | TATCGGGATGGTGTTTCA | gcvPB | F | TTATTTCCCGCTTAATGTTG |
R | GTCAGCCTTGTCTGGGAT | R | TCTTCCGCCTCGTATCTG | ||
cheY | F | GGAGCACAAGCGGTAGAG | putC | F | AATCGTTTCAATCAACCCAG |
R | CTGAATGGCATCAATAAC | R | TATCGGCATCCGCCTCGT | ||
fliY | F | CAGACCGTATTCCTGATG | rocA | F | TAGTTGAGCATCCGAAGAC |
R | CACCGTTTCTTCTTCCTC | R | CAATTACCCGTTTGAGCC | ||
opuCA | F | CCAGCAGAACATCTCACTC | yodQ | F | GGCAATACAGCCCTTCTT |
R | GCGGATAACGGTCTAAATAC | R | GCCGCACTCTTCATCTAC | ||
znuA | F | GGGCTTTCACCTGACCAA | ald | F | CCTCTTCTGACGCCAATG |
R | CGAGCGTATCTGCGACCT | R | CAACGCCTCCTCCGATAA | ||
gapB | F | AAGAGGTTGTGGCTGGTG | yerA | F | GAGAAGGCTGGAACTGGG |
R | TTGCTTCGACGACTATGT | R | ATTGTAGGCGTCGATTGC | ||
mmgD | F | AATGGAAACGCTGGAACG | asnO | F | TGTCGGATGTGCCTGTTT |
R | TGTTTGCGGAAGGAGACC | R | CATTTGTGGTGCGTTGTG | ||
acoC | F | TGGACCAGGCGGACGAAT | yisZ | F | AGGATCGGGACATGGTTA |
R | TCGGGCAGCGATGACCTT | R | ATGAAATCGGGTGAAAGC | ||
thrD | F | ACTGATCGCCGCTTACTT | ggt | F | ACACTGTCCAGGATTTCG |
R | ACCGCTCCGTGAGAATGT | R | GGAGGAGGAGTAGTAGCG | ||
yjmD | F | CAGCGGAGGTGAAGAAGC | yoaD | F | CCCGAACTTTCATTTGTC |
R | GAGGGTAGCGAGCGGATT | R | CTCCATCCTTCAGCCACT | ||
epsA | F | TCGAATCTCAGTGACATCCA | epsC | F | AATCCAGAAGAGGCGGTCAA |
R | AGATAGGTGCAATTCCGC | R | GCCGAAGCGAACAGCAAC | ||
ssuB | F | ATTATCAATCGCACCAGG | scoB | F | TTGTCGCAAATGAGATACCC |
R | CAACAGTCAGCCAAGGAA | R | CGTCTTCCGTTCCTTCCA | ||
gyrB | F | GAAGCACGGACAATCACC | |||
R | TCCAAAGCACTCTTACGG |
表2
测序数据质量统计"
处理 Treatment | 原始序列 Raw reads | 过滤序列 Clean reads | 过滤序列大小 Clean reads bases (G) | Q20 比例Q20 percentage (%) | Q30比例Q30 percentage (%) | G和C占总碱基数量百分比 GC content (%) |
---|---|---|---|---|---|---|
CK | 11104298±1620312 | 10870077±1617999 | 1.63±0.24 | 97.46±0.11 | 92.90±0.32 | 41.81±0.40 |
T | 8978376±1390913 | 8783987±1431917 | 1.32±0.22 | 97.99±0.11 | 93.79±0.27 | 43.30±0.05 |
表3
不同表达水平区间的基因数量及比例统计"
项目 Item | 处理 Treatment | FPKM值 FPKM value | ||||
---|---|---|---|---|---|---|
0-1 | 1-3 | 3-15 | 15-60 | >60 | ||
基因数量 Number of genes | CK | 616.33±7.64 | 130.33±10.41 | 493.67±31.13 | 984.67±33.01 | 2305.00±54.44 |
T | 690.00±22.27 | 165.67±4.73 | 569.33±18.58 | 1073.67±36.23 | 2031.33±74.22 | |
基因表达比例 Gene expression ratio (%) | CK | 13.60±0.17 | 2.87±0.23 | 10.90±0.69 | 21.74±0.73 | 50.88±1.20 |
T | 15.23±0.49 | 3.66±0.10 | 12.57±0.41 | 23.70±0.80 | 44.84±1.64 |
表4
KEGG代谢途径分析"
KEGG代谢途径 KEGG pathway | 差异基因数目 Number of DEGs | 所有基因数目 Number of all genes | 差异表达基因比例 DEGs ratio (%) | P值 P-value | 表达调控 Regulated |
