中国农业科学 ›› 2021, Vol. 54 ›› Issue (18): 3959-3969.doi: 10.3864/j.issn.0578-1752.2021.18.014
郝海平1,2(),白红彤1,夏菲1,郝渊鹏1,李慧1,崔洪霞1,谢晓明3,石雷1()
收稿日期:
2020-11-23
接受日期:
2021-01-07
出版日期:
2021-09-16
发布日期:
2021-09-26
联系方式:
郝海平,E-mail: haohaiping2014@126.com。
基金资助:
HAO HaiPing1,2(),BAI HongTong1,XIA Fei1,HAO YuanPeng1,LI Hui1,CUI HongXia1,XIE XiaoMing3,SHI Lei1()
Received:
2020-11-23
Accepted:
2021-01-07
Published:
2021-09-16
Online:
2021-09-26
摘要:
【目的】解析山苍子间作条件下茶园土壤微生物群落结构的变化规律及其影响因素,为茶-山苍子间作的土壤生态效应评估提供数据支撑。【方法】综合运用GC-MS、ICP-MS,以及16S、ITS高通量测序技术分别对土壤浸提液成分、土壤矿质营养元素含量、土壤细菌和真菌种群结构进行测定分析。【结果】间作处理显著改变了土壤微生物种群结构,土壤中参与氮(N)、磷(P)和锰(Mn)等过程的功能性细菌丰度显著增加,植物致病细菌和真菌丰度显著降低,根系分布层具有溶解磷(P)功能的伯克氏菌属伯克氏菌丰度是对照的86倍,镰刀菌属镰刀霉丰度比对照降低了73.13%。间作影响了P、铁(Fe)、Mn等土壤矿质营养元素的含量,尤其是P,根系分布层土壤P含量比对照增加76.42%。间作区域土壤分别含有12.80%的樟脑、6.72%的Alpha-松油醇和12.65%的香茅醇等杀菌或抑菌物质。冗余分析表明,间作区域土壤中的樟脑、桉叶油醇、Alpha-松油醇、乙酸冰片酯和香茅醇等次生代谢物与P元素是影响土壤微生物群落结构的主要环境因子。【结论】茶-山苍子间作显著改变了土壤微生物群落结构和丰度,樟脑、Alpha-松油醇和香茅醇等次生代谢产物和P元素是导致土壤微生物群落变化的主要环境因子,茶园及其他农田系统间作植物的选择应重视次生代谢产物的输入,尤其是其中的杀菌或抑菌性成分。
郝海平,白红彤,夏菲,郝渊鹏,李慧,崔洪霞,谢晓明,石雷. 茶-山苍子间作对茶园土壤微生物群落结构的影响[J]. 中国农业科学, 2021, 54(18): 3959-3969.
HAO HaiPing,BAI HongTong,XIA Fei,HAO YuanPeng,LI Hui,CUI HongXia,XIE XiaoMing,SHI Lei. Effects of Tea-Litsea Cubeba Intrercropping on Soil Microbial Community Structure in Tea Plantation[J]. Scientia Agricultura Sinica, 2021, 54(18): 3959-3969.
