中国农业科学 ›› 2021, Vol. 54 ›› Issue (2): 422-434.doi: 10.3864/j.issn.0578-1752.2021.02.017
杨柠芝1(),李婷1,王燕1,陈卓1,马义诚1,任强林1,刘佳佳2,杨会国2,姚刚1()
收稿日期:
2020-03-08
接受日期:
2020-07-10
出版日期:
2021-01-16
发布日期:
2021-02-03
通讯作者:
姚刚
作者简介:
杨柠芝,E-mail: 基金资助:
YANG NingZhi1(),LI Ting1,WANG Yan1,CHEN Zhuo1,MA YiCheng1,REN QiangLin1,LIU JiaJia2,YANG HuiGuo2,YAO Gang1()
Received:
2020-03-08
Accepted:
2020-07-10
Online:
2021-01-16
Published:
2021-02-03
Contact:
Gang YAO
摘要:
【目的】羔羊腹泻是由病原微生物、营养改变、环境应激等多因素互作所致的新生和断奶时期危害羔羊生长的临床常见病之一。对断奶前后腹泻羔羊的生长生理与肠道菌群变化与其同期健康羔羊进行比较。为不同生长阶段羔羊腹泻的针对性防治研究奠定科学基础。【方法】在对羔羊腹泻进行临床调查的基础上,随机选择断奶前(31—45日龄)健康和腹泻羔羊各10只、断奶后(60—75日龄)健康和腹泻羔羊各10只分成4组进行生长生理、血液生理生化指标及相关炎性因子指标测定。采集直肠粪样,用16S rRNA测序进行肠道菌群组成结构比较分析。【结果】(1)断奶前健康与腹泻羔羊体重差异不显著。而断奶后腹泻羔羊体重极显著低于健康羔羊(P<0.01),且腹泻羔羊的体温、脉搏和呼吸频率也均显著低于健康羔羊(P<0.05)。(2)断奶前腹泻羔羊总蛋白、球蛋白、胆固醇等生化指标显著低于健康羔羊(P<0.05)。断奶后腹泻羔羊白细胞总数极显著高于健康羔羊(P<0.01),尿素氮、肌酐、磷、血糖和总胆红素显著低于健康羔羊(P<0.05),炎性因子IL-4、IL-6、IL-8显著高于健康羔羊。(3)断奶后健康羔羊与腹泻羔羊肠道菌群共有OTUs占比较断奶前上升近一倍。断奶前腹泻羔羊肠道菌群Alpha多样性显著降低(P<0.05)。健康与腹泻羔羊的肠道菌群PCoA分布差异显著(Weighted UniFrac Adonis和Anosim检验水平,P<0.05),而断奶后组间差异不显著。门水平:与其同期健康羔羊相比,断奶前腹泻羔羊梭杆菌门相对丰度显著升高(P<0.05),疣微菌门和放线菌门相对丰度显著下降(P<0.05)。断奶后,腹泻羔羊黏胶球形菌门和放线菌门相对丰度显著下降(P<0.05)。属水平:与其同期健康羔羊相比,断奶前腹泻羔羊梭杆菌属和梭菌属显著升高(P<0.05),而艾克曼菌属、脱硫弧菌属和丁酸弧菌属显著下降(P<0.05)。断奶后,腹泻羔羊瘤胃球菌属显著下降(P<0.05),而脱硫弧菌属显著升高(P<0.05)。【结论】本研究结果表明断奶前腹泻羔羊主要发生蛋白质和血脂降低;而断奶后腹泻羔羊的生理变化以尿素氮、肌酐和血糖等指标的下降为特点。断奶前腹泻羔羊肠道菌群失调变化明显;而断奶后腹泻羔羊炎症反应等变化明显。这些差异可能与断奶所引起的日粮组成结构和环境因素改变密切相关。
杨柠芝,李婷,王燕,陈卓,马义诚,任强林,刘佳佳,杨会国,姚刚. 断奶前后非特异病原性腹泻羔羊生长生理及肠道菌群差异性比较[J]. 中国农业科学, 2021, 54(2): 422-434.
