中国农业科学 ›› 2021, Vol. 54 ›› Issue (7): 1512-1524.doi: 10.3864/j.issn.0578-1752.2021.07.015
熊若愚1,解嘉鑫1,谭雪明1,杨陶陶1,潘晓华1,曾勇军1,石庆华1,张俊2,才硕3,曾研华1()
收稿日期:
2020-09-29
接受日期:
2020-11-12
出版日期:
2021-04-01
发布日期:
2021-04-22
通讯作者:
曾研华
作者简介:
熊若愚,E-mail: 基金资助:
XIONG RuoYu1,XIE JiaXin1,TAN XueMing1,YANG TaoTao1,PAN XiaoHua1,ZENG YongJun1,SHI QingHua1,ZHANG Jun2,CAI Shuo3,ZENG YanHua1()
Received:
2020-09-29
Accepted:
2020-11-12
Online:
2021-04-01
Published:
2021-04-22
Contact:
YanHua ZENG
摘要: 【目的】 探明南方优质食味晚籼稻产量、品质对不同灌溉方式的响应特征。【方法】于2018—2019年在江西农业大学人才培养产学研合作上高创新基地,开展不同灌溉方式对优质食味晚籼稻产量及稻米品质影响的大田试验,水分处理设置常规灌溉(CK)、持续淹水灌溉(CFI)和间歇灌溉(AWD),供试品种为优质食味籼稻泰优871与普通食味籼稻荣优华占,分析测定稻田水分利用率、产量形成和稻米品质。【结果】不同灌溉方式对供试品种的产量构成和稻米品质存在显著影响,且2年变化趋势基本一致,但品种间存在一定差异。与CK和CFI处理相比,2年AWD处理总水分利用率分别增加了18.2%—62.5%、41.2%—91.7%。相比CK,AWD与CFI处理有增加2个供试品种产量的趋势,但优质食味籼稻品种产量无明显变化,仅2018年普通食味籼稻品种产量在AWD处理下增加显著,增产原因主要在于每穗粒数增加明显。AWD处理总体有利于稻米加工品质,而与CK和AWD处理相比,CFI处理则显著降低了稻米的垩白率和垩白度,有利于外观品质的改善。不同灌溉处理下不同食味类型品种直链淀粉含量存在年度间差异,2019年AWD较CFI处理显著增加了稻米直链淀粉含量;同时,2年AWD较CFI处理也显著增加不同食味类型品种的胶稠度、峰值黏度及崩解值,且降低了消减值,提升了稻米的适口性,而CFI处理较CK与AWD处理则显著增加稻米的蛋白质含量,但不同灌溉方式对优质食味籼稻品种直链淀粉、营养品质与稻米RVA谱特征值的影响效应要高于普通食味籼稻品种。【结论】间歇灌溉处理提高了供试品种的水分利用率,有利于增加优质食味籼稻产量,改善了稻米加工,但不利于外观品质的改善,同时间歇灌溉处理可降低消减值及稻米蛋白质含量,提升胶稠度、峰值黏度、热浆黏度及崩解值,有利于改善稻米蒸煮食味的适口性;而持续淹水灌溉有利于改善稻外观品质。间歇灌溉方式可作为南方优质食味晚籼稻品种高质高效的节水灌溉模式。
熊若愚,解嘉鑫,谭雪明,杨陶陶,潘晓华,曾勇军,石庆华,张俊,才硕,曾研华. 不同灌溉方式对南方优质食味晚籼稻产量及品质的影响[J]. 中国农业科学, 2021, 54(7): 1512-1524.
XIONG RuoYu,XIE JiaXin,TAN XueMing,YANG TaoTao,PAN XiaoHua,ZENG YongJun,SHI QingHua,ZHANG Jun,CAI Shuo,ZENG YanHua. Effects of Irrigation Management on Grain Yield and Quality of High-Quality Eating Late-Season Indica Rice in South China[J]. Scientia Agricultura Sinica, 2021, 54(7): 1512-1524.
