中国农业科学 ›› 2021, Vol. 54 ›› Issue (5): 1043-1054.doi: 10.3864/j.issn.0578-1752.2021.05.015

• 园艺 • 上一篇    下一篇

凤梨草莓与黄毛草莓种间杂种果实香气成分的代谢谱分析

王爱华(),马红叶,李荣飞,杨仕品,乔荣,钟霈霖()   

  1. 贵州省农业科学院园艺研究所,贵阳 550006
  • 收稿日期:2020-05-27 接受日期:2020-10-21 出版日期:2021-03-01 发布日期:2021-03-09
  • 通讯作者: 钟霈霖
  • 作者简介:王爱华,E-mail:118wah@163.com
  • 基金资助:
    贵州省科技支撑计划([2018]2282);贵州省科技支撑计划([2020]1Y018);黔院青年基金([2018]037号);贵州省园艺研究所青年基金([2018]001号)

Metabolic Analysis of Aroma Components in Two Interspecific Hybrids from the Cross of F.ananassa Duch. and Fragaria nilgerrensis Schlecht.

AiHua WANG(),HongYe MA,RongFei LI,ShiPin YANG,Rong QIAO,PeiLin ZHONG()   

  1. Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang 550006
  • Received:2020-05-27 Accepted:2020-10-21 Online:2021-03-01 Published:2021-03-09
  • Contact: PeiLin ZHONG

摘要:

【目的】通过比较黄毛草莓和凤梨草莓的2个种间杂种PF(具黄毛草莓浓郁的蜜桃香气)和NF(无蜜桃香气)完熟期果实香气成分的代谢谱,为黄毛草莓蜜桃香气特征成分鉴定及野生草莓优异资源的开发利用提供参考。【方法】采用顶空固相微萃取和气相色谱/质谱联用技术(gas chromatograph tandem mass spectrometer technology,GC-MS),对供试材料的香气成分进行检测。采用偏最小二乘法判别分析(partial least squares discrimination analysis,PLS-DA)模型第一主成分的变量投影重要度(variable importance in the projection,VIP)值和log2FC(Fold Change,FC),结合T-test的P值来筛选差异性代谢物,PF相对于NF,设置阈值VIP>1.0, log2FC>1.0或log2FC<-1.0且P value<0.05,差异代谢物的相对含量采用峰面积归一化法计算,CAS号(Chemical Abstracts Service Registry Number)在https://pubchem.ncbi.nlm.nih.gov网站查阅。【结果】从检测到的383种总代谢物中筛选出67种差异代谢物,其中58种上调,9种下调,上调幅度较大的差异代谢物为内酯类物质,log2FC排在前3名的依次是(Z)-7-癸烯-5-酸(5.60)、丁位十一内酯(5.33)、δ-癸内酯(5.30),下调幅度较大的差异代谢物为酯类物质,-log2FC排在前3名的依次是肉桂酸乙酯、亚硫酸(-7.19),2-乙基己基异己酯(-6.65)和3-羟基丁酸乙酯(-4.14)。从相对含量来看,酯类在PF(37.69%)中大幅低于NF(57.20%),内酯类在PF(20.91%)中大幅高于NF(6.12%),酮类在PF(15.30%)中略高于NF(9.12%),醇类、醛类、酸类、烯烃类和其他代谢物在PF和NF中的含量相当,NF中相对含量最大的酯是丁酸乙酯(17.92%),PF中相对含量最大的内酯是δ-癸内酯(12.53%),PF相对含量最大的酮与NF相同,均为2-庚酮。【结论】肉桂酸乙酯、丁酸乙酯和3-羟基丁酸乙酯等酯类可能是NF的关键香气成分,(Z)-7-癸烯-5-酸、丁位十一内酯和δ-癸内酯等内酯类可能是形成PF蜜桃香气的关键物质。

关键词: 黄毛草莓, 种间杂种, 香气成分, 差异代谢物

Abstract:

【Objective】 Two interspecific hybrids PF (with honey peach aroma) and NF (without peach aroma) were obtained from the cross of Fragaria ananassa Duch. and F. nilgerrensis Schlecht. Fruit aroma compounds in PF and NF were compared to clarify the composition and content of honey peach aroma, aiming to provide a theoretical basis for research on strawberry aroma and utilization of wild strawberry resources. 【Method】 Matured fruits of PF and NF were harvested from greenhouse in February 18, 2018, respectively. The fruit traits comparison between two interspecific hybrids PF and NF were measured as Descriptors and Data Standard for Strawberry (Fragaria spp.). Fruit aroma compounds were extracted by using head solid-phase microextraction (HS-SPME), and then, detected by gas chromatograph tandem mass spectrometer technology (GC-MS). The mass spectra of the detected compounds were matched with NIST Library and also subjected to artificial qualitative analysis based on literatures. Multivariate statistics including principal component analysis (PCA) and supervised partial least squares-discriminant analysis (PLS-DA) were conducted to screen significantly differential metabolites. Variable Importance in the Projection (VIP) >1.0, log2FC >1.0 or log2FC<-1.0, and P value<0.05, indicates an increase and decrease by over 2-fold, respectively, in a comparison between PF and NF. The relative content of each significantly different metabolite (expressed as percentage) was calculated as the ratio between each peak area and the sum of all significantly different metabolite peak areas, multiplied by 100 [Relative Content. = (Areapeak/ΣAreaspeak) ×100]. Chemical Abstracts Service Registry Number (CAS#) was retrieved from the PubChem database (https://pubchem.ncbi.nlm.nih.gov). 【Result】 Fruits traits of PF was consistent with those of NF, except honey peach aroma. The fruits of both PF and NF were almost the same size, with red fruit color, small fruit cavity, soft texture and sweet and sour taste. Totally, 383 kinds of aroma compound were identified from the test samples by GC-MS, including 141esters, 41 alcohols, 40 ketones, 36 alkanes, 22 aldehydes, 17 olefins, 17 acids, 13 lactones, 10 naphthenes, 7 ethers, 6 furans and 16 other compounds. The main components were esters, kinds of which accounting for 36.81% of the total metabolites, followed by alcohol, ketone and alkane, accounted for 10.70%, 10.44% and 9.40%, respectively. A total of 67 significantly different metabolites were screened from the 383 detected metabolites, 58 of which were up-regulated and 9 were down-regulated. PF significantly up-regulated lactones. The top three up-regulated lactones were 2H-Pyran-2-one, tetrahydro-6-(2-pentenyl)-, (Z)-, 2H-Pyran-2-one, 6-hexyltetrahydro-, and 2H-Pyran-2-one, tetrahydro-6-pentyl-. NF down-regulated esters significantly. The top three down-regulated esters were 2-propenoic acid, 3-phenyl-, ethyl ester, sulfurous acid, 2-ethylhexyl isohexyl ester and butanoic acid, 3-hydroxy-, ethyl ester. The relative content of esters in PF (37.69%) was significantly lower than that of NF (57.20%), conversely, lactones in PF (20.91%) significantly higher than that of NF (6.12%). The relative content of ketones in PF (15.30%) was slightly higher than that of NF (9.12%). The relative content of alcohols, aldehydes, acids, olefins and other metabolites were almost equally present in PF and NF. The ester with the highest relative content in NF was butanoic acid, ethyl ester (17.92%), and the lactone with the highest relative content in PF was 2H-Pyran-2-one, tetrahydro-6-pentyl-(12.53%). The ketone with the highest relative content in PF was the same as NF, both were 2-heptanone. 【Conclusion】 Esters, such as 2-propenoic acid, 3-phenyl-, ethyl ester, butanoic acid, ethyl ester and butanoic acid, 3-hydroxy-, ethyl ester, might be the key aroma components of NF. Lactones, such as 2H-Pyran-2-one, tetrahydro-6-(2-pentenyl)-, (Z)-, 2H-Pyran-2-one, 6-hexyltetrahydro-, 2H-Pyran-2-one, and tetrahydro-6-pentyl-, might be the key aroma components to form the honey peach aroma in PF.

Key words: Fragaria nilgerrensis, interspecific hybrids, aroma components, significantly different metabolites