YANG NingZhi,LI Ting,WANG Yan,CHEN Zhuo,MA YiCheng,REN QiangLin,LIU JiaJia,YANG HuiGuo,YAO Gang. Comparison of Growth Physiology and Gut Microbiota Between Healthy and Diarrheic Lambs in Pre- and Post-Weaning Period[J]. Scientia Agricultura Sinica, 2021, 54(2): 422-434.
表2
断奶前后羔羊日粮组成及营养水平"
原料 Ingredient | 日粮组成 Diet composition (%) | 营养成分 Nutritional components | 营养水平 Nutrient levels | ||
---|---|---|---|---|---|
断奶前Suckling | 断奶后Weaned | 断奶前Suckling | 断奶后Weaned | ||
玉米Corn | 43.12 | 25.20 | 干物质 DM (%) | 82.29 | 86.65 |
麸皮Wheat bran | 3.75 | 4.40 | 消化能DE (MJ·kg-1) | 10.41 | 6.43 |
豆粕Sybean meal | 16.50 | 4.40 | 粗蛋白 CP (%) | 16.76 | 10.76 |
棉粕Cottonseed meal | 3.00 | 1.20 | 粗纤维 CF (%) | 11.01 | 24.48 |
葵粕Sunflower meal | 2.63 | 2.00 | 粗灰分Ash (%) | 4.43 | 6.27 |
酵母Brewers dried yeast | 0.70 | 1.60 | 钙 Ca (%) | 0.57 | 0.51 |
食盐NaCl | 0.80 | 0.40 | 总磷 P (%) | 0.34 | 0.23 |
石粉Limestone | 0.80 | 0.40 | |||
碳酸氢钠Sodium bicarbonate | 3.70 | 0.40 | |||
麦秸Wheat straw | 10.00 | 40.00 | |||
苜蓿草粉Alfalfa meal | 14.00 | 19.00 | |||
复合预混料Premix | 1.00 | 1.00 | |||
合计Total | 100.00 | 100.00 |
表4
断奶前后健康与腹泻羔羊血液生理指标"
指标 Index | 断奶前Suckling | 断奶后Weaned | ||
---|---|---|---|---|
健康Health | 腹泻Diarrhea | 健康Health | 腹泻Diarrhea | |
白细胞WBC | 8.69±0.39 | 9.12±0.45 | 8.96±0.36A | 11.20±0.47B |
淋巴细胞LY | 4.42±0.32 | 5.00±0.26 | 5.84±0.34 | 6.23±0.42 |
中性粒细胞Gran | 4.14±0.46 | 4.33±0.85 | 5.36±0.87 | 5.29±0.72 |
血红蛋白HGB | 107.00±3.78 | 108.00±5.16 | 127.00±4.44 | 141.00±5.06 |
红细胞RBC | 9.43±0.24 | 8.97±0.43 | 8.69±0.24 | 9.30±0.34 |
血小板PLT | 507.00±38.9 | 487.00±38.40 | 750.00±40.00 | 768.00±55.00 |
表5
断奶前后健康与腹泻羔羊血液生化指标比较"
指标 Index | 断奶前Suckling | 断奶后Weaned | ||
---|---|---|---|---|
健康Health | 腹泻Diarrhea | 健康health | 腹泻diarrhea | |
碱性磷酸酶ALKP(U·L-1) | 355.00±90.30 | 169.20±73.13 | 38.80±9.20 | 69.80±38.27 |
丙氨酸转移酶ALT(U·L-1) | 186.40±152.42 | 228.00±258.80 | 37.20±16.77 | 37.40±18.77 |
胰淀粉酶AMYL(U·L-1) | 64.60±12.88 | 59.20±34.78 | 32.00±30.54 | 54.80±30.26 |
白蛋白ALB(g·L-1) | 19.00±2.35 | 19.60±1.82 | 15.20±5.72 | 19.80±6.61 |
球蛋白GLOB(g·L-1) | 48.80±3.97a | 35.60±5.35b | 56.80±12.48 | 47.40±14.08 |
总蛋白TP(g·L-1) | 66.40±15.79a | 55.00±5.24b | 72.00±9.05 | 67.20±9.41 |
胆固醇CHOL(mmol·L-1) | 3.70±1.87a | 2.52±0.86b | 0.58±0.34 | 0.77±0.22 |
肌酐CREA(mmol·L-1) | 39.00±14.07 | 27.20±5.72 | 35.80±7.60A | 22.90±5.60B |
尿素氮UREA(mmol·L-1) | 4.18±1.45 | 3.64±1.28 | 9.15±2.50A | 6.48±0.94B |
总胆红素BIL(mmol·L-1) | 2.80±1.64 | 2.00±2.23 | 4.00±2.94a | 1.20±0.44b |