表1
不同灌溉方式下优质食味晚籼稻品种水分利用率变化"
年份 Year | 品种 Cultivar | 灌溉方式 Irrigation management | 灌水量 Irrigation amount (m3·hm-2) | 总用水量 Total water amount (m3·hm-2) | 灌溉水分利用率 Irrigation WUE (kg·m-2) | 总水分利用率 Total WUE (kg·m-2) |
---|---|---|---|---|---|---|
2018 | 荣优华占 RYHZ | CK | 5300±443.8b | 8790±443.8b | 1.9±0.1b | 1.1±0.1b |
CFI | 8192±596.2a | 11682±596.2a | 1.3±0.1c | 0.9±0.1c | ||
AWD | 4191±211.5c | 7681±211.5c | 2.6±0.2a | 1.4±0.1a | ||
泰优871 TY 871 | CK | 5300±443.8b | 8790±443.8b | 1.7±0.3b | 1.1±0.1b | |
CFI | 8192±596.2a | 11682±596.2a | 1.2±0.1c | 0.8±0.1c | ||
AWD | 4191±211.5c | 7681±211.5c | 2.4±0.1a | 1.3±0.1a | ||
2019 | 荣优华占 RYHZ | CK | 5283±104.2b | 5815±104.2b | 1.9±0.1b | 1.7±0.1b |
CFI | 7401±529.2a | 7933±529.2a | 1.4±0.2c | 1.3±0.1b | ||
AWD | 3600±173.1c | 4132±173.1c | 2.8±0.3a | 2.4±0.2a | ||
泰优871 TY 871 | CK | 5283±104.2b | 5815±104.2b | 1.7±0.2b | 1.6±0.1b | |
CFI | 7401±529.2a | 7933±529.2a | 1.3±0.1c | 1.2±0.1c | ||
AWD | 3600±173.1c | 4132±173.1c | 2.6±0.1a | 2.3±0.1a | ||
F值 F value | 年份 Year (Y) | 5.662* | 305.211** | 3.733 | 297.252** | |
品种 Cultivar (C) | — | — | 7.034* | 7.747* | ||
灌溉方式 Irrigation management (IM) | 135.565** | 135.565** | 193.928** | 148.865** | ||
年份×品种 Y×C | — | — | 0.066 | 0.079 | ||
年份×灌溉方式 Y×IM | 1.405 | 1.405 | 1.704 | 24.453** | ||
品种×灌溉方式 C×IM | — | — | 0.548 | 0.493 | ||
年份×品种×灌溉方式 Y×C×IM | — | — | 0.012 | 0.110 |
表2
不同灌溉方式下优质食味晚籼稻品种产量及产量构成"
年份 Year | 品种 Cultivar | 灌溉方式 Irrigation management | 有效穗数 Effective panicle (×104 hm-2) | 每穗粒数 Spikelets per panicle | 结实率 Grain filling (%) | 千粒重 1000-grain weight (g) | 产量 Yield (t·hm-2) |
---|---|---|---|---|---|---|---|
2018 | 荣优华占 RYHZ | CK | 314.1±2.6a | 123.4±2.8b | 86.3±1.1a | 27.4±1.2a | 10.0±0.4b |
CFI | 316.5±1.9a | 150.6±3.0a | 82.6±0.7b | 25.4±0.5b | 10.6±0.3ab | ||
AWD | 304.1±3.0b | 147.6±8.7a | 87.8±0.5a | 26.7±0.3ab | 10.8±0.3a | ||
泰优871 TY 871 | CK | 336.0±3.1a | 123.3±4.1b | 84.3±6.0ab | 27.6±1.7a | 9.1±0.5a | |
CFI | 339.7±5.5a | 145.8±8.2a | 80.3±0.7b | 26.1±0.7a | 9.8±0.5a | ||
AWD | 325.0±3.5b | 131.6±2.5b | 89.9±1.0a | 27.2±0.6a | 9.9±0.4a | ||
2019 | 荣优华占 RYHZ | CK | 321.4±6.1a | 131.6±9.1a | 90.3±4.0a | 26.9±0.6a | 9.8±0.5a |
CFI | 330.6±6.4a | 142.9±3.0a | 84.9±3.4a | 26.8±0.2a | 10.2±0.5a | ||
AWD | 311.0±3.3b | 139.8±8.6a | 91.4±0.8a | 26.8±0.2a | 10.1±0.6a | ||
泰优871 TY 871 | CK | 308.6±10.1ab | 135.4±3.0b | 88.7±3.9ab | 26.0±0.5a | 9.2±0.9a | |
CFI | 314.8±2.1a | 159.1±8.1a | 85.4±0.4b | 25.6±0.1a | 9.8±0.1a | ||
AWD | 302.6±4.7b | 138.6±4.8b | 91.7±1.1a | 25.7±0.1a | 9.3±0.3a | ||
F值 F value | 年份 Year (Y) | 24.928** | 7932.935** | 3.097 | 4927.965** | 3.800 | |
品种 Cultivar (C) | 9.266** | 10.293** | 42.462** | 4.205 | 18.811** | ||
灌溉方式 Irrigation management (IM) | 36.111** | 33.584** | 22.500** | 8.151** | 5.487* | ||
年份×品种 Y×C | 134.710** | 5.614* | 38.873** | 3.198 | 0.644 | ||
年份×灌溉方式 Y×IM | 0.845 | 34.939** | 0.283 | 12.166** | 1.112 | ||
品种×灌溉方式 C×IM | 0.131 | 3.654* | 1.161 | 2.598 | 0.167 | ||
年份×品种×灌溉方式 Y×C×IM | 0.531 | 3.559* | 0.655 | 2.421 | 0.061 |
表3
不同灌溉方式下优质食味晚籼稻品种加工品质变化"
