中国农业科学 ›› 2020, Vol. 53 ›› Issue (24): 5027-5038.doi: 10.3864/j.issn.0578-1752.2020.24.006
邢启凯1(),李铃仙1,曹阳2,张玮1,彭军波1,燕继晔1,李兴红1()
收稿日期:
2020-02-14
接受日期:
2020-03-20
出版日期:
2020-12-16
发布日期:
2020-12-28
通讯作者:
李兴红
作者简介:
邢启凯,E-mail: 基金资助:
XING QiKai1(),LI LingXian1,CAO Yang2,ZHANG Wei1,PENG JunBo1,YAN JiYe1,LI XingHong1()
Received:
2020-02-14
Accepted:
2020-03-20
Online:
2020-12-16
Published:
2020-12-28
Contact:
XingHong LI
摘要:
【目的】可可毛色二孢(Lasiodiplodia theobromae)是一种世界性分布的重要植物病原真菌,可引起严重的葡萄溃疡病(Botryosphaeria dieback),影响果木品质并造成巨大的经济损失。本研究预测并分析可可毛色二孢基因组范围内的分泌蛋白,并明确其基本特征,为该病菌分泌蛋白致病机理的研究打下基础。【方法】依据已公布的可可毛色二孢全基因组序列,利用信号肽预测软件SignalP v5.0、跨膜结构分析软件TMHMM v2.0、细胞器定位分析软件ProtComp v9.0、GPI锚定预测软件big-PI Fungal Predictor和亚细胞器定位分析软件TargetP v2.0生物信息学软件对该菌中的典型分泌蛋白进行筛选。对分泌蛋白N端信号肽的长度、氨基酸使用频率及其切割位点进行统计分析。依据蛋白序列的同源性,应用BLASTP程序对分泌组蛋白进行功能注释分析,预测其生物学功能。采用蔗糖酶缺陷的酵母分泌系统,对所选分泌蛋白的信号肽进行活性检测。利用qRT-PCR方法检测所选分泌蛋白基因在可可毛色二孢侵染葡萄中的表达情况。【结果】在可可毛色二孢全基因组编码蛋白中共筛选获得552个潜在的具有典型信号肽的分泌蛋白,占全基因组预测蛋白总数的4.3%,其编码蛋白长度集中于101—400 aa。信号肽统计分析表明,其信号肽长度以18—20 aa的序列最为集中,信号肽长度为20 aa的蛋白数量最多。信号肽中使用频率最高的氨基酸为丙氨酸;非极性、疏水的氨基酸使用频率最高,占氨基酸总数的60.2%。其信号肽的-3至-1位置上的氨基酸相对保守,切割位点属于A-X-A类型,可被Sp I型信号肽酶识别并切割。336个分泌蛋白具有功能注释,其功能较多集中于细胞壁降解有关的酶类以及致病相关蛋白,并且这些蛋白在分子量、等电点、脂肪族氨基酸指数等方面均存在差异。通过蔗糖酶缺陷的酵母分泌系统证实,挑选的9个分泌蛋白信号肽均具有分泌活性。qRT-PCR检测结果表明,所选分泌蛋白基因在该病菌侵染初期的表达发生变化。【结论】利用生物信息学分析技术从可可毛色二孢全基因组中共预测获得552个经典分泌蛋白。其信号肽氨基酸长度分布广泛,氨基酸组成中非极性、疏水的氨基酸使用频率最高。功能注释主要集中在细胞壁组分降解相关的酶类、致病侵染相关的坏死诱导相关蛋白以及几丁质结合蛋白等。
邢启凯,李铃仙,曹阳,张玮,彭军波,燕继晔,李兴红. 可可毛色二孢全基因组分泌蛋白的预测及分析[J]. 中国农业科学, 2020, 53(24): 5027-5038.
XING QiKai,LI LingXian,CAO Yang,ZHANG Wei,PENG JunBo,YAN JiYe,LI XingHong. Prediction and Analysis of Candidate Secreted Proteins from the Genome of Lasiodiplodia theobromae[J]. Scientia Agricultura Sinica, 2020, 53(24): 5027-5038.