血糖GLU(mmol·L-1) | 5.36±0.71 | 5.42±1.72 | 4.85±1.01a | 3.93±0.64b |
钙离子Ca(mmol·L-1) | 2.50±0.08 | 2.35±0.20 | 2.14±0.27 | 2.11±0.10 |
磷PHOS(mmol·L-1) | 2.89±0.82a | 2.18±0.40b | 2.52±0.58A | 1.64±0.31B |
表7
健康和腹泻羔羊肠道菌群各分类水平类群数"
分类水平 Classification level | 断奶前 Suckling | 断奶后 Weaned | ||
---|---|---|---|---|
健康 Health | 腹泻 Diarrhea | 健康 Health | 腹泻 Diarrhea | |
门Phylum | 8.70±1.25 | 8.00±2.67 | 10.70±2.50 | 11.30±1.59 |
纲Class | 16.00±2.70 | 14.00±3.68 | 20.80±3.67 | 20.40±2.11 |
目Order | 20.10±4.30 | 16.00±4.97 | 27.00±5.56 | 27.10±4.04 |
科Family | 35.3±7.13 | 28.80±7.91 | 45.90±9.37 | 46.30±5.53 |
属Genus | 56.1±9.75a | 46.40±12.07b | 67.70±13.33 | 67.80±8.53 |
种Species | 63.3±9.25a | 52.70±12.27b | 69.30±13.49 | 70.10±9.27 |
[1] | 柴建民. 断母乳日龄对羔羊生长性能与胃肠道发育的影响[D]. 北京:中国农业科学院, 2015. |
CHAI J M. Effect of weaned milk age on growth performance and gastrointestinal development of lambs[D]. Beijing:Chinese Academy of Agricultural Sciences, 2015. (in Chinese) | |
[2] | 宋代军, 张家骅, 杨游, 乔艳芳, 田茂春. 羔羊不同断奶日龄对小肠黏膜形态的影响. 动物营养学报, 2007(4):344-349. |
SONG D J, ZHANG J H, YANG Y, QIAO Y F, TIAN M C. Effects of different weaning ages of lambs on morphology of small intestine. Journal of Animal Nutrition, 2007 (04):344-349. (in Chinese) | |
[3] | 郭江鹏, 郝正里, 李发弟, 马友记, 潘建忠, 张元兴. 早期断奶对舍饲肉用羔羊消化器官发育的影响. 畜牧兽医学报, 2013,44(7):1078-1089. |
GUO J P, HAO Z L, LI F D, MA Y J, PAN J Z, ZHANG Y X. Effects of early weaning on the development of digestive organs of lambs for house feeding. Journal of Animal Husbandry and Veterinary Medicine, 2013,44(7):1078-1089. (in Chinese) | |
[4] | 妥鑫, 刘永明, 黄美州, 崔东安, 王慧, 王胜义, 齐志明. 羔羊腹泻细菌和病毒病原的研究进展. 中国畜牧兽医, 2016,43(3):831-836. |
TUO X, LIU Y M, HUANG M Z, CUI D A, WANG H, WANG S Y, QI Z M. Research progress of lamb diarrhea bacterial and viral pathogens. China Animal Husbandry and Veterinary Medicine, 2016,43(3):831-836. (in Chinese) | |
[5] | 王治才, 刘崇向, 沙吾列, 黄增英. 羔羊轮状病毒性腹泻的调查. 中国兽医杂志, 1992(1):11-12. |
WANG Z C, LIU C X, SHA W L, HUANG Z Y. Survey of rotavirus diarrhea in lambs. China Veterinary Journal, 1992(1):11-12. (in Chinese) | |
[6] | AHMED A, EGWU G O, GARBA H S, MAGAJI A A. Prevalence of bacterial pathogens and serotyping of E. coli isolates from diarrhoeic lambs in Sokoto state, Nigeria. Sokoto Journal of Veterinary Sciences, 2010,8(1-2). |
[7] | KOCKAYA M, OZŞENSOY, YUSUF. Determination of some blood parameters and macro elements in coccidiosis affected akkaraman kangal lambs. Journal of Asian Scientific Research, 2016,6(9):138-142. |