年份 Year | 品种 Cultivar | 灌溉方式 Irrigation management | 糙米率 Brown rice rate (%) | 精米率 Milled rice rate (%) | 整精米率 Head rice rate (%) |
---|---|---|---|---|---|
2018 | 荣优华占 RYHZ | CK | 81.2±0.2ab | 68.7±0.8a | 45.7±0.6a |
CFI | 80.9±0.4b | 68.1±0.8a | 45.5±0.4a | ||
AWD | 81.4±0.1a | 68.8±0.7a | 46.1±0.7a | ||
泰优871 TY 871 | CK | 80.7±0.4a | 67.1±0.9a | 41.9±0.8a | |
CFI | 80.8±0.4a | 67.1±0.2a | 40.7±0.2b | ||
AWD | 80.9±0.2a | 67.5±0.3a | 40.7±0.4b | ||
2019 | 荣优华占 RYHZ | CK | 82.3±0.4a | 70.4±0.7ab | 49.9±0.8a |
CFI | 81.5±0.7a | 68.3±0.8b | 47.5±0.1b | ||
AWD | 83.3±1.0a | 71.3±1.5a | 51.2±1.0a | ||
泰优871 TY 871 | CK | 79.5±0.3ab | 65.7±0.1b | 44.0±1.4a | |
CFI | 78.4±0.3b | 66.0±0.1b | 43.9±0.4a | ||
AWD | 79.9±0.7a | 66.8±0.2a | 44.9±0.7a | ||
F值 F value | 年份 Year (Y) | 0.930 | 0.641 | 225.894** | |
品种 Cultivar (C) | 100.339** | 110.461** | 462.209** | ||
灌溉方式 Irrigation management (IM) | 10.993** | 8.137** | 12.067** | ||
年份×品种 Y×C | 62.466** | 26.982** | 1.810 | ||
年份×灌溉方式 Y×IM | 5.097* | 2.703 | 6.866** | ||
品种×灌溉方式 C×IM | 0.603 | 3.593* | 4.224* | ||
年份×品种×灌溉方式 Y×C×IM | 0.374 | 1.486 | 4.248* |
表4
不同灌溉方式下优质食味晚籼稻品种外观品质变化"
年份 Year | 品种 Cultivar | 灌溉方式 Irrigation management | 垩白率 Chalky rate (%) | 垩白度 Chalky degree (%) |
---|---|---|---|---|
2018 | 荣优华占 RYHZ | CK | 20.6±0.2a | 6.9±0.1a |
CFI | 14.8±0.6b | 5.2±0.4b | ||
AWD | 19.8±1.0a | 6.5±0.8ab | ||
泰优871 TY 871 | CK | 13.5±0.3a | 4.4±0.3ab | |
CFI | 11.4±0.1b | 4.0±0.2b | ||
AWD | 14.7±0.9a | 4.6±0.1a | ||
2019 | 荣优华占 RYHZ | CK | 22.5±0.5a | 5.7±0.1a |
CFI | 16.4±0.5c | 4.0±0.3b | ||
AWD | 21.0±0.7b | 5.3±0.6a | ||
泰优871 TY 871 | CK | 14.7±0.5a | 3.1±0.1ab | |
CFI | 12.7±0.4b | 2.8±0.2b | ||
AWD | 15.0±0.4a | 3.3±0.2a | ||
F值 F value | 年份 Year (Y) | 40.214** | 108.083** | |
品种 Cultivar (C) | 784.296** | 260.340** | ||
灌溉方式 Irrigation management (IM) | 174.669** | 29.693** | ||
年份×品种 Y×C | 2.806 | 0.039 | ||
年份×灌溉方式 Y×IM | 1.646 | 0.023 | ||
品种×灌溉方式 C×IM | 32.685** | 10.736** | ||
年份×品种×灌溉方式 Y×C×IM | 0.078 | 0.010 |
表5
不同灌溉方式下优质食味晚籼稻品种蒸煮食味及营养品质变化"
年份 Year | 品种 Cultivar | 灌溉方式 Irrigation management | 蒸煮食味品质 Cooking and eating quality | 营养品质 Nutrition quality | |
---|---|---|---|---|---|
直链淀粉 Amylose content (%) | 胶稠度 Gel consistency (mm) | 蛋白质 Protein content (%) | |||
2018 | 荣优华占 RYHZ | CK | 20.4±0.4a | 55.8±0.5b | 6.2±0.3b |
CFI | 20.0±0.1a | 54.6±0.5c | 7.0±0.1a | ||
AWD | 20.7±0.5a | 58.2±0.3a | 6.0±0.1b | ||
泰优871 TY 871 | CK | 16.4±0.3a | 72.6±0.4b | 6.9±0.1b | |
CFI | 16.2±0.5a | 68.1±0.4c | 7.7±0.3a | ||
AWD | 16.9±0.1a | 74.2±0.6a | 6.8±0.1b | ||
2019 | 荣优华占 RYHZ | CK | 20.0±0.2a | 55.6±0.6a | 6.4±0.4b |
CFI | 18.0±0.7b | 51.8±1.2b | 7.2±0.3a | ||
AWD | 20.1±0.3a | 56.9±1.3a | 6.1±0.1b | ||
泰优871 TY 871 | CK | 15.7±0.2b | 71.4±0.4a | 7.0±0.4b | |
CFI | 14.5±0.3c | 69.9±0.6b | 7.8±0.3a | ||
AWD | 16.4±0.2a | 71.6±0.2a | 6.3±0.1c | ||
F值 F value | 年份 Year (Y) | 63.416** | 20.400** | 0.188 | |
品种 Cultivar (C) | 1000.709** | 4777.567** | 61.695** | ||
灌溉方式 Irrigation management (IM) | 42.040** | 110.768** | 85.980** | ||