表1
分泌蛋白信号肽活性测定载体构建引物序列"
基因 Gene | 正向引物序列 Forward primer (5′-3′) | 反向引物序列 Reverse primer (5′-3′) |
---|---|---|
LT_159 | TTTATGAATTCATGGTCAAGGCTTCCACC | TAATACTCGAGGGCATCGGTGAAGGTGCAG |
LT_188 | TTTATGAATTCATGCGTGTTTCGACTCTTC | TAATACTCGAGAAAGAAGGTGAAGGTAGAAG |
LT_233 | TTTATGAATTCATGGTCAAGGTTTCCACC | TAATACTCGAGGGTGAAAGTGCAGCTGG |
LT_359 | TTTATGAATTCATGCCTTCCCTCAAGTC | TAATACTCGAGGTTTTCGGCGGCCTGGG |
LT_595 | TACAGGAATTCATGCGTTCCTCTGCTC | GACTGCTCGAGCACGATGTCGAGATCAG |
LT_62 | CCGGAATTCATGGGCTGGTTTTGGTTC | CCGCTCGAGCACGACGGTGATCGTCG |
LT_936 | TACTAGAATTCATGAAGGCTTCCGGTC | CACTTCTCGAGACCGTTGACAGCCTGAC |
LT_1541 | TTTATGAATTCATGGTGTCCTTCCGCTCTC | TAATACTCGAGGAGAGACTGCCTGGCAATC |
LT_1698 | TTTATGAATTCATGAAGTTCTCTACCACC | TAATACTCGAGGTCCTCGGTGACCTCGCC |
表2
实时荧光定量PCR所用引物序列"
基因 Gene | 正向引物序列 Forward primer (5′-3′) | 反向引物序列 Reverse primer (5′-3′) |
---|---|---|
LT_159 | CCAGCAGGACTACAAGAA | CCAGAGGTAGACCAGTTC |
LT_188 | CTACCTTGCCGACCTTAA | GATGATGTTGCCGTTGAA |
LT_233 | GAGCAGGACTACGAGAAC | CGCAGAGGATGTAGATGT |
LT_359 | CAAGTCTTCCTCCATCCA | GATCTGAGCCGAGTTGTA |
LT_595 | AGATGGTCTGGAAGAACTC | CGTACTCGTCAAGGATGT |
LT_62 | GGAATCAACGACGACTCT | CGCACTGTGTTGGTTATG |
LT_936 | CTACAACGAAATCAGCGAAT | ATGGTGGTGGTCTTCTTC |
LT_1541 | CAACGGCTACTACTACTCTT | TTGATGTTCCTGGCACTG |
LT_1698 | AATGGTGCTCAGTTCTACA | AGATGTTGATGAGGAGACC |
LT_Actin | TCTTCGCTCGAGAAGTCGTA | ACAATGGAAGGTCCGCTCTC |
表3
可可毛色二孢分泌蛋白信号肽切割位点的氨基酸组成分布"
氨基酸类型 Type of amino acids | 信号肽切割位点-3到3位的氨基酸组成 Frequency of amino acids from -3 to +3 at signal peptide cleavage site of secreted proteins | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
-3 | -2 | -1 | 1 | 2 | 3 | |||||||
数量 Amount | 百分比 Percentage (%) | 数量 Amount | 百分比 Percentage (%) | 数量 Amount | 百分比 Percentage (%) | 数量 Amount | 百分比 Percentage (%) | 数量 Amount | 百分比 Percentage (%) | 数量 Amount | 百分比 Percentage (%) | |
A | 249 | 47.0 | 60 | 11.3 | 387 | 73.0 | 145 | 27.3 | 26 | 4.9 | 35 | 6.6 |
C | 13 | 2.5 | 6 | 1.1 | 2 | 0.4 | 18 | 3.4 | 6 | 1.1 | 21 | 4.0 |
D | 2 | 0.4 | 9 | 1.7 | 3 | 0.6 | 38 | 7.2 | 51 | 9.6 | 19 | 3.6 |
E | 8 | 1.5 | 12 | 2.3 | 2 | 0.4 | 24 | 4.5 | 35 | 6.6 | 16 | 3.0 |
F | 1 | 0.2 | 26 | 4.9 | 5 | 0.9 | 12 | 2.3 | 6 | 1.1 | 20 | 3.8 |
G | 16 | 3.0 | 10 | 1.9 | 19 | 3.6 | 20 | 3.8 | 23 | 4.3 | 23 | 4.3 |
H | 1 | 0.2 | 29 | 5.5 | 0 | 0 | 20 | 3.8 | 3 | 0.6 | 12 | 2.3 |
I | 10 | 1.9 | 10 | 1.9 | 0 | 0 | 12 | 2.3 | 7 | 1.3 | 38 | 7.2 |