[8] | Diarrhea in Neonatal Ruminants. https://www.merckvetmanual.com/. 2014-08 |
[9] | iarrhea in Lambs and Kids. http://infovets.com/books/smrm/F/F156.htm. 2008-12-7 |
[10] | WANG S Q, MA T, ZHAO G H, ZHANG N F, TU Y, LI F D, CUI K, BI Y L, DING H B, DIAO Q Y. Effect of age and weaning on growth performance, rumen fermentation, and serum parameters in lambs fed starter with limited ewe-lamb interaction. Animals, 2019, 9(825):1-12. |
[11] |
HOOPER L V. Bacterial contributions to mammalian gut development. Trends in Microbiology, 2004,12(3):129-134.
pmid: 15001189 |
[12] |
TAN Z, DONG W T, DING Y Q, DING X D, ZHANG Q, JIANG L. Changes in cecal microbiota community of suckling piglets infected with porcine epidemic diarrhea virus. PLoS One, 2019,14(7).
doi: 10.1371/journal.pone.0220829 pmid: 31365578 |
[13] |
HUANG A, CAI R J, WANG Q, SHI L, LI C L, YAN H. Dynamic change of gut microbiota during porcine epidemic diarrhea virus infection in suckling piglets. Frontiers in Microbiology, 2019,10:322.
doi: 10.3389/fmicb.2019.00322 pmid: 30858839 |
[14] | 欧阳钦. 慢性腹泻与常见相关疾病. 中国实用内科杂志, 2003,23(10):577-578. |
OUYANG Q. Chronic diarrhea and related diseases. Chinese Journal of Practical Internal Medicine, 2003,23(10):577-578. (in Chinese) | |
[15] |
REISINGER E C, FRITZSCHE C, KRAUSE R, KREJS G J. Diarrhea caused by primarily non-gastrointestinal infections. Nature Clinical Practice Gastroenterology & Hepatology, 2005,2(5):216-222.
doi: 10.1038/ncpgasthep0167 pmid: 16265204 |
[16] | 石云峰, 吴本权. 炎性细胞因子在细菌感染中的作用. 国际内科学杂志, 2009,36(2):112-115. |
SHI Y F, WU B Q. The role of inflammatory cytokines in bacterial infections. International Journal of Internal Medicine, 2009,36(2):112-115. (in Chinese) | |
[17] | FERNÁNDEZ A, MARTELES D, RUIZ A, LACASTA D, CONDE T, LOSTE1 A. Relationship between Pro-Inflammatory Cytokines, IL-10 Anti-Inflammatory Cytokine and Serum Proteins in Healthy Lambs and with Diarrhea. Pakistan Veterinary Journal, 2016,36(1):63-67. |
[18] | OZLEM O, ADANIR R, HALIGUR M. Immunohistochemical detection of the cytokine and chemokine expression in the gut of lambs and kids with coccidiosis. Small Ruminant Research, 105:345-350. |
[19] |
JIANG B, SNIPES-MAGALDI L, DENNEHY P, KEYSERLING H, HOLMAN R C, BRESEE J, GENTSCH J, GLASS R I. Cytokines as mediators for or effectors against rotavirus disease in children. Clinical and Diagnostic Laboratory Immunology, 2003,10(6):995-1001.