---|---|---|---|---|---|
不同环境的微生物代谢 Microbial metabolism in diverse environments | 40 | 169 | 23.67 | 0.0076 | Up |
链霉素生物合成 Streptomycin biosynthesis | 6 | 9 | 66.67 | 0.0088 | Up |
碳代谢Carbon metabolism | 25 | 94 | 26.60 | 0.0103 | Up |
硫代谢Sulfur metabolism | 8 | 17 | 47.06 | 0.0118 | Up |
乙醛酸和二羧酸代谢 Glyoxylate and dicarboxylate metabolism | 9 | 25 | 36.00 | 0.0276 | Up |
鞭毛组装 Flagellar assembly | 26 | 33 | 78.79 | 0 | Down |
细菌趋化性 Bacterial chemotaxis | 13 | 24 | 54.17 | 0 | Down |
核糖体 Ribosome | 18 | 88 | 20.45 | 0.0248 | Down |
萜类化合物生物合成 Terpenoid backbone biosynthesis | 5 | 14 | 35.71 | 0.0413 | Down |
错配修复Mismatch repair | 6 | 20 | 30.00 | 0.0475 | Down |
表5
差异表达蛋白的KEGG代谢途径分析"
KEGG代谢途径 KEGG pathway | 注释代谢途径的差异表达蛋白数量 Number of DEPs with pathway annotation | 注释代谢途径的蛋白数量 Number of proteins with pathway annotation | 差异蛋白比例 DEPs ratio (%) | P值 P-value | 上调数量Up-regulated number | 下调数量Down-regulated number |
---|---|---|---|---|---|---|
酮体的合成与降解 Synthesis and degradation of ketone bodies | 4 | 5 | 80.00 | 0.0004 | 4 | 0 |
乙醛酸和二羧酸代谢 Glyoxylate and dicarboxylate metabolism | 9 | 29 | 31.03 | 0.0009 | 7 | 2 |
牛磺酸和亚牛磺酸代谢 Taurine and hypotaurine metabolism | 3 | 7 | 42.86 | 0.0224 | 2 | 1 |
丙氨酸、天冬氨酸和谷氨酸代谢 Alanine, aspartate and glutamate metabolism | 7 | 31 | 22.58 | 0.0226 | 4 | 3 |
鞭毛组装Flagellar assembly | 2 | 3 | 66.67 | 0.0255 | 0 | 2 |
戊糖和葡萄糖醛酸的相互转化 Pentose and glucuronate interconversions | 5 | 19 | 26.32 | 0.0284 | 4 | 1 |
精氨酸和脯氨酸代谢 Arginine and proline metabolism | 5 | 19 | 26.32 | 0.0284 | 3 | 2 |
丁酸代谢Butanoate metabolism | 5 | 19 | 26.32 | 0.0284 | 5 | 0 |
不同环境的微生物代谢 Microbial metabolism in diverse environments | 22 | 151 | 14.57 | 0.0335 | 13 | 9 |
ABC转运蛋白ABC transporter | 13 | 79 | 16.46 | 0.0486 | 7 | 6 |
[1] | 陈志谊. 芽孢杆菌类生物杀菌剂的研发与应用. 中国生物防治学报, 2015, 31(5):723-732. |
CHEN Z Y. Research and application of bio-fungicide with Bacillus spp. Chinese Journal of Biological Control, 2015, 31(5):723-732. (in Chinese) | |
[2] |
WANG L Y, XIE Y S, CUI Y Y, XU J J, HE W, CHEN H G, GUO J H. Conjunctively screening of biocontrol agents (BCAs) against fusarium root rot and fusarium head blight caused by Fusarium graminearum. Microbiological Research, 2015, 177:34-42.
doi: 10.1016/j.micres.2015.05.005 |
[3] |
WU L M, WU H J, CHEN L N, XIE S S, ZANG H Y, BORRISS R, GAO X W. Bacilysin from Bacillus amyloliquefaciens FZB42 has specific bactericidal activity against harmful algal bloom species. Applied and Environmental Microbiology, 2014, 80(24):7512-7520.