表2
微生物功能列表"
微生物 Microbes | 潜在功能 Potential functions | 丰度 OTU number | ||||
---|---|---|---|---|---|---|
CK.1 | Lit.1 | CK.2 | Lit.2 | |||
细菌 Bacteria | 黄单胞杆菌Norank xanthomonadales | 植物病原菌 Plant pathogens | 218 | 0 | 493 | 0 |
伯克氏菌 Burkholderia paraburkholderia | 溶解磷;生物降解 Decomposition and release P; Biodegradation | 1 | 63 | 0 | 86 | |
黄色菌 Norank xanthobacteraceae | 五氯硝基苯降解 Pentachloronitrobenzene degradation | 2 | 1523 | 8 | 851 | |
慢生根瘤菌 Bradyrhizobium | 固氮 Nitrogen fixation | 269 | 662 | 315 | 385 | |
土微菌 Pedomicrobium | 锰氧化 Manganese oxidantion | 0 | 241 | 1 | 214 | |
真杆菌 Norank acidobacteria | 还原硝酸盐 Nitrate reduction | 1 | 484 | 3 | 604 | |
栖热菌属 Acidothermus | 还原硝酸盐 Nitrate reduction | 18 | 84 | 121 | 49 | |
浮霉状菌属 Planctomyces | 缺氧条件下氧化铵生成氮气 Amine generates nitrogen in anoxic environment | 0 | 78 | 2 | 63 | |
真菌 Fungi | 镰刀霉 Fusarium graminearum | 致病菌 Pathogenic bacteria | 4729 | 695 | 3122 | 839 |
毛壳菌 Chaetomium | 纤维素分解 Cellulose breakdown | 1 | 624 | 4 | 255 | |
拟康宁木霉 Trichoderma koningiopsis | 生物防治菌 Biocontrol bacteria | 41 | 1589 | 29 | 6942 | |
山野壳菌 Paraphaeosphaeria | 病原真菌 Pathogenic fungi | 145 | 14 | 216 | 33 |
表3
山苍子处理土壤提取物成分分析"
峰 Peak | 时间 RT | 面积 Area | 峰面积比例 Peak area ratio (%) | 名称 Name |
---|---|---|---|---|
1 | 4.42 | 108958 | 3.01 | 苯乙烯 Phenylethylene |
2 | 6.01 | 135087 | 3.73 | 桉叶油醇 Cineole |
3 | 7.17 | 463228 | 12.80 | 樟脑 (+)-2-Bornanone |
4 | 7.64 | 243391 | 6.72 | Alpha-松油醇 Alpha-Terpineol |
5 | 7.99 | 457853 | 12.65 | 香茅醇 Citronellol |
6 | 8.30 | 90066 | 2.49 | 乙酸冰片酯 Bornyl acetate |
7 | 8.74 | 103561 | 2.86 | 乙酸香茅酯 Citronellol acetate |
8 | 9.00 | 61857 | 1.71 | 丙酸 Propanoic acid |
9 | 9.35 | 293552 | 8.11 | 羟基香茅醛 4-Octene-2,7-diol |
10 | 11.08 | 48177 | 1.33 | 2-甲基十七烷 Dibuyl phthalate |
11 | 12.10 | 132366 | 3.66 | 邻苯二甲酸二异丁酯 1,2-Benzenedicarboxylic acid |
12 | 12.68 | 280323 | 7.74 | 邻苯二甲酸二正丁酯 Dibuyl phthalate |
13 | 14.37 | 167173 | 4.62 | 棕榈酰胺 Hexadecanamide |
14 | 16.13 | 1034060 | 28.57 | 油酸酰胺 Oleamide |
表4
土壤微生物和环境因子冗余分析"
环境因子 Name | 关联度 Explain | Pseudo -F值 Pseudo-F | P值 P |
---|---|---|---|
Ci 桉叶油醇 Cineole | 48.4 | 3.7 | 0.03* |
Alp Alpha-松油醇 Alpha-Terpineol | 48.1 | 3.7 | 0.01* |
Ph 苯乙烯 Phenylethylene | 48.0 | 3.7 | 0.018* |
Bo 樟脑 (+)-2-Bornanone | 48.0 | 3.7 | 0.034* |
Cit 香茅醇 Citronellol | 47.8 | 3.7 | 0.028* |
P 磷 Phosphorus | 47.8 | 3.7 | 0.04* |
Fe 铁 Iron | 46.7 | 3.5 | 0.068 |
Zn 锌 Zinc | 46.1 | 3.4 | 0.06 |
Mn 锰 Manganese | 44.4 | 3.2 | 0.112 |
Mg 镁 Magnesium | 43.5 | 3.1 | 0.06 |
Cu 铜 Copper | 36.1 | 2.3 | 0.114 |
[1] | 邓欣, 谭济才, 尹丽蓉, 任佑华, 刘红艳. 不同茶园土壤微生物数量状况调查初报. 茶叶通讯, 2005, 32(2): 7-9. |
DENG X, TAN J C, YIN L R, REN Y H, LIU H Y. Investigation on the quantitative condition of soil microbes in different tea garden. Tea Communication, 2005, 32(2): 7-9. (in Chinese) | |