pmid: 14607858 |
[20] | 杨立华, 傅晓凤, 潘传四, 李黑大, 揭羽青. 细胞炎前因子测定对感染性腹泻诊断的价值. 实用儿科临床杂志, 2007 (1): 15+44. |
YANG L H, FU X F, PAN C S, LI H D, JIE Y Q. The value of the determination of pre-inflammatory factors in the diagnosis of infectious diarrhea. Journal of Practical Pediatrics, 2007 (1): 15+44. (in Chinese) | |
[21] |
MARQUARDT R R, JIN L Z, KIM J W, FANG L, FROHLICH A A, BAIDOO S K. Passive protective effect of egg-yolk antibodies against enterotoxigenic Escherichia coli K88+infection in neonatal and early-weaned piglets. FEMS Immunology and Medical Microbiology, 1999,23(4):283-288.
doi: 10.1111/fim.1999.23.issue-4 |
[22] |
FAIRBROTHER J M, NADEAU, ÉRIC, GYLES C L. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Animal Health Research Reviews, 2005,6(1):17-39.
pmid: 16164007 |
[23] | ABDEL-SAEED H, SALEM N Y. Clinical, Hematologic, sero- biochemical and IgE response in lambs with diarrhea caused by eimeria. International Journal of Veterinary Science, 2019, Vol.8(No.1):10-13. |
[24] | 蒋莉, 王丽娟, 胡云海, 张琪琛. 儿童慢性腹泻合并肠道蛋白丢失的临床研究. 胃肠病学和肝病学杂志, 2014,23(6):657-660. |
JIANG L, WANG L J, HU Y H, ZHANG Q C. Clinical study on chronic diarrhea in children with intestinal protein loss. Journal of Gastroenterology and Hepatology, 2014,23(6):657-660. (in Chinese) | |
[25] | SALEM N Y, YEHIA S G, FARAG H S, SOLIMAN S M. Evaluation of Hepcidin level and clinico-pathological modifications in canine parvovirus enteritis. International Journal of Veterinary Science, 2018,7(2):93-96. |
[26] | KUMAR A A, TRIPATHI B N, SHARMA B. Cytokine profile in tissues and blood of sheep experimentally infected with Mycobacterium avium subsp paratuberculosis. Journal of Applied Animal Research, 2010,38(2):185-189. |
[27] |
SAKAI H, SAGARA A, MATSUMOTO K, HASEGAWA S, SATO K, NISHIZAKI M, SHOJI T, HORIE S, NAKAGAWA T, TOKUYAMA S, NARITA M. 5-Fluorouracil induces diarrhea with changes in the expression of inflammatory cytokines and aquaporins in mouse intestines. PLoS One, 2013,8(1):e54788.
pmid: 23382968 |
[28] | lifetechnologies.com. When inflammatory cytokines are unbalanced. Bioprobes, 2012,67:30-32. |
[29] |
CHRISTOPHER A H, SIMON A J. IL-6 as a keystone cytokine in health and disease. Nature Immunology, 2015,16(5):448-455.
doi: 10.1038/ni.3153 pmid: 25898198 |
[30] |
KIMURA A, KISHIMOTO T. IL-6: Regulator of Treg/Th17 balance. European Journal of Immunology, 2010,40(7):1830-1835.
pmid: 20583029 |
[31] |
RYAN T, GRIEBEL P J. Commensal microbiome effects on mucosal immune system development in the ruminant gastrointestinal tract. Animal Health Research Reviews, 2012,13(1):129-141.
doi: 10.1017/S1466252312000096 pmid: 22853940 |
[32] | MEALE S J, SHUCONG L, PAULA A, HOOMAN D, PLAIZIER J C, EHSAN K, STEELE M A. Development of ruminal and fecal microbiomes are affected by weaning but not weaning strategy in dairy calves. Frontiers in Microbiology, 2016: 582. |
[33] |
MEALE S J, LI S C, AZEVEDO P, DERAKHSHANI H, DEVRIES T J, PLAIZIER J C, STEELE M A, KHAFIPOUR E. Weaning age influences the severity of gastrointestinal microbiome shifts in dairy calves. Scientific Reports, 2017,7:198.