年份×品种 Y×C | 0.043 | 2.655 | 4.188 | ||
年份×灌溉方式 Y×IM | 12.978** | 3.998* | 2.236 | ||
品种×灌溉方式 C×IM | 1.689 | 1.126 | 0.924 | ||
年份×品种×灌溉方式 Y×C×IM | 0.501 | 17.086** | 1.241 |
表6
不同灌溉方式下优质食味晚籼稻品种稻米RVA谱特征值"
年份 Year | 品种 Cultivar | 灌溉方式 Irrigation management | 峰值黏度 PV (cP) | 热浆黏度 TV (cP) | 最终黏度 FV (cP) | 崩解值 BD (cP) | 消减值 SB (cP) | 糊化温度 PT(℃) |
---|---|---|---|---|---|---|---|---|
2018 | 荣优华占 RYHZ | CK | 2825±2.7a | 1799±18.4ab | 3275±17.5a | 1026±11.7a | 450±5.5b | 78.5±0.5b |
CFI | 2760±28.5b | 1787±3.2b | 3231±9.1b | 973±4.6b | 471±3.0a | 80.3±0.1a | ||
AWD | 2833±13.3a | 1818±3.2a | 3267±11.5a | 1016±18.2a | 433±3.5c | 79.3±0.9ab | ||
泰优871 TY 871 | CK | 2891±12.3a | 1573±20.6a | 2813±5.3a | 1318±15.0b | -78±43.6b | 83.2±8.0a | |
CFI | 2687±41.1b | 1532±28.0b | 2728±11.0b | 1155±5.5c | 41±2.9a | 83.8±8.6a | ||
AWD | 2895±26.9a | 1551±17.0ab | 2809±4.9a | 1344±14.0a | -86±43.7b | 78.5±7.8b | ||
2019 | 荣优华占 RYHZ | CK | 2946±7.8a | 1838±10.6b | 3350±24.0a | 1108±21.0a | 404±2.6b | 79.8±0.9a |
CFI | 2760±28.5b | 1751±30.7c | 3261±13.3b | 1009±7.9b | 500±7.2a | 80.3±0.1a | ||
AWD | 2999±42.4a | 1893±40.9a | 3358±42.8a | 1106±51.5a | 359±22.9c | 80.3±0.1a | ||
泰优871 TY 871 | CK | 3169±52.7b | 1677±27.5b | 3011±25.7ab | 1492±8.0b | -158±36.2b | 75.1±0.9a | |
CFI | 3044±23.1c | 1604±27.1c | 2941±18.0b | 1441±45.1c | -103±22.9a | 75.5±0.1a | ||
AWD | 3260±44.1a | 1742±14.0a | 3046±53.6a | 1518±30.2a | -214±20.1c | 75.6±0.1a | ||
F值 F value | 年份 Year (Y) | 441.653** | 96.142** | 316.439** | 39.784** | 28.017** | 4.029 | |
品种 Cultivar (C) | 180.427** | 709.539** | 2556.655** | 1493.413** | 3750.199** | 0.657 | ||
灌溉方式 Irrigation management (IM) | 120.088** | 40.616** | 41.203** | 165.089** | 75.658** | 0.414 | ||
年份×品种 Y×C | 136.209** | 40.517** | 90.920** | 21.618** | 0.085 | 6.605* | ||
年份×灌溉方式 Y×IM | 6.520** | 19.385** | 2.502 | 16.043** | 7.381** | 0.464 | ||
品种×灌溉方式 C×IM | 2.648 | 0.374 | 0.965 | 5.199* | 15.162** | 0.356 | ||
年份×品种×灌溉方式 Y×C×IM | 8.922** | 1.088 | 1.258 | 9.370** | 0.907 | 0.347 |
[1] | LI Y X, ZHANG W F, MA L, WU L Q, SHEN J B, DAVIES W J, OENEMA O, ZHANG F S, DOU Z X . An analysis of China’s grain production: Looking back and looking forward. Food and Energy Security, 2014,3(1):19-32. |
[2] | PIAO S L, PHILIPPE C, HUANG Y, SHEN Z H, PENG S S, LI J S, ZHOU L P, LIU H Y, MA Y C, DING Y H, FRIEDLINGSTEIN P, LIU C Z, TAN K, YU Y Q, ZHANG T Y, FANG J Y . The impacts of climate change on water resources and agriculture in China. Nature, 2010,467(7311):43-51. |
[3] | GU X H, BAI W K, LI J F, KONG D D, LIU J Y, WANG Y . Spatio-temporal changes and their relationship in water resources and agricultural disasters across China. Hydrological Sciences Journal, 2019,64(4):490-505. |
[4] | 孙星, 金海涛, 徐林文, 余桂香, 李向阳, 曹开勋, 陈世勇, 肖新. 水肥对稻麦轮作农田N2O排放影响及减排的研究进展. 安徽农业科学, 2020,48(5):28-31. |
SUN X, JIN H T, XU L W, YU G X, LI X Y, CAO K X, CHEN S Y, XIAO X. Research progress on effects of water and fertilizer on N2O emission and emission reduction in rice-wheat rotation farmland. Anhui Agricultural Science, 2020,48(5):28-31. (in Chinese) | |