K | 0 | 0 | 3 | 0.6 | 8 | 1.5 | 19 | 3.6 | 3 | 0.6 | 8 | 1.5 |
L | 22 | 4.2 | 87 | 16.4 | 9 | 1.7 | 21 | 4.0 | 15 | 1.3 | 49 | 9.2 |
M | 0 | 0 | 10 | 1.9 | 1 | 0.2 | 4 | 0.8 | 2 | 0.4 | 4 | 0.8 |
N | 1 | 0.2 | 22 | 4.2 | 5 | 0.9 | 14 | 2.6 | 21 | 4.0 | 22 | 4.2 |
P | 8 | 1.5 | 7 | 1.3 | 22 | 4.2 | 5 | 0.9 | 148 | 27.9 | 44 | 8.3 |
Q | 5 | 0.9 | 48 | 9.1 | 6 | 1.1 | 68 | 12.8 | 24 | 4.5 | 25 | 4.7 |
R | 9 | 1.7 | 27 | 5.1 | 3 | 0.6 | 10 | 1.9 | 6 | 1.1 | 14 | 2.6 |
S | 56 | 10.6 | 68 | 12.8 | 36 | 6.8 | 30 | 5.7 | 44 | 8.3 | 40 | 7.5 |
T | 40 | 7.5 | 44 | 8.3 | 9 | 1.7 | 26 | 4.9 | 61 | 11.5 | 74 | 14.0 |
V | 89 | 16.8 | 35 | 6.6 | 9 | 1.7 | 31 | 5.8 | 33 | 6.2 | 41 | 7.7 |
W | 0 | 0 | 1 | 0.2 | 1 | 0.2 | 4 | 0.8 | 6 | 1.1 | 5 | 0.9 |
Y | 0 | 0 | 16 | 3.0 | 3 | 0.6 | 9 | 1.7 | 10 | 1.9 | 20 | 3.8 |
表4
可可毛色二孢部分分泌蛋白生化特性与功能注释"
基因编号 Gene ID | 蛋白长度 Length (aa) | 分子量 Molecular weight (kD) | 等电点 pI | 脂肪族氨基酸指数 Aliphatic index | 功能注释 Function |
---|---|---|---|---|---|
evm.model.scaffold_1.1884 | 265 | 28.57 | 4.57 | 70.38 | 糖基水解酶Glycosyl hydrolases family |
evm.model.scaffold_7.188 | 334 | 36.85 | 4.62 | 71.89 | 纤维素酶Cellulase |
evm.model.scaffold_6.309 | 322 | 36.16 | 5.96 | 80.90 | 水解酶家族Alpha/beta hydrolase family |
evm.model.scaffold_3.829 | 549 | 59.13 | 5.16 | 82.00 | 羧酸酯酶Carboxylesterase family |
evm.model.scaffold_5.474 | 324 | 35.76 | 4.96 | 83.36 | 过氧化物酶Peroxidase |
evm.model.scaffold_5.945 | 348 | 39.24 | 5.23 | 69.20 | 酪氨酸酶Tyrosinase |
evm.model.scaffold_13.28 | 251 | 26.69 | 5.34 | 82.03 | 角质酶Cutinase |
evm.model.scaffold_6.540 | 395 | 42.03 | 5.39 | 74.63 | 天冬氨酸蛋白酶Aspartyl protease |
evm.model.scaffold_8.302 | 265 | 27.76 | 5.55 | 65.92 | 脂肪酶GDSL-like Lipase |
evm.model.scaffold_4.1035 | 581 | 62.25 | 4.80 | 87.04 | 氧化还原酶GMC oxidoreductase |
evm.model.scaffold_3.522 | 252 | 26.19 | 4.13 | 74.64 | 果胶酸裂解酶Pectate lyase |
evm.model.scaffold_2.202 | 377 | 40.24 | 5.22 | 73.37 | 肽酶Peptidase family |
evm.model.scaffold_2.1494 | 201 | 20.37 | 4.41 | 60.45 | WSC结构域蛋白WSC domain protein |
evm.model.scaffold_11.25 | 430 | 45.29 | 4.01 | 63.14 | PAN结构域蛋白PAN domain protein |
evm.model.scaffold_1.947 | 254 | 28.05 | 8.38 | 57.01 | 坏死诱导蛋白Necrosis inducing protein |
evm.model.scaffold_4.1274 | 186 | 19.83 | 4.43 | 61.51 | LysM结构域蛋白LysM domain protein |
evm.model.scaffold_10.213 | 122 | 12.15 | 4.33 | 111.15 | FAD结构域蛋白FAD domain protein |
evm.model.scaffold_1.937 | 247 | 26.14 | 5.05 | 84.45 | Cupin结构域蛋白Cupin domain protein |