doi: 10.1128/AEM.02605-14 |
[4] |
LI Y, HAN L R, ZHANG Y Y, FU X C, CHEN X Y, ZHANG L X, MEI R H, WANG Q. Biological control of apple ring rot on fruit by Bacillus amyloliquefaciens 9001. The Plant Pathology Journal, 2013, 29(2):168-173.
doi: 10.5423/PPJ.SI.08.2012.0125 |
[5] |
BARRET M, MORRISSEY J P, ÓGARA F. Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biology and Fertility of Soils, 2011, 47:729-743.
doi: 10.1007/s00374-011-0605-x |
[6] |
BAIS H P, FALL R, VIVANCO J M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology, 2004, 134(1):307-319.
doi: 10.1104/pp.103.028712 |
[7] |
MOLINA M A, RAMOS J L, ESPINOSA-URGEL M. Plant-associated biofilms. Reviews in Environmental Science and Biotechnology, 2003, 2:99-108.
doi: 10.1023/B:RESB.0000040458.35960.25 |
[8] |
YARYURA P M, LEON M, CORREA O S, KERBER N L, PUCHEU N L, GARCIA A F. Assessment of the role of chemotaxis and biofilm formation as requirements for colonization of roots and seeds of soybean plants by Bacillus amyloliquefaciens BNM339. Current Microbiology, 2008, 56(6):625-632.
doi: 10.1007/s00284-008-9137-5 |
[9] | 董丽红, 郭庆港, 张晓云, 李社增, 鹿秀云, 马平. 棉花根系分泌物对枯草芽胞杆菌NCD-2生物膜形成和根际定殖的影响. 植物病理学报, 2015, 45(5):541-547. |
DONG L H, GUO Q G, ZHANG X Y, LI S Z, LU X Y, MA P. Effects of cotton root exudates on the biofilm formation and root colonization of Bacillus subtilis strain NCD-2. Acta Phytopathologica Sinica, 2015, 45(5):541-547. (in Chinese) | |
[10] |
BULGARELLI D, SCHLAEPPI K, SPAEPEN S, VER LOREN VAN THEMAAT E, SCHULZE-LEFERT P. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 2013, 64:807-838.
doi: 10.1146/arplant.2013.64.issue-1 |
[11] |
LIU Y P, ZHANG N, QIU M H, FENG H C, VIVANCO J M, SHEN Q R, ZHANG R F. Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection. FEMS Microbiology Letters, 2014, 353(1):49-56.
doi: 10.1111/fml.2014.353.issue-1 |
[12] | 郭庆港, 吴园园, 李社增, 鹿秀云, 王洪港, 马平. ywbB基因对枯草芽胞杆菌NCD-2菌株生物膜形成和根际定殖能力的影响. 植物保护学报, 2013, 40(1):45-50. |
GUO Q G, WU Y Y, LI S Z, LU X Y, WANG H G, MA P. Functional analysis of ywbB gene to the biofilm formation and root colonization in Bacillus subtilis strain NCD-2. Journal of Plant Protection, 2013, 40(1):45-50. (in Chinese) | |
[13] |
GU Y, HOU Y G, HUANG D P, HAO Z X, WANG X F, WEI Z, JOUSSET A, TAN S Y, XU D B, SHEN Q R, XU Y C, FRIMAN V P. Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis, swarming motility, and root exudate adsorption. Plant and Soil, 2017, 415(1/2):269-281.