[2] | BHATTACHARYYA P N, SARMAH S R, SATYA R S. The role of microbes in tea cultivation. In: Sharma VS, Kumudini MT. Global tea science//Global Tea Science. Burleigh Dodds Science Publishing. India, 2018: 135-167. |
[3] | 周才碧, 陈文品. 茶园土壤微生物的研究进展. 中国茶叶, 2014, 36(3): 14-15. |
ZHOU C B, CHEN W P. Research progress on soil microorganisms in tea gardens. China Tea, 2014, 36(3): 14-15. (in Chinese) | |
[4] | 张正群, 田月月, 高树文, 许永玉, 黄晓琴, 张丽霞. 茶园间作芳香植物罗勒和紫苏对茶园生态系统影响的研究. |
Ecological effects of intercropping tea with aromatic plant basil and perill in young tea plantation. Journal of Tea Science, 2016, 36(4): 389-395. (in Chinese) | |
[5] |
CULLINGTON J E. WALKER A. Rapid biodegradation of diuron and other phenylurea herbicides by a soil bacterium. Soil Biology Biochemistry, 1999, 31(5): 677-686.
doi: 10.1016/S0038-0717(98)00156-4 |
[6] | 李秀英, 赵秉强, 李絮花, 李燕婷, 孙瑞莲, 朱鲁生, 徐晶, 王丽霞, 李小平, 张夫道. 不同施肥制度对土壤微生物的影响及其与土壤肥力的关系. 中国农业科学, 2005, 38(8): 1591-1599. |
LI X Y, ZHAO B Q, LI X H, LI Y T, SUN R L, ZHU L S, XU J, WANG L X, LI X P, ZHANG F D. Effects of different fertilization systems on soil microbe and its relation to soil fertility. Scientia Agricultura Sinica, 2005, 38(8): 1591-1599. (in Chinese) | |
[7] | 钱玮, 陈宏伟, 张铭连, 金琎, 邱劲, 胡翠英. 不同施肥处理对茶树根际微生物群落结构的影响. 基因组学与应用生物学, 2019(3): 1205-1210. |
QIAN W, CHEN H W, ZHANG M L, JIN J, QIU J, HU C Y. Effects of different fertilization treatments on community structure of rhizosphere microbe of camellia sinensis. Genomics and Applied Biology, 2019(3): 1205-1210. (in Chinese) | |
[8] | 刁晓平, 孙英健, 孙振钧, 沈建忠. 安普霉素对不同土壤中微生物活动的影响. 生态环境, 2004, 13(4): 565-568. |
DIAO X P, SUN Y J, SUN Z J, SHEN J Z. Effects of apramycin on microbial activity in different type of soil. Ecology and Environment, 2004, 13(4): 565-568. (in Chinese) | |
[9] | 吴红英, 孔云, 姚允聪, 毕宁宁, 亓丽萍, 付占国. 间作芳香植物对沙地梨园土壤微生物数量与土壤养分的影响. 中国农业科学, 2010, 43(1): 140-150. |
WU H Y, KONG Y, YAO Y C, BI N N, QI L P, FU Z G. Effects of intercropping aromatic plants on soil microbial quantity and soil nutrients in pear orchard. Scientia Agricultura Sinica, 2010, 43(1): 140-150. (in Chinese) | |
[10] | 朱庆松, 刘松虎, 赵海英. 不同覆盖措施对信阳毛尖茶园土壤微生物量动态变化的影响. 河南农业科学, 2010, 39(7): 53-55. |
ZHU Q S, LIU S H, ZHAO H Y. Study of different mulching measures on the dynamic changes of microbial biomass in the tea garden of Xinyang. Journal of Henan Agricultural Sciences, 2010, 39(7): 53-55. (in Chinese) | |
[11] | 杨清平, 毛清黎, 杨新河. 不同生态茶园土壤微生物及脲酶活性研究. 湖北大学学报(自然科学版), 2014, 36(4): 300-302, 306. |
YANG Q P, MAO Q L, YANG X H. The studying of soil microorganism and urease activity of different types of ecological tea garden. Journal of Hubei University (Natural Science Edition), 2014, 36(4): 300-302, 306. (in Chinese) | |