[5] | PUNHOON K. 水分提取生物质炭对稻麦轮作下稻田土壤质量、作物产量和温室气体排放的影响[D]. 南京: 南京农业大学, 2018. |
PUNHOON K. Biochar effects on soil quality, crop production and greenhouse gas emission from a rice paddy under rice and wheat rotation: role of water extractable pool[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese) | |
[6] | YANG Y, CUI Y L, LUO Y F, LYU X W, TRAORE S, KHAN S, WANG W G . Short-term forecasting of daily reference evapotranspiration using the Penman-Monteith model and public weather forecasts. Agricultural Water Management, 2016,177:329-339. |
[7] | VORIES E, STEVENS W, RHINE M, STRAATMANN Z . Investigating irrigation scheduling for rice using variable rate irrigation. Agricultural Water Management, 2017,179:314-323. |
[8] | 梁燕菲, 张潇潇, 李伏生. “薄浅湿晒”灌溉稻田土壤微生物量碳、氮和酶活性研究. 植物营养与肥料学报. 2013,19(6):1403-1410. |
LIANG Y F, ZHANG X X, LI F S. Soil microbial biomass carbon and nitrogen and enzyme activities in paddy soil under “thin-shallow- wet-dry” irrigation method. Journal of Plant Nutrition and Fertilizer, 2013,19(6):1403-1410. (in Chinese) | |
[9] | GAO S K, YU S G, WANG M, MENG J J, TANG S H, DING J H, LI S, MIAO Z M . Improving water productivity and reducing nutrient losses by controlled irrigation and drainage in paddy fields. Polish Journal of Environmental Studies, 2018,27(3):1049-1059. |
[10] | JIANG X L, ZHANG J G, YUAN Y . Effects of water stresses on grain yield at different rice growth stage. Southwest China Journal of Agricultural Sciences, 2004,24(1):107-128. |
[11] | XIAO M H, LI Y Y, WANG J W, HU X J, WANG L, MIAO Z M . Study on the law of nitrogen transfer and conversion and use of fertilizer nitrogen in paddy fields under water-saving irrigation mode. Water, 2019,11(2):218. |
[12] | NORTON G J, SHAFAEI M, TRAVIS A J, DEACON C M, DANKU J, POND D, COCHRANE N, LOCKHART K, SALT D, ZHANG H, DODD I C, HOSSAIN M, ISLAM M R, PRICE A H . Impact of alternate wetting and drying on rice physiology, grain production, and grain quality. Field Crops Research, 2017,205:1-13. |
[13] | LI Z, LI Z, LETUMA P, ZHAO H, ZHANG Z X, LIN W W, CHEN H F, LIN W X . A positive response of rice rhizosphere to alternate moderate wetting and drying irrigation at grain filling stage. Agricultural Water Management, 2018,207(30):26-36. |
[14] | 吕银斐, 任艳芳, 刘冬, 张艳超, 何俊瑜. 不同水分管理方式对水稻生长、产量及品质的影响. 天津农业科学, 2016,22(1):106-110. |
LÜ Y F, REN Y F, LIU D, ZHANG Y C, HE J Y. Effect of different water managements on growth, grain yield and quality of rice. Tianjin Agricultural Sciences, 2016,22(1):106-110. (in Chinese) | |
[15] | 张彩霞, 肖金香, 叶清, 杨晓光, 郭建平. 1951—2010年南方晚稻气候适宜度时空变化特征分析. 江西农业大学学报, 2016,38(4):792-804. |
ZHANG C X, XIAO J X, YE Q, YANG X G, GUO J P. Variation characteristics of climate suitability for late rice in southern chain from 1951 to 2010. Acta Agriculturae Universitatis Jiangxiensis, 2016,38(4):792-804. (in Chinese) | |
[16] | 陈梦云. 不同土壤类型下灌溉方式对水稻产量形成、根系形态和品质的影响[D]. 扬州: 扬州大学, 2017. |
CHEN M Y. Effect of different irrigation methods on yield and quality of rice under different soil types[D]. Yangzhou: Yangzhou University, 2017. (in Chinese) | |