evm.model.scaffold_14.112 | 246 | 23.24 | 3.90 | 71.14 | CFEM结构域蛋白CFEM domain protein |
evm.model.scaffold_11.308 | 412 | 40.74 | 5.14 | 53.98 | 几丁质结合蛋白Chitin binding protein |
[1] |
BERTSH C, LARIGNON P, FARINE S, CLEMENT C, FONTAINE F. The spread of grapevine trunk disease. Science, 2009,324(5928):721.
doi: 10.1126/science.324_721b pmid: 19423798 |
[2] | YAN J Y, XIE Y, YAO S W, WANG Z Y, LI X H. Characterization of Botryosphaeria dothidea, the causal agent of grapevine canker in China. Australasian Plant Pathology, 2012,41(4):351-357. |
[3] | YAN J Y, XIE Y, ZHANG W, WANG Y, LIU J K, HYDE K D, SEEM R C, ZHANG G Z, WANG Z Y, YAO S W, BAI X J, DISSANAYAKE A J, PENG Y L, LI X H. Species of Botryosphaeriaceae involved in grapevine dieback in China. Fungal Diversity, 2013,61(1):221-236. |
[4] | DISSANAYAKE A J, ZHANG W, LIU M, CHUKEATIROTE E, YAN J Y, LI X H, HYDE K D. Lasiodiplodia pseudotheobromae causes pedicel and peduncle discolouration of grapes in China. Australasian Plant Disease Notes, 2015,10:21. |
[5] | DISSANAYAKE A J, ZHANG W, LI X H, ZHOU Y, CHETHANA T, CHUKEATIROTE E, HYDE K D, YAN J Y, ZHANG G Z, ZHAO W S. First report of Neofusicoccum mangiferae associated with grapevine dieback in China. Phytopathologia Mediterranea, 2015,54(2):414-419. |
[6] |
NIMCHUK Z, EULGEM T, HOLT III B F, DANGL J L. Recognition and response in the plant immune system. Annual Review of Genetics, 2003,37:579-609.
pmid: 14616074 |
[7] | RODRIGUEZ-MORENO L, EBERT M K, BOLTON M D, THOMMA B P H J. Tools of the crook-infection strategies of fungal plant pathogens. The Plant Journal, 2018,93(4):664-674. |
[8] | GREENBAUM D, LUSCOMBE N M, JANSEN R, QIAN J, GERSTEIN M. Interrelating different types of genomic data, from proteome to secretome: ′Oming in on function. Genome Research, 2001,11(9):1463-1468. |
[9] |
DE SAIN M, REP M. The role of pathogen-secreted proteins in fungal vascular wilt diseases. International Journal of Molecular Sciences, 2015,16(10):23970-23993.
pmid: 26512660 |
[10] |
CHOI J, PARK J, KIM D, JUNG K, KANG S, LEE Y H. Fungal secretome database: Integrated platform for annotation of fungal secretomes. BMC Genomics, 2010,11:105.
doi: 10.1186/1471-2164-11-105 |
[11] |
VAN DER BURGH A M, JOOSTEN M H. Plant immunity: Thinking outside and inside the box. Trends in Plant Science, 2019,24(7):587-601.
pmid: 31171472 |
[12] |
JONES J D, DANGL J L. The plant immune system. Nature, 2006,444:323-329.