[12] | 徐晨光, 张奇春, 侯昌萍. 外源抗生素对茶园土壤微生物群落结构的影响. 浙江大学学报(农业与生命科学版), 2014, 40(1): 75-84. |
XU C G, ZHANG Q C, HOU C P. Effect of exogenous antibiotics on soil microbial community structure in tea garden. Journal of Zhejiang University (Agriculture & Life Sciences), 2014, 40(1): 75-84. (in Chinese) | |
[13] | 王慧敏. 间作芳香植物对茶园土壤肥力状况的影响[D]. 山东农业大学, 2016. |
WANG H M. Effects of intercropping aromatic plants on the soil fertility in tea plantation[D]. Shandong Agricultural University, 2016. (in Chinese) | |
[14] |
CHEN X X, SONG B Z, YAO Y C, WU H Y, HU J H, ZHAO L L. Aromatic plants play an important role in promoting soil biological activity related to nitrogen cycling in an orchard ecosystem. The Science of the Total Environment, 2014, 472:939-946.
doi: 10.1016/j.scitotenv.2013.11.117 |
[15] |
SACCHETTI G, MAIETTI S, MUZZOLI M, SCAGLIANTI M, MANFREDINI S, RADICE M, BRUNI R. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chemistry, 2005, 91(4): 621-632.
doi: 10.1016/j.foodchem.2004.06.031 |
[16] | LIANG Q, LI W R, SHI Q S, ZHANG W M. Antifungal activity of Litsea cubeba oil against candida albicans. Biotechnology Bulletin, 2015, 31(10): 205-210. |
[17] |
LUO M, JIANG L K, ZOU G L. Acute and genetic toxicity of essential oil extracted from Litsea cubeba (Lour.) Pers. Journal of Food Protection, 2005, 68(3): 581-588.
doi: 10.4315/0362-028X-68.3.581 |
[18] | 郝海平. 间作山苍子和红豆杉对茶园土壤微生物和微量元素的影响. 博士后出站报告,中国科学院植物研究所, 2019. |
HAO H P. Effects of intercropping Listsea cubeba and Taxus chinensis on soil microbes and trace element in tea plantation. Institute of Botany, The Chinese Academy of Sciences, 2019. (in Chinese) | |
[19] |
HAO H P, LI H, JIANG C D, TANG Y D, SHI L. Ion micro-distribution in varying aged leaves in salt-treated cucumber seedlings. Plant Physiology and Biochemistry, 2018, 129:71-76.
doi: 10.1016/j.plaphy.2018.05.022 |
[20] | 汪华. 茶园土壤微生物群落结构对植茶年限、施肥和高温条件的响应研究[D]. 杭州: 浙江大学, 2015. |
WANG H. The response of soil microbial community structure to cultivating age, fertilization and high temperature in tea orchard. Hangzhou: Zhejiang University, 2015. (in Chinese) | |
[21] | 黄伟, 黄欠如, 胡锋, 吴洪生, 李辉信. 红壤溶磷菌的筛选及溶磷能力的比较. 生态与农村环境学报, 2006, 22(3): 37-40. |
HUANG W, HUANG Q R, HU F, WU H S, LI H X. Screening and comparing of phosphorus solubilizing bacteria in red soil. Journal of Ecology and Rural Environment, 2006, 22(3): 37-40.(in Chinese) | |
[22] | KHAN A A, JILANI G, AKHTAR M S, SAQLAN S M, RASHEED M. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Journal of Agriculture and Biological Sciences, 2009, 1(1): 48-58. |
[23] |
BEBBER D P, RICHARDS V R. A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. BioRxiv, 2020. doi: doi.org/10.1101/2020.10.04.325373.