[17] | 张伟杨. 水分和氮素对水稻颖花发育与籽粒灌浆的调控机制[D]. 扬州: 扬州大学, 2018. |
ZHANG W Y. Mechanism underlying water and nitrogen regulating spikelet development and grain filling of rice[D]. Yangzhou: Yangzhou University, 2018. (in Chinese) | |
[18] | 唐健, 唐闯, 郭保卫, 张诚信, 张振振, 王科, 张洪程, 陈恒, 孙明珠. 氮肥施用量对机插优质晚稻产量和稻米品质的影响. 作物学报, 2020,46(1):117-130. |
TANG J, TANG C, GUO B W, ZHANG C X, ZHANG Z Z, WANG K, ZHANG H C, CHEN H, SUN M Z. Effect of nitrogen application on yield and rice quality of mechanical transplanting high quality late rice. Acta Agronomica Sinica, 2020,46(1):117-130. (in Chinese) | |
[19] | 王文霞, 周燕芝, 曾勇军, 吴自明, 谭雪明, 潘晓华, 石庆华, 曾研华. 不同机直播方式对南方优质晚籼稻产量及抗倒伏特性的影响. 中国水稻科学, 2020,34(1):46-56. |
WANG W X, ZHOU Y Z, ZENG Y J, WU Z M, TAN X M, PAN X H, SHI Q H, ZENG Y H. Effects of different mechanical direct seeding patterns on yield and lodging resistance of high-quality late indica rice in south China. Chinese Journal of Rice Science, 2020,34(1):46-56. (in Chinese) | |
[20] | 易艳红, 王文霞, 曾勇军, 谭雪明, 吴自明, 陈雄飞, 潘晓华, 石庆华, 曾研华. 人工模拟机械开沟穴直播提高早籼稻茎秆抗倒伏能力及产量. 中国农业科学, 2019,52(15):2729-2742. |
YI Y H, WANG W X, ZENG Y J, TAN X M, WU Z M, CHEN X F, PAN X H, SHI Q H, ZENG Y H. Artificial simulation of hill-drop drilling mechanical technology to improve yield and lodging resistance of early season indica rice. Scientia Agricultura Sinica, 2019,52(15):2729-2742. (in Chinese) | |
[21] | BELDER P, BOUMAN B A M, CABANGON R, LU G A, QUILANG E J P, LI Y H, SPIERTA J H J, TUONG T P. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Manage, 2004,65(3):193-210. |
[22] | JONG G W, JANG S C, SEUNG P L, SEUNG H S, SANG O C . Water saving by shallow intermittent irrigation and growth of rice. Plant Production Science, 2005,8(4):487-492. |
[23] | JUN L, OOKAWA T, HIRASAWA T . The effects of irrigation regimes on the water use, dry matter production and physiological responses of paddy rice. Plant and Soil, 2000,223(1/2):207-216. |
[24] | 徐春梅, 袁立伦, 陈松, 褚光, 叶为发, 丁玉华, 王丹英, 章秀福. 长江下游不同生态区双季优质晚稻生长特性和温光利用差异. 中国水稻科学, 2020,34(5):457-469. |
XU C M, YUAN L L, CHEN S, CHU G, YE W F, DING Y H, WANG D Y, ZHANG X F. Difference in growth characteristics, utilization of temperature and illumination of double-cropping high quality late rice in different ecological regions of the lower reaches of the Yangtze river. Chinese Journal of Rice Science, 2020,34(5):457-469. (in Chinese) | |
[25] | 熊洪, 唐玉明, 任道群, 李兴莲, 程开禄, 姚万春, 周兴兵. 不同土壤类型、不同气候条件与水稻产量的关系. 西南农业学报, 2004,17(3):305-309. |
XIONG H, TANG Y M, REN D Q, LI X L, CHENG K L, YAO W C, ZHOU X B. Studies on relationships between different soil types and climate condition and grains yield of rice. Southwest China Journal of Agricultural Sciences, 2004,17(3):305-309. (in Chinese) | |
[26] | 周欢, 原保忠, 柯传勇, 彭俊杰, 骆雪姣, 陈宇眺, 熊昊, 程建平. 灌溉水量对水稻生长和产量的影响. 灌溉排水学报, 2010,29(2):99-101. |
ZHOU H, YUAN B Z, KE C Y, PENG J J, LUO X J, CHEN Y Z, XIONG H, CHENG J P. Effects of different irrigation quota on growth and yield of rice. Journal of Irrigation and Drainage, 2010,29(2):99-101. (in Chinese) | |