doi: 10.1038/s41598-017-00223-7 pmid: 28298634 |
[34] |
NAKAMURA S I, KIM Y H, TAKASHIMA K, KIMURA A, NAGAI K, ICHIJO T, SATO S. Composition of the microbiota in forestomach fluids and feces of Japanese Black calves with white scours. Journal of Animal Science, 2017,95(9):3949-3960.
pmid: 28992019 |
[35] | SAKAITANI Y, YUKI N, NAKAJIMA F, NAKANISHI S. Coloni-zation of intestinal microflora in new born foals. Journal of Intestinal Microbiology, 1999,13(1):9-14. |
[36] | THOMPSON C L, WANG B, HOLMES A J. The immediate environment during postnatal development has long-term impact on gut community structure in pigs. Isme Journal, 2008,2(7):739-748. |
[37] |
STRAUSS J. Fusobacterium nucleatum: An emerging gut pathogen? Gut Microbes, 2011,2(5):294-298.
pmid: 22067936 |
[38] |
BIEN J, PALAGANI V, BOZKO P. The intestinal microbiota dysbiosis and Clostridium difficile infection: is there a relationship with inflammatory bowel disease? Therapeutic Advances In Gastroenterology, 2013,6(1):53-68.
pmid: 23320050 |
[39] |
TAN Z, DONG W T, DING Y Q, DING X D, ZHANG Q, JIANG L. Porcine epidemic diarrhea altered colonic microbiota communities in suckling piglets. Genes, 2020,11(1):44.
doi: 10.3390/genes11010044 |
[40] | HOWARD B H, HUNGATE R E. Desulfovibrio of the sheep rumen. Applied and Environmental Microbiology, 1976,32(4):598-602. |
[41] |
GOLDSTEIN E J C, CITRON D M, PERAINO V A, CROSS S A. Desulfovibrio desulfuricans bacteremia and review of human desulfovibrio infections. Journal of Clinical Microbiology, 2003,41(6):2752-2754.
doi: 10.1128/jcm.41.6.2752-2754.2003 pmid: 12791922 |
[42] |
FERRY T, LAURENT F, RAGOIS P, CHIDIAC C, LYON BJI STUDY GROUP. Post-traumatic chronic bone and joint infection caused by Butyricimonas spp, and treated with high doses of ertapenem administered subcutaneously in a 30-year-old obese man. BMJ Case Reports, 2015, 1-2. DOI: 10.1136/bcr-2015-212359
pmid: 31969420 |
[43] |
ULGER T N, BOZAN T, BIRKAN Y, ISBIR S, SOYLETIR G. Butyricimonas virosa: The first clinical case of bacteraemia. New Microbes and New Infections, 2015,4:7-8.
pmid: 25830028 |
[44] | GEERLINGS S Y, KOSTOPOULOS I, DE VOS W M, BELZER C. Akkermansia muciniphila in the Human Gastrointestinal Tract: When, Where, and How? Microorganisms, 2018,6(75):1-26. |
[45] |
ZHAO S Q, LIU W, WANG J Q, SHI J, SUN Y K, WANG W Q, NING G, LIU R X, HONG J. Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. Journal of Molecular Endocrinology, 2017,58(1):1-14.