doi: 10.1007/s11104-016-3159-8 |
[14] | 董丽红, 郭庆港, 张晓云, 赵卫松, 王培培, 苏振贺, 鹿秀云, 李社增, 马平. 棉花根系分泌物对枯草芽胞杆菌NCD-2菌株趋化性的影响. 植物病理学报, 2019, 49(3):399-407. |
DONG L H, GUO Q G, ZHANG X Y, ZHAO W S, WANG P P, SU Z H, LU X Y, LI S Z, MA P. Effect of cotton root exudates on the chemotaxis of Bacillus subtilis strain NCD-2. Acta Phytopathologica Sinica, 2019, 49(3):399-407. (in Chinese) | |
[15] | 李社增, 鹿秀云, 马平, 高胜国, 刘杏忠, 刘干. 防治棉花黄萎病的生防细菌NCD-2的田间效果评价及其鉴定. 植物病理学报, 2005, 35(5):451-455. |
LI S Z, LU X Y, MA P, GAO S G, LIU X Z, LIU G. Evaluation of biocontrol potential of a bacterial strain NCD-2 against cotton verticillium wilt in field trials. Acta Phytopathologica Sinica, 2005, 35(5):451-455. (in Chinese) | |
[16] | 赵卫松, 郭庆港, 董丽红, 王培培, 张晓云, 苏振贺, 鹿秀云, 李社增, 马平. L-脯氨酸对枯草芽胞杆菌NCD-2菌株生物膜形成的影响. 植物病理学报, 2021, 51(1):115-122. |
ZHAO W S, GUO Q G, DONG L H, WANG P P, ZHANG X Y, SU Z H, LU X Y, LI S Z, MA P. Effect of L-proline on biofilm formation of Bacillus subtilis NCD-2. Acta Phytopathologica Sinica, 2021, 51(1):115-122. (in Chinese) | |
[17] |
WU Q, NI M, WANG G S, LIU Q Q, YU M X, TANG J. Omics for understanding the tolerant mechanism of Trichoderma asperellum TJ01 to organophosphorus pesticide dichlorvos. BMC Genomics, 2018, 19(1):596.
doi: 10.1186/s12864-018-4960-y |
[18] |
BRANDA S S, CHU F, KEARNS D B, LOSICK R, KOLTER R. A major protein component of the Bacillus subtilis biofilm matrix. Molecular Microbiology, 2006, 59(4):1229-1238.
doi: 10.1111/mmi.2006.59.issue-4 |
[19] |
GUTTENPLAN S B, BLAIR K M, KEARNS D B. The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. PLoS Genetics, 2010, 6(12):e1001243.
doi: 10.1371/journal.pgen.1001243 |
[20] | 李任峰, 何启盖, 周锐, 陈焕春. 细菌鞭毛研究概况及进展. 微生物学通报, 2005, 32(6):124-127. |
LI R F, HE Q G, ZHOU R, CHEN H C. The research advances on the bacterial flagella. Microbiology China, 2005, 32(6):124-127. (in Chinese) | |
[21] |
SCHARF B E, HYNES M F, ALEXANDRE G M. Chemotaxis signaling systems in model beneficial plant-bacteria associations. Plant Molecular Biology, 2016, 90(6):549-559.
doi: 10.1007/s11103-016-0432-4 |
[22] | 周华飞, 杨红福, 姚克兵, 庄义庆, 束兆林, 陈志谊. FliZ调控枯草芽孢杆菌Bs916生物膜形成及其对水稻纹枯病的防治效果. 中国农业科学, 2020, 53(1):55-64. |
ZHOU H F, YANG H F, YAO K B, ZHUANG Y Q, SHU Z L, CHEN Z Y. FliZ regulated the biofilm formation of Bacillus subtilis Bs916 and its biocontrol efficacy on rice sheath blight. Scientia Agricultura Sinica, 2020, 53(1):55-64. (in Chinese) | |
[23] |
YONEZAWA H, OSAKI T, KURATA S, FUKUDA M, KAWAKAMI H, OCHIAI K, HANAWA T, KAMIYA S. Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiology, 2009, 9:197.
doi: 10.1186/1471-2180-9-197 |
[24] |
WILKSCH J J, YANG J, CLEMENTS A, GABBE J L, SHORT K R, CAO H W, CAVALIERE R, JAMES C E, WHITCHURCH C B, SCHEMBRI M A, et al. MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLoS Pathogens, 2011, 7(8):e1002204.
doi: 10.1371/journal.ppat.1002204 |
[25] | LINARES J F, GUSTAFSSON I, BAQUERO F, MARTINEZ J L. Antibiotics as intermicrobial signaling agents instead of weapons. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(51):19484-19489. |
[26] |
HOFFMAN L R, D’ARGENIO D A, MACCOSS M J, ZHANG Z Y, JONES R A, MILLER S I. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 2005, 436(7054):1171-1175.
doi: 10.1038/nature03912 |
[27] | LÓPEZ D, FISCHBACH M A, CHU F, LOSICK R, KOLTER R. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(1):280-285. |
[28] |
XU Z H, SHAO J H, LI B, YAN X, SHEN Q R, ZHANG R F. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Applied and Environmental Microbiology, 2013, 79(3):808-815.