doi: 10.1038/nature05286 pmid: 17108957 |
[13] |
OLIVEIRA-GARCIA E, VALENT B. How eukaryotic filamentous pathogens evade plant recognition. Current Opinion in Microbiology, 2015,26:92-101.
pmid: 26162502 |
[14] |
ASAI S, SHIRASU K. Plant cells under siege: Plant immune system versus pathogen effectors. Current Opinion in Plant Biology, 2015,28:1-8.
pmid: 26343014 |
[15] |
FRANCESCHETTI M, MAQBOOL A, JIMENEZ-DALMARONI M J, PENNINGTON H G, KAMOUN S, BANFIELD M J. Effectors of filamentous plant pathogens: Commonalities amid diversity. Microbiology and Molecular Biology Reviews, 2017,81(2):e00066-16.
pmid: 28356329 |
[16] |
田李, 陈捷胤, 陈相永, 汪佳妮, 戴小枫. 大丽轮枝菌 (Verticillium dahliae VdLs. 17) 分泌组预测及分析. 中国农业科学, 2011,44(15):3142-3153.
doi: 10.3864/j.issn.0578-1752.2011.15.009 |
TIAN L, CHEN J Y, CHEN X Y, WANG J N, DAI X F. Prediction and analysis of Verticillium dahliae VdLs. 17 secretome. Scientia Agricultura Sinica, 2011,44(15):3142-3153. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.15.009 |
|
[17] | 周晓罡, 侯思名, 陈铎文, 陶南, 丁玉梅, 孙茂林, 张绍松. 马铃薯晚疫病菌全基因组分泌蛋白的初步分析. 遗传, 2011,33(7):785-793. |
ZHOU X G, HOU S M, CHEN D W, TAO N, DING Y M, SUN M L, ZHANG S S. Genome-wide analysis of the secreted proteins of Phytophthora infestans. Hereditas, 2011,33(7):785-793. (in Chinese) | |
[18] | 陈琦光, 王陈骄子, 杨媚, 周而勋. 希金斯刺盘孢全基因组候选效应分子的预测. 热带作物学报, 2015,36(6):1105-1111. |
CHEN Q G, WANG C J Z, YANG M, ZHOU E X. Prediction of candidate effectors from the genome of Colletotrichum higginsianum. Chinese Journal of Tropical Crops, 2015,36(6):1105-1111. (in Chinese) | |
[19] | 韩长志. 全基因组预测禾谷炭疽菌的分泌蛋白. 生物技术, 2014,24(2):36-41. |
HAN C Z. Prediction for secreted proteins from Colletotrichum graminicola genome. Biotechnology, 2014,24(2):36-41. (in Chinese) | |
[20] |
DE CARVALHO M C, NASCIMENTO L C, DARBEN L M, POLIZEL- PODANOSQUI A M, LOPES-CAITAR V S, QI M, ROCHA C S, CARAZZOLLE M F, KUWAHARA M K, PEREIRA G A, ABDELNOOR R V, WHITHAM S A, MARCELINO-GUIMARAES F C. Prediction of the in planta Phakopsora pachyrhizi secretome and potential effector families. Molecular Plant Pathology, 2017,18(3):363-377.
doi: 10.1111/mpp.12405 pmid: 27010366 |
[21] | ZENG R, GAO S G, XU L X, LIU X, DAI F M. Prediction of pathogenesis-related secreted proteins from Stemphylium lycopersici. BMC Microbiology, 2018,18(1):191. |
[22] |
YAN J Y, ZHAO W S, CHEN Z, XING Q K, ZHANG W, CHETHANA K W T, XUE M F, XU J P, PHILLIPS A J L, WANG Y, et al. Comparative genome and transcriptome analyses reveal adaptations to opportunistic infections in woody plant degrading pathogens of Botryosphaeriaceae. DNA Research, 2018,25(1):87-102.
doi: 10.1093/dnares/dsx040 pmid: 29036669 |
[23] | ARMENTEROS J J A, TSIRIGOS K D, SONDERBY C K, PETERSEN T N, WINTHER O, BRUNAK S, VON HEIJNE G, NIELSEN H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, 2019,37(4):420-423. |
[24] | EMANUELSSON O, NIELSEN H, BRUNAK S, VON HEIJNE G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. Journal of Molecular Biology, 2000,300(4):1005-1016. |
[25] |
KROGH A, LARSSON B E, VON HEIJNE G, SONNHAMMER E L L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 2001,305(3):567-580.