doi: 10.1530/JME-16-0054 pmid: 27821438 |
[1] | 王一丹,杨发龙,陈弟诗,向华,任玉鹏. 猪腹泻病毒一步法多重TaqMan荧光定量RT-PCR检测法的建立及应用[J]. 中国农业科学, 2023, 56(1): 179-192. |
[2] | 黄文琴,吕小康,庄一民,崔凯,王世琴,刁其玉,张乃锋. 早期断奶和育肥期饲粮NDF水平对湖羊生长性能和消化代谢的影响[J]. 中国农业科学, 2021, 54(10): 2217-2228. |
[3] | 杨云燕,王其炎,彭地纬,潘一帆,高晓梅,宣泽义,陈少梅,邹彩霞,曹艳红,林波. 日粮添加肉桂醛对奶牛公犊生长、健康及瘤胃发酵性能的影响[J]. 中国农业科学, 2021, 54(10): 2229-2238. |
[4] | 郝小燕,牟春堂,乔栋,张暄梓,杨文军,赵俊星,张春香,张建新. 葡萄籽原花青素对羔羊瘤胃发酵、血清炎症及抗氧化指标的影响[J]. 中国农业科学, 2021, 54(10): 2239-2248. |
[5] | 郑琛,李发弟,李飞,周巨旺,段鹏伟,刘绘汇,樊海苗,朱威力,刘婷. 代乳粉添加甘露寡糖对7—28日龄湖羊羔羊胃肠道发育的影响[J]. 中国农业科学, 2020, 53(2): 398-408. |
[6] | 李彦军,牛骁麟,张千,王国秀,李发弟,李飞,李冲,庞鑫,贾莉,樊海苗. 代乳粉水平对羔羊血液指标和肠道屏障功能的影响[J]. 中国农业科学, 2020, 53(2): 409-417. |
[7] | 王世琴,毕研亮,赵国宏,崔凯,黄文琴,张乃锋,李发弟,屠焰,刁其玉. 哺乳期饲喂白藜芦醇和地衣芽孢杆菌对0-2月龄湖羊生长性能、营养物质消化代谢和血清指标的影响[J]. 中国农业科学, 2020, 53(2): 451-460. |
[8] | 林厦菁,陈芳,蒋守群,蒋宗勇. 大豆异黄酮对早期断奶仔猪生长性能、抗氧化功能及肠粘膜形态结构的影响[J]. 中国农业科学, 2020, 53(10): 2101-2111. |
[9] | 刘晨曦,王彬彬,蒲广,张倩,曹旸,王欢,高琛,牛培培,李平华,黄瑞华. 苏淮猪抗腹泻MUC13基因rs319699771位点多态性 及其与经济性状的关联[J]. 中国农业科学, 2019, 52(8): 1449-1457. |
[10] | 黄赛男,金澄艳,鲍建军,王悦,陈炜昊,吴天弋,王利宏,吕晓阳,高雯,王步忠,朱国强,戴国俊,孙伟. F17大肠杆菌在湖羊羔羊个体脾脏中LncRNA表达谱变化[J]. 中国农业科学, 2019, 52(7): 1282-1294. |
[11] | 郑琛,李发弟,李飞,周巨旺,段鹏伟,刘绘汇,樊海苗,朱威力,刘婷. 代乳粉添加单宁酸对7—28日龄湖羊羔羊胃肠道发育的影响[J]. 中国农业科学, 2019, 52(21): 3924-3933. |
[12] | 曲星梅,薛复来,黄晓瑜,张宇,邢晓楠,张恩平. 断奶日龄和日粮营养水平对陕北白绒山羊小肠 形态发育和消化酶活性的影响[J]. 中国农业科学, 2019, 52(19): 3460-3470. |
[13] | 周敏,周雪梅,杨立杰,黄丽波,冯蕾,邵明慧,杨晨,杨维仁,杨在宾,姜淑贞 . 玉米赤霉烯酮对断奶小母猪子宫形态学及热应激蛋白70分布和表达的影响[J]. 中国农业科学, 2018, 51(4): 778-788. |
[14] | 常双双,李萌,厉秀梅,石玉祥,张敏红,冯京海. 日循环变化偏热环境对肉鸡血清脑肠肽和盲肠菌群多样性的影响[J]. 中国农业科学, 2018, 51(22): 4364-4372. |
[15] | 柴建民,王波,祁敏丽,王世琴,屠焰,陶晓菁,刁其玉,张乃锋. 不同开食料采食量断液体饲粮对羔羊生长发育的影响[J]. 中国农业科学, 2018, 51(2): 341-350. |
|