中国农业科学 ›› 2020, Vol. 53 ›› Issue (14): 2956-5963.doi: 10.3864/j.issn.0578-1752.2020.14.018
收稿日期:
2019-08-29
接受日期:
2020-03-30
出版日期:
2020-07-16
发布日期:
2020-08-10
通讯作者:
张莉
作者简介:
王欣悦,E-mail:基金资助:
WANG XinYue(),SHI TianPei,ZHAO ZhiDa,HU WenPing,SHANG MingYu,ZHANG Li()
Received:
2019-08-29
Accepted:
2020-03-30
Online:
2020-07-16
Published:
2020-08-10
Contact:
Li ZHANG
摘要:
【目的】绵羊是重要的经济动物,其骨骼肌生长发育与产肉性能密切相关。胚胎期是绵羊骨骼肌生长发育的关键阶段,挖掘分析绵羊胚胎骨骼肌蛋白质组数据,为揭示绵羊肌肉发育重要时间节点、筛选绵羊胚胎骨骼肌生长发育调控蛋白质提供依据。【方法】本团队已对妊娠第85天、第105天和第135天的中国美利奴绵羊胚胎背最长肌进行串联质谱(tandem mass tag, TMT)蛋白质定量,鉴定到1316种差异丰度蛋白质。现利用GO、KEGG和R等方法对这些差异丰度蛋白质开展聚类、功能注释和通路分析等生物信息学分析。【结果】基于前期研究结果对差异丰度蛋白质进行R语言聚类,分析结果显示,cluster 5类蛋白在胚胎骨骼肌第105天具有较高丰度。对cluster 5 蛋白进行GO和KEGG富集分析发现,该类蛋白质参与胞内蛋白质代谢过程,显著富集于PI3K-AKT信号通路中,而在该信号通路中RAC-β丝氨酸/苏氨酸蛋白激酶X1(AKT2)具有较高表达丰度。蛋白质生物信息学结果表明,AKT2蛋白由481个氨基酸构成,AKT2蛋白理论分子量为55.58kD,由66个带正电荷的氨基酸残基和72个带负电荷的氨基酸残基组成,理论等电点为6.08,亲水性平均系数-0.454,属于亲水性蛋白。预测AKT2蛋白的481个氨基酸全部位于膜外,属于膜受体蛋白。AKT2蛋白有12个N-端糖基化位点,71个磷酸化位点,与蛋白酶K相似度为99%,属于蛋白酶催化亚基家族。【结论】绵羊胚胎骨骼肌蛋白质组数据发现,第105天是绵羊胚胎骨骼肌纤维由增殖分化到增大增粗的转折点,具有调控绵羊胚胎骨骼肌纤维生长发育作用的PI3K-AKT信号通路在该节点显著富集,AKT2是调控该信号通路的重要候选蛋白。综上,本研究结果对揭示胚胎骨骼肌生长发育及其调控分子机制具有重要理论指导意义。
王欣悦,石田培,赵志达,胡文萍,尚明玉,张莉. 基于绵羊胚胎骨骼肌蛋白质组学的PI3K-AKT信号通路分析[J]. 中国农业科学, 2020, 53(14): 2956-5963.
WANG XinYue,SHI TianPei,ZHAO ZhiDa,HU WenPing,SHANG MingYu,ZHANG Li. The Analysis of PI3K-AKT Signal Pathway Based on the Proteomic Results of Sheep Embryonic Skeletal Muscle[J]. Scientia Agricultura Sinica, 2020, 53(14): 2956-5963.
[1] | BENTZINGER, C F, YU X W, RUDNICKI M A. Building Muscle: Molecular Regulation of Myogenesis. Cold Spring Harbor Perspectives in Biology, 2012,4(2):441-441. |
[2] |
TAJBAKHSH S, BUCKINGHAM M. 6 The Birth of Muscle Progenitor Cells in the Mouse: Spatiotemporal Considerations. Current Topics in Developmental Biology, 1999,48:225-268.
doi: 10.1016/s0070-2153(08)60758-9 pmid: 10635461 |
[3] |
BUCKINGHAM M. Skeletal muscle progenitor cells and the role of Pax genes. Comptes Rendus Biologies, 2007,330(6-7):530-533.
doi: 10.1016/j.crvi.2007.03.015 pmid: 17631448 |
[4] |
DONG Y, XIE M, JIANG Y, XIAO N, DU X, ZHANG W, TOSSER-KLOPP G, WANG J, YANG S, LIANG J, CHEN W, CHEN J, ZENG P, HOU Y, BIAN C, PAN S, LI Y, LIU X, WANG W, SERVIN B, SAYRE B, ZHU B, SWEENEY D, MOORE R, NIE W, SHEN Y, ZHAO R, ZHANG G, LI J, FARAUT T, WOMACK J, ZHANG Y, KIJAS J, COCKETT N, XU X, ZHAO S, WANG J, WANG W. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nature Biotechnology, 2013,31(2):135-141.
doi: 10.1038/nbt.2478 |
[5] |
MURPHY, M, KARDON G. Origin of vertebrate limb muscle: The role of progenitor and myoblast populations. Current Topics in Developmental Biology, 2011,96:1-32.