doi: 10.1128/AEM.02645-12 |
[29] | 徐志辉, 张慧慧, 张钰婷, 冯元韬, 张馨玉, 仇美华. Bacillomycin D突变体在生物膜形成中的转录组分析. 南京农业大学学报, 2017, 40(5):850-858. |
XU Z H, ZHANG H H, ZHANG Y T, FENG Y T, ZHANG X Y, QIU M H. Transcriptome analysis of antibiotic bacillomycin D-deficient mutant on biofilm formation. Journal of Nanjing Agricultural University, 2017, 40(5):850-858. (in Chinese) | |
[30] | 董丽红. 脂肽在枯草芽胞杆菌NCD-2根际定殖中的作用及PhoR/PhoP对其调控机理[D]. 保定: 河北农业大学, 2019. |
DONG L H. The role of lipopeptides in rhizosphere colonization of Bacillus subtilis NCD-2 and the regulation mechanism of PhoR/PhoP on lipopeptides production[D]. Baoding: Hebei Agricultural University, 2019. (in Chinese) | |
[31] |
STOCK A M, ROBINSON V L, GOUDREAU P N. Two-component signal transduction. Annual Review of Biochemistry, 2000, 69:183-215.
doi: 10.1146/biochem.2000.69.issue-1 |
[32] |
HOCH J A. Two-component and phosphorelay signal transduction. Current Opinion in Microbiology, 2000, 3(2):165-170.
doi: 10.1016/S1369-5274(00)00070-9 |
[33] |
CAPRA E J, LAUB M T. Evolution of two-component signal transduction systems. Annual Review of Microbiology, 2012, 66:325-347.
doi: 10.1146/micro.2012.66.issue-1 |
[34] |
FABRET C, FEHER V A, HOCH J A. Two-component signal transduction in Bacillus subtilis: How one organism sees its world. Journal of Bacteriology, 1999, 181(7):1975-1983.
doi: 10.1128/JB.181.7.1975-1983.1999 |
[35] |
SULLIVAN E R. Molecular genetics of biosurfactant production. Current Opinion in Biotechnology, 1998, 9(3):263-269.
doi: 10.1016/S0958-1669(98)80057-8 |
[36] |
MURRAY E J, KILEY T B, STANLEY-WALL N R. A pivotal role for the response regulator DegU in controlling multicellular behaviour. Microbiology, 2009, 155:1-8.
doi: 10.1099/mic.0.023903-0 |
[37] |
GUO Q G, DONG L H, WANG P P, SU Z H, LIU X M, ZHAO W S, ZHANG X Y, LI S Z, LU X Y, MA P. Using a phenotype microarray and transcriptome analysis to elucidate multi-drug resistance regulated by PhoR/PhoP two-component system in Bacillus subtilis strain NCD-2. Microbiological Research, 2020, 239:126557.
doi: 10.1016/j.micres.2020.126557 |
[38] | PISITHKUL T, SCHROEDER J W, TRUJILLO E A, YEESIN P, STEVENSON D M, CHAIAMARIT T, COON J J, WANG J D, AMADOR-NOGUEZ D. Metabolic remodeling during biofilm development of Bacillus subtilis. mBio, 2019, 10(3):e00623-19. |
[39] | KIMURA T, KOBAYASHI K. Role of glutamate synthase in biofilm formation by Bacillus subtilis. Journal of Bacteriology, 2020, 202(14):e00120-20. |
[40] | RIZZI A, ROY S, BELLENGER J P, BEAUREGARD P B. Iron homeostasis in Bacillus subtilis requires siderophore production and biofilm formation. Applied and Environmental Microbiology, 2019, 85(3):e02439-18. |
[41] |
OLLINGER J, SONG K B, ANTELMANN H, HECKER M, HELMANN J D. Role of the Fur regulon in iron transport in Bacillus subtilis. Journal of Bacteriology, 2006, 188(10):3664-3673.
doi: 10.1128/JB.188.10.3664-3673.2006 |
[42] |
LIN M H, SHU J C, HUANG H Y, CHENG Y C. Involvement of iron in biofilm formation by Staphylococcus aureus. PLoS ONE, 2012, 7(3):e34388.