doi: 10.1006/jmbi.2000.4315 pmid: 11152613 |
[26] |
EISENHABER B, BORK P, EISENHABER F. Post-translational GPI lipid anchor modification of proteins in kingdoms of life: Analysis of protein sequence data from complete genomes. Protein Engineering, 2001,14(1):17-25.
pmid: 11287675 |
[27] |
ARMENTEROS J J A, SALVATORE M, EMANUELSSON O, WINTHER O, VON HEIJNE G, ELOFSSON A, NIELSEN H. Detecting sequence signals in targeting peptides using deep learning. Life Science Alliance, 2019,2(5):e201900429.
pmid: 31515291 |
[28] |
JUNCKER A S, WILLENBROCK H, VON HEIJNE G, NIELSEN H, BRUNAK S, KROGH A. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Science, 2003,12(8):1652-1662.
pmid: 12876315 |
[29] | GASTEIGER E, HOOGLAND C, GATTIKER A, DUVAUD S, WILKINS M R, APPEL R D, BAIROCH A. Protein identification and analysis tools on the ExPASy server//The Proteomics Protocols Handbook. Humana Press, 2005: 571-607. |
[30] | JACOBS K A, COLLINS-RACIE L A, COLBERT M, DUCKETT M, GOLDEN-FLEET M, KELLEHER K, KRIZ R, LAVALLIE E R, MERBERG D, SPAULDING V, STOVER J, WILLIAMSON M J, MCCOY J M. A genetic selection for isolating cDNAs encoding secreted proteins. Gene, 1997,198(1/2):289-296. |
[31] |
FANG A F, HAN Y Q, ZHANG N, ZHANG M, LIU L J, LI S, LU F, SUN W X. Identification and characterization of plant cell death- inducing secreted proteins from Ustilaginoidea virens. Molecular Plant-Microbe Interactions, 2016,29(5):405-416.
doi: 10.1094/MPMI-09-15-0200-R pmid: 26927000 |
[32] | SONAH H, DESHMUKH R K, BELANGER R R. Computational prediction of effector proteins in fungi: Opportunities and challenges. Frontiers in Plant Science, 2016,7:126. |
[33] |
WAN W L, FROHLICH K, PRUITT R N, NURNBERGER T, ZHANG L. Plant cell surface immune receptor complex signaling. Current Opinion in Plant Biology, 2019,50:18-28.
doi: 10.1016/j.pbi.2019.02.001 pmid: 30878771 |
[34] | TORUNO T Y, STERGIOPOULOS I, COAKER G. Plant-pathogen effectors: Cellular probes interfering with plant defenses in spatial and temporal manners. Annual Review of Phytopathology, 2016,54:419-441. |
[35] |
LIU T, SONG T, ZHANG X, YUAN H, SU L, LI W, XU J, LIU S, CHEN L, CHEN T, ZHANG M, GU L, ZHANG B, DOU D. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nature Communications, 2014,5:4686.
pmid: 25156390 |
[36] | 李云锋, 聂燕芳, 王振中. 植物病原真菌分泌蛋白质组学研究进展. 微生物学通报, 2015,42(6):1101-1107. |
LI Y F, NIE Y F, WANG Z Z. Research progress on secretomics of phytopathogenic fungi. Microbiology China, 2015,42(6):1101-1107. (in Chinese) | |
[37] |
BROUWER H, COUTINHO P M, HENRISSAT B, DE VRIES R P. Carbohydrate-related enzymes of important Phytophthora plant pathogens. Fungal Genetics and Biology, 2014,72:192-200.
doi: 10.1016/j.fgb.2014.08.011 pmid: 25192612 |
[38] |
SANCHEZ-VALLET A, MESTERS J R, THOMMA B P. The battle for chitin recognition in plant-microbe interactions. FEMS Microbiology Reviews, 2015,39(2):171-183.
doi: 10.1093/femsre/fuu003 pmid: 25725011 |
[39] |
AKCAPINAR G B, KAPPEL L, SEZERMAN O U, SEIDL-SEIBOTH V. Molecular diversity of LysM carbohydrate-binding motifs in fungi. Current Genetics, 2015,61(2):103-113.