[27] | 程建平, 曹凑贵, 蔡明历, 汪金平, 原保忠, 王建漳, 郑传举. 不同灌溉方式对水稻生物学特性与水分利用效率的影响. 应用生态学报, 2006,17(10):1859-1865. |
CHENG J P, CAO C G, CAI M L, WANG J P, YUAN B Z, WANG J Z, ZHENG C J. Effects of different irrigation modes on biological characteristics and water use efficiency of paddy rice. Chinese Journal of Applied Ecology, 2006,17(10):1859-1865. (in Chinese) | |
[28] | 王成瑷, 王伯伦, 张文香, 赵磊, 赵秀哲, 高连文. 土壤水分胁迫对水稻产量和品质的影响. 作物学报, 2006,32(1):131-137. |
WANG C Y, WANG B L, ZHANG W X, ZHAO L, ZHAO X Z, GAO L W. Effects of water stress of soil on rice yield and quality. Acta Agronomica Sinica, 2006,32(1):131-137. (in Chinese) | |
[29] | 陈新红, 徐国伟, 孙华山, 王志琴, 杨建昌. 结实期土壤水分与氮素营养对水稻产量与米质的影响. 扬州大学学报, 2003,24(3):37-41. |
CHEN X H, XU G W, SUN H S, WANG Z Q, YANG J C. Effects of soil moisture and nitrogen nutrition during grain filling on the grain yield and quality of rice. Journal of Yangzhou University, 2003,24(3):37-41. (in Chinese) | |
[30] | 蔡一霞. 土壤水分对稻米品质形成的影响及其机理[D]. 扬州: 扬州大学, 2004. |
CAI Y X. Effect of soil moisture on the development of rice quality and its mechanism[D]. Yangzhou: Yangzhou University, 2004. (in Chinese) | |
[31] | 刘凯, 张耗, 张慎凤, 王志琴, 杨建昌. 结实期土壤水分和灌溉方式对水稻产量与品质的影响及其生理原因. 作物学报, 2008,34(2):268-276. |
LIU K, ZHANG H, ZHANG S F, WANG Z Q, YANG J C. Effects of soil moisture and irrigation patterns during grain filling on grain yield and quality of rice and their physiological mechanism. Acta Agronomica Sinica, 2018,34(2):268-276. (in Chinese) | |
[32] | 张慎凤. 干湿交替灌溉对水稻生长发育、产量与品质的影响[D]. 扬州: 扬州大学, 2009. |
ZHANG S F. Effect of alternate wetting and drying on the growth and development, grain yield and quality of rice[D]. Yangzhou: Yangzhou University, 2009. (in Chinese) | |
[33] | 刘贺. 全生育期轻度干湿交替灌溉对水稻产量和土壤性状的影响[D]. 扬州: 扬州大学, 2016. |
LIU H. Effect of alternative wetting and moderate drying irrigation during whole growth period on grain yield and soil properties in rice[D]. Yangzhou: Yangzhou University, 2016. (in Chinese) | |
[34] | 柯传勇. 不同水分处理对水稻生长、产量及品质的影响[D]. 武汉: 华中农业大学, 2010. |
KE C Y. Effect of different water treatment on rice growth, yield and quality[D]. Wuhan: Huazhong Agricultural University, 2010. (in Chinese) | |
[35] | 许更文. 灌溉方式与施氮量对水稻产量影响的互作效应及其生理基础[D]. 扬州: 扬州大学, 2017. |
XU G W. Interaction between irrigation regimes and nitrogen rates on grain yield of rice and its physiological basis[D]. Yangzhou: Yangzhou University, 2017. (in Chinese) | |
[36] | 赵宏亮, 王麒, 孙羽, 曾宪楠, 张小明, 王萍, 王曼力, 冯延江. 秸秆还田下灌溉方式对水稻产量及水分利用率的影响. 核农学报, 2018,32(5):959-969. |
ZHAO H L, WANG L, SUN Y, ZENG X N, ZHANG X M, WANG P, WANG M L, FENG Y J. Effect of different irrigation regimes on rice yield and water use efficiency under straw returning to field. Journal of Nuclear Agricultural Sciences, 2018,32(5):959-969. (in Chinese) | |
[37] | 王秋菊, 李明贤, 迟力勇, 赵宏亮, 姜辉. 控水灌溉对水稻产量及品质的影响. 东北农业大学学报, 2009,40(10):5-8. |
WANG Q J, LI M X, CHI L Y, ZHAO H L, JIANG H. Effect of control irrigation on rice yield and quality. Journal of Northeast Agricultural University, 2009,40(10):5-8. (in Chinese) | |