doi: doi.org/10.1101/2020.10.04.325373 |
[24] |
ENEBE M C, BABALOLA O O. Effects of inorganic and organic treatments on the microbial community of maize rhizosphere by a shotgun metagenomics approach. Annals of Microbiology, 2020, 70(1): 49.
doi: 10.1186/s13213-020-01591-8 |
[25] | SHIV P, LAL C M, JAIRAM C, SUDHA K, MONIKA K, SANDEEP K, AJAR N Y. Soil Microbiomes for Healthy Nutrient Recycling// YADAV A N, SINGH J, SINGH C, YADAV N. Current Trends in Microbial Biotechnology for Sustainable Agriculture. Environmental and Microbial Biotechnology. Springer, Singapore, 2021. |
[26] | SHRIDHAR B S. Nitrogen Fixing Microorganisms. International Journal of Microbiological Research, 2012, 3(1): 46-52. |
[27] | 赵兴鸽, 张世挺, 牛克昌. 青藏高原高寒草甸土壤真菌多样性与植物群落功能性状和土壤理化特性的关系. 应用与环境生物学报, 2020, 26(1): 1-9. |
ZHAO X G, ZHANG S T, NIU K C. Relationships between soil fungal diversity, plant community functional traits, and soil attributes in Tibetan alpine meadows. Chinese Journal of Applied & Environmental Biology, 2020, 26(1): 1-9. (in Chinese) | |
[28] | 吴晓宗, 王岩. 生物有机肥防治烟草青枯病及对土壤微生物多样性的影响. 中国土壤与肥料, 2019(4): 193-199. |
WU X Z, WANG Y. Research of bio-organic fertilizer on prevention of tobacco bacterial wilt and its effects on soil microbial diversity. Soil and Fertilizer Sciences in China, 2019(4): 193-199. (in Chinese) | |
[29] | 史芳芳, 李向泉. 葡萄根际土壤真菌群落多样性分析. 中国农业科技导报, 2019, 21(7): 47-58. |
SHI F F, LI X Q. Diversity analysis of fungus community in rhizosphere soil of grape. Journal of Agricultural Science and Technology, 2019, 21(7): 47-58. (in Chinese) | |
[30] |
BULGARELLI D, ROTT M, SCHLAEPPE K, THEMAAT E V L, AHMADINEJAD N, ASSENZA F, RAUF P, HUETTEL B, REINHARDT R, SCHMELZER E, PEPLIES J, GLOECHNER F O, AMANN R, EICKHORST T, LEFERT P S. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 2012, 488(7409): 91-95.
doi: 10.1038/nature11336 |
[31] | 李萃邦. 十种植物提取物对茶树叶部病原菌生物活性的研究[D]. 武汉: 华中农业大学, 2017. |
LI C B. Research on biological activities of the extracts from 10 kinds of plants against camellia sinensis pathogens[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese) | |
[32] |
SOUZA C M C, PEREIRA JUNIOR S A, MORAES T D S, DAMASCENO J L, AMORIM MENDES S, DIAS H J, STEFANI R, TAVARES D C, MARTINS C H G, CROTTI A E M, MENDES- GIANNINI M J S, PIRES R H. Antifungal activity of plant-derived essential oils on Candida tropicalis planktonic and biofilms cells. Medical Mycology, 2016, 54(5): 515-523.
doi: 10.1093/mmy/myw003 |
[33] |
PARK S N, LIM Y K, FREIRE M O, CHO E, JIN D C, KOOK J K. Antimicrobial effect of linalool and α-terpineol against periodontopathic and cariogenic bacteria. Anaerobe, 2012, 18(3): 369-372.