pmid: 25589417 |
[1] | 莫文静,朱嘉伟,何新华,余海霞,江海玲,覃柳菲,张艺粒,李雨泽,罗聪. 芒果MiZAT10A和MiZAT10B功能分析[J]. 中国农业科学, 2023, 56(1): 193-202. |
[2] | 李世佳,吕紫敬,赵锦. 枣R2R3-MYB亚家族基因鉴定及其在果实发育中的表达分析[J]. 中国农业科学, 2022, 55(6): 1199-1212. |
[3] | 赵慧婷,彭竹,姜玉锁,赵淑果,黄丽,杜亚丽,郭丽娜. 中华蜜蜂气味结合蛋白AcerOBP7的表达及结合特性[J]. 中国农业科学, 2022, 55(3): 613-624. |
[4] | 陈凤琼, 陈秋森, 林佳昕, 王雅亭, 刘汉林, 梁冰若诗, 邓艺茹, 任春元, 张玉先, 杨凤军, 于高波, 魏金鹏, 王孟雪. 番茄DIR基因家族鉴定及其对非生物胁迫响应的分析[J]. 中国农业科学, 2022, 55(19): 3807-3821. |
[5] | 张云秀,蒋旭,尉春雪,蒋学乾,卢栋宇,龙瑞才,杨青川,王珍,康俊梅. 紫花苜蓿高迁移率族蛋白基因MsHMG-Y调控花期的功能分析[J]. 中国农业科学, 2022, 55(16): 3082-3092. |
[6] | 王雍,李思妍,何思锐,张迪,连帅,王建发,武瑞. BLV-miRNA跨界调控人类靶基因预测及生物信息学分析[J]. 中国农业科学, 2021, 54(3): 662-674. |
[7] | 葛欣竺,史宇星,王莎莎,刘智慧,蔡文杰,周敏,王世贵,唐斌. 异色瓢虫丙酮酸激酶基因序列分析及其调控海藻糖代谢功能[J]. 中国农业科学, 2021, 54(23): 5021-5031. |
[8] | 徐欢欢,李逸,高伟,王永勤,刘乐承. 洋葱γ-谷氨酰转肽酶AcGGT的克隆与鉴定[J]. 中国农业科学, 2021, 54(19): 4169-4178. |
[9] | 石国良,武强,杨念婉,黄聪,刘万学,钱万强,万方浩. 苹果蠹蛾几丁质脱乙酰基酶2的基因克隆、表达模式和分子特性[J]. 中国农业科学, 2021, 54(10): 2105-2117. |
[10] | 郝树琳,陈宏伟,廖芳丽,李莉,刘昌燕,刘良军,万正煌,沙爱华. 基于盐胁迫转录组信息的蚕豆F-box基因家族分析[J]. 中国农业科学, 2020, 53(17): 3443-3454. |
[11] | 王欣悦,石田培,赵志达,胡文萍,尚明玉,张莉. 基于绵羊胚胎骨骼肌蛋白质组学的PI3K-AKT信号通路分析[J]. 中国农业科学, 2020, 53(14): 2956-5963. |
[12] | 肖罗丹, 唐磊, 王伟东, 高岳芳, 黄伊凡, 孟阳, 杨亚军, 肖斌. 茶树CsWRKYIIcs转录因子的克隆及功能分析[J]. 中国农业科学, 2020, 53(12): 2460-2476. |
[13] | 彭军波,李兴红,张玮,周莹,黄金宝,燕继晔. 葡萄溃疡病菌外泌蛋白LtGH61A的致病力及基因表达模式[J]. 中国农业科学, 2019, 52(24): 4518-4526. |
[14] | 李晨,赵雪惠,王庆杰,王旭旭,肖伟,陈修德,付喜玲,李玲,李冬梅. 桃GRAS家族全基因组鉴定与响应UV-B的表达模式分析[J]. 中国农业科学, 2019, 52(24): 4567-4581. |
[15] | 远俊虎,丁一娟,杨文静,闫宝琴,柴亚茹,梅家琴,钱伟. 利用TRV-HIGS技术鉴定核盘菌致病相关的分泌蛋白基因[J]. 中国农业科学, 2019, 52(23): 4274-4284. |
|