[38] | GRAHAM A S, SIEBENMORGEN T J, REBA M, MASSEY J, MAUROMOUSTAKOS A, ADVIENTO A B, JANUARY R, BURGOS R, BALTZ G J . Impact of alternative irrigation practices on rice quality. Cereal Chemistry, 2019,96(5):1-9. |
[39] | ZHAO X Q, FITZGERALD M . Climate change: Implications for the yield of edible rice. PLoS ONE, 2013,8(6):e66218. |
[40] | LANNING S B, SIEBENMORGEN T J, AMBARDEKAR A A, COUNCE P A, BRYANT R J . Effects of nighttime air temperature during kernel development of field-grown rice on physicochemical and functional properties. Cereal Chemistry, 2012,89(3):168-175. |
[41] | YANG H, WEN Z R, HUANG T Q, LU W P, LU D L . Effects of waterlogging at grain formation stage on starch structure and functionality of waxy maize. Food Chemistry, 2019,294(1):187-193. |
[42] | AHMED N, TETLOW Ⅰ J, NAWAZ S, LQBAL A, MUBIN M, NAWAZ R, MUHAMMAD S, BUTT A, LIGHTFOOT D A, MAEKAWA M . Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice. Journal of the Science of Food and Agriculture, 2015,95(11):2237-2243. |
[43] | 刘立军, 李鸿伟, 赵步洪, 王志琴, 杨建昌. 结实期干湿交替处理对稻米品质的影响及其生理机制. 中国水稻科学, 2012,26(1):77-84. |
LIU L J, LI H W, ZHAO B H, WANG Z Q, YANG J C. Effects of alternate drying-wetting irrigation during grain filling on grain quality and its physiological mechanisms in rice. Chinese Journal of Rice Science, 2012,26(1):77-84. (in Chinese) | |
[44] | PANDEY A, KUMAR A, PANDEY D S, THONGBAM P D . Rice quality under water stress. Indian Journal of Advances in Plant Research, 2014,1(2):23-26. |
[45] | LIM S J, LEE S K, KIM D U, SOHN J K . Varietal variation of amylogram properties and its relationship with other eating quality characteristics in rice. Japanese Journal of Crop Science, 1995,27(3):268-275. |
[46] | BHAT F M, RIAR C S. Effect of amylose, particle size & morphology on the functionality of starches of traditional rice cultivars. International Journal of Biological Macromolecules Structure Function & Interactions, 2016,92:637-644. |
[1] | 张晓丽, 陶伟, 高国庆, 陈雷, 郭辉, 张华, 唐茂艳, 梁天锋. 直播栽培对双季早稻生育期、抗倒伏能力及产量效益的影响[J]. 中国农业科学, 2023, 56(2): 249-263. |
[2] | 严艳鸽, 张水勤, 李燕婷, 赵秉强, 袁亮. 葡聚糖改性尿素对冬小麦产量和肥料氮去向的影响[J]. 中国农业科学, 2023, 56(2): 287-299. |
[3] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[4] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[5] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[6] | 张玮,严玲玲,傅志强,徐莹,郭慧娟,周梦瑶,龙攀. 播期对湖南省双季稻产量和光热资源利用效率的影响[J]. 中国农业科学, 2023, 56(1): 31-45. |
[7] | 冯向前,殷敏,王孟佳,马横宇,褚光,刘元辉,徐春梅,章秀福,张运波,王丹英,陈松. 南方稻区“早籼晚粳”栽培模式晚季灌浆期气象因子对晚粳稻品质的影响[J]. 中国农业科学, 2023, 56(1): 46-63. |
[8] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[9] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[10] | 王浩琳,马悦,李永华,李超,赵明琴,苑爱静,邱炜红,何刚,石美,王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理[J]. 中国农业科学, 2022, 55(9): 1800-1810. |
[11] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[12] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[13] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[14] | 秦羽青,程宏波,柴雨葳,马建涛,李瑞,李亚伟,常磊,柴守玺. 中国北方地区小麦覆盖栽培增产效应的荟萃(Meta)分析[J]. 中国农业科学, 2022, 55(6): 1095-1109. |
[15] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
|