doi: 10.1016/j.anaerobe.2012.04.001 |
[1] | 马南, 安婷婷, 张久明, 汪景宽. 添加玉米秸秆和根茬对不同肥力黑土微生物残体碳氮的影响[J]. 中国农业科学, 2023, 56(4): 686-696. |
[2] | 林萍, 王开良, 姚小华, 任华东. 基于转录组SNP构建油茶主要品种资源的分子身份证[J]. 中国农业科学, 2023, 56(2): 217-235. |
[3] | 孙涛, 冯晓敏, 高新昊, 邓艾兴, 郑成岩, 宋振伟, 张卫建. 多样化种植对土壤团聚体组成及其有机碳和全氮含量的影响[J]. 中国农业科学, 2023, 56(15): 2929-2940. |
[4] | 林馨颖,王鹏杰,杨如兴,郑玉成,陈潇敏,张磊,邵淑贤,叶乃兴. 高茶氨酸茶树新品系‘福黄1号’黄化变异机理[J]. 中国农业科学, 2022, 55(9): 1831-1845. |
[5] | 彭佳堃, 戴伟东, 颜涌泉, 张悦, 陈丹, 董明花, 吕美玲, 林智. 基于代谢组学的‘永春佛手’乌龙茶化学成分解析[J]. 中国农业科学, 2022, 55(4): 769-784. |
[6] | 杜文婷,雷肖肖,卢慧宇,王云凤,徐佳星,罗彩霞,张树兰. 氮肥减量施用对我国三大粮食作物产量的影响[J]. 中国农业科学, 2022, 55(24): 4863-4878. |
[7] | 朱长伟,孟威威,石柯,牛润芝,姜桂英,申凤敏,刘芳,刘世亮. 不同轮耕模式下小麦各生育时期土壤养分及酶活性变化特征[J]. 中国农业科学, 2022, 55(21): 4237-4251. |
[8] | 徐珂,樊志龙,殷文,赵财,于爱忠,胡发龙,柴强. 氮肥后移及间作对玉米光合特性的耦合效应[J]. 中国农业科学, 2022, 55(21): 4131-4143. |
[9] | 胡馨, 张职亮, 张飞, 邓波, 房伟民. 大花型茶专用菊杂交后代株系的综合评价与筛选[J]. 中国农业科学, 2022, 55(20): 4036-4051. |
[10] | 夏芊蔚,陈浩,姚宇阗,笪达,陈健,石志琦. “优标”水稻体系对稻田土壤环境的影响[J]. 中国农业科学, 2022, 55(17): 3343-3354. |
[11] | 史晓龙,郭佩,任婧瑶,张鹤,董奇琦,赵新华,周宇飞,张正,万书波,于海秋. 基于花生//高粱间作模式的花生盐胁迫耐受性效应研究[J]. 中国农业科学, 2022, 55(15): 2927-2937. |
[12] | 卢秉林,车宗贤,张久东,包兴国,吴科生,杨蕊菊. 氮肥减量下长期间作毛叶苕子根茬还田对玉米产量及氮肥利用率的影响[J]. 中国农业科学, 2022, 55(12): 2384-2397. |
[13] | 龚小雅,石记博,方凌,方亚鹏,吴凤芝. 淹水对辣椒连作土壤化学性质与微生物群落结构的影响[J]. 中国农业科学, 2022, 55(12): 2472-2484. |
[14] | 肖珊珊, 张翼飞, 杨克军, 明立伟, 杜嘉瑞, 徐荣琼, 孙逸珊, 李伟庆, 李桂彬, 李泽松, 李佳宇. 不同熟期品种间作对春玉米籽粒灌浆、脱水特性及产量的影响[J]. 中国农业科学, 2022, 55(12): 2294-2310. |
[15] | 郭永春, 王鹏杰, 金珊, 侯炳豪, 王淑燕, 赵峰, 叶乃兴. 基于WGCNA鉴定茶树响应草甘膦相关的基因共表达模块[J]. 中国农业科学, 2022, 55(1): 152-166. |
|