doi: 10.1016/B978-0-12-385940-2.00001-2 pmid: 21621065 |
[6] |
KAWAKAMI, K, SATO S, OZAKI H, IKEDA K. Six family genes—structure and function as transcription factors and their roles in development. Bioessays, 2000,22(7):616-626.
doi: 10.1002/1521-1878(200007)22:7<616::AID-BIES4>3.0.CO;2-R pmid: 10878574 |
[7] |
史新娥, 吴国芳, 宋子仪, 路宏朝, 贾龙, 朱嘉宇, 杨公社. 阻断PI3K/AKT通路通过激活FoxO1抑制猪骨骼肌卫星细胞分化. 中国农业科学, 2014,47(01):154-160.
doi: 10.3864/j.issn.0578-1752.2014.01.016 |
SHI X E, WU G F, SONG Z Y, LU H C, JIA L, ZHU J Y, YANG G S. Inhibition of PI3K/AKT pathway suppressing porcine skeletal muscle sattelite differentiation through activation of FoxO1 transcription factor. Scientia Agricultura Sinica, 2014,47(1):154-160. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.01.016 |
|
[8] |
LIU J, FU R, LIU R, ZHAO G, ZHENG M, CUI H, LI Q, SONG J, WANG J, WEN J. Protein profiles for muscle development and intramuscular fat accumulation at different post-hatching ages in chickens. PloS One, 2016,11(8):e0159722.
pmid: 27508388 |
[9] |
ASHMORE, C R, ROBINSON D W, RATTRAY P, DOERR L. Biphasic development of muscle fibers in the fetal lamb. Experimental Neurology, 1972,37(2):241-55.
doi: 10.1016/0014-4886(72)90071-4 pmid: 4118074 |
[10] | 李雪娇, 刘晨曦, 孙亚伟, 杨开伦, 刘明军. 德国美利奴羊胎儿期骨骼肌组织学结构发育特征研究. 西北农林科技大学学报(自然科学版), 2018,332(5):7-13. |
LI X J, LIU C X, SUN Y W, YANG K L, LIU M J. Study on structure development characteristics of German Merion sheep fetal skeletal muscle tissue. Journal of Northwest A&F University, 2018,332(5):7-13. (in Chinese) | |
[11] |
OUYANG H, WANG Z, CHEN X, YU J, LI Z, NIE Q. Proteomic analysis of chicken skeletal muscle during embryonic development. Frontiers in Physiology, 2017,8:281.
pmid: 28533755 |
[12] |
POLETI M D, REGITANO L C, SOUZA G H, CESAR A S, SIMAS R C, SILVA-VIGNATO B, OLIVEIRA G B, ANDRADE S C, CAMERON L C, COUTINHO L L. Longissimus dorsi muscle label- free quantitative proteomic reveals biological mechanisms associated with intramuscular fat deposition. Journal of Proteomics, 2018,179:30-41.
pmid: 29510239 |
[13] |
ZHANG, X, CHEN Y, PAN J, LIU X, CHEN H, ZHOU X, YUAN Z, WANG X, MO D. iTRAQ-based quantitative proteomic analysis reveals the distinct early embryo myofiber type characteristics involved in landrace and miniature pig. BMC Genomics, 2016,17(1):137.
doi: 10.1186/s12864-016-2464-1 |
[14] |
HAMELIN, M, SAYD T, CHAMBON C, BOUIX J, LAVILLE E. Proteomic analysis of ovine muscle hypertrophy. Journal of Animal Science, 2007,84(12):3266-3276.
pmid: 17093219 |
[15] |
THOMPSON A, SCHäFER J, KUHN K, KIENLE S, SCHWARZ J, SCHMIDT G, NEUMANN T, HAMON C. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Analytical Chemistry, 2003,75(8):1895-1904.
pmid: 12713048 |
[16] |
石田培, 王欣悦, 侯浩宾, 赵志达, 尚明玉, 张莉. 基于全转录组测序的绵羊胚胎不同发育阶段骨骼肌circRNA的分析与鉴定. 中国农业科学, 2020,53(03):642-657.
doi: 10.3864/j.issn.0578-1752.2020.03.015 |
SHI T P, WANG X Y, HOU H B, ZHAO Z D, SHANG M Y, ZHANG L. Analysis and identification of circrnas of skeletal muscle at different stages of sheep embryos based on whole transcriptome sequencing. Scientia Agricultura Sinica, 2020,53(3):642-657. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2020.03.015 |
|
[17] | 王素兰, 高华萍, 张菁, 叶翔. 基于稳定同位素标记和平行反应监测的蛋白质组学定量技术用于肝癌生物标志物的筛选和验证. 色谱, 2017,35(9):934-940. |
WANG S L, GAO H P, ZHANG J, YE X. Stable isotope labeling and parallel reaction monitoring-based proteomic quantification for biomarker screening and validation of hepatocellular carcinoma. Chromatography, 2017,35(9):934-940. (in Chinese) | |
[18] |
KUMAR L, FUTSCHIK M E. Mfuzz: a software package for soft clustering of microarray data. Bioinformation, 2007,2(1):5.
pmid: 18084642 |
[19] | GASTEIGER E, HOOGLAND C, GATTIKER A, WILKINS M R, APPEL R D, BAIROCH A. Protein identification and analysis tools on the ExPASy server. Springer, 2005: 571-607. |
[20] | SONNHAMMER E L, VON HEIJNE G, KROGH A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