doi: 10.1371/journal.pone.0034388 |
[43] | BANIN E, VASIL M L, GREENBERG E P. Iron and Pseudomonas aeruginosa biofilm formation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(31):11076-11081. |
[44] | PATRIQUIN G M, BANIN E, GILMOUR C, TUCHMAN R, GREENBERG E P, POOLE K. Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa. Journal of Biotechnology, 2008, 190(2):662-671. |
[1] | 由玉婉,张雨,孙嘉毅,张蔚. ‘月月粉’月季NAC家族全基因组鉴定及皮刺发育相关成员的筛选[J]. 中国农业科学, 2022, 55(24): 4895-4911. |
[2] | 王朝,方东路,张攀容,姜雯,裴斐,胡秋辉,马宁. 基于TMT定量蛋白质组学揭示纳米包装双孢蘑菇采后冷藏生理代谢规律[J]. 中国农业科学, 2022, 55(23): 4728-4742. |
[3] | 尤佳玲,李有梅,孙孟豪,谢兆森. ‘黑比诺’葡萄不同叶龄叶片叶绿体内淀粉积累及其相关基因表达差异分析[J]. 中国农业科学, 2022, 55(21): 4265-4278. |
[4] | 孙保娟,汪瑞,孙光闻,王益奎,李涛,宫超,衡周,游倩,李植良. 转录组及代谢组联合解析茄子果色上位遗传效应[J]. 中国农业科学, 2022, 55(20): 3997-4010. |
[5] | 刘鑫,张亚红,袁苗,党仕卓,周娟. ‘红地球’葡萄花芽分化过程中的转录组分析[J]. 中国农业科学, 2022, 55(20): 4020-4035. |
[6] | 张鑫尧,张敏,朱远芃,惠晓丽,柴如山,郜红建,罗来超. 巢湖流域磷肥减量施用对稻麦轮作体系作物产量和品质的影响[J]. 中国农业科学, 2022, 55(19): 3791-3806. |
[7] | 周桂盈,杨晓敏,滕子文,孙丽娟,郑长英. 螺虫乙酯抑制西花蓟马卵孵化的蛋白质组学分析[J]. 中国农业科学, 2022, 55(15): 2938-2948. |
[8] | 王荣华,孟丽峰,冯毛,房宇,魏俏红,马贝贝,钟未来,李建科. 蜂王浆高产蜜蜂与意大利蜜蜂哺育蜂唾液腺蛋白质组分析[J]. 中国农业科学, 2022, 55(13): 2667-2684. |
[9] | 徐献斌,耿晓月,李慧,孙丽娟,郑焕,陶建敏. 基于转录组分析ABA促进葡萄花青苷积累相关基因[J]. 中国农业科学, 2022, 55(1): 134-151. |
[10] | 郭永春, 王鹏杰, 金珊, 侯炳豪, 王淑燕, 赵峰, 叶乃兴. 基于WGCNA鉴定茶树响应草甘膦相关的基因共表达模块[J]. 中国农业科学, 2022, 55(1): 152-166. |
[11] | 陈华枝,范元婵,蒋海宾,王杰,范小雪,祝智威,隆琦,蔡宗兵,郑燕珍,付中民,徐国钧,陈大福,郭睿. 基于纳米孔全长转录组数据完善东方蜜蜂微孢子虫的基因组注释[J]. 中国农业科学, 2021, 54(6): 1288-1300. |
[12] | 杜宇,祝智威,王杰,王秀娜,蒋海宾,范元婵,范小雪,陈华枝,隆琦,蔡宗兵,熊翠玲,郑燕珍,付中民,陈大福,郭睿. 利用第三代纳米孔长读段测序技术构建和注释蜜蜂球囊菌的全长转录组[J]. 中国农业科学, 2021, 54(4): 864-876. |
[13] | 侯成立,黄彩燕,郑晓春,刘维华,杨奇,张德权. 宰后不同时间滩羊肉抗氧化活性的变化及可能机制[J]. 中国农业科学, 2021, 54(23): 5110-5124. |
[14] | 邵美琪,赵卫松,苏振贺,董丽红,郭庆港,马平. 盐胁迫下枯草芽孢杆菌NCD-2对番茄促生作用及对土壤微生物群落结构的影响[J]. 中国农业科学, 2021, 54(21): 4573-4584. |
[15] | 刘恋,唐志鹏,李菲菲,熊江,吕壁纹,马小川,唐超兰,李泽航,周铁,盛玲,卢晓鹏. ‘融安金柑’‘滑皮金柑’及‘脆蜜金柑’贮藏期品质、贮藏特性及果皮转录组分析[J]. 中国农业科学, 2021, 54(20): 4421-4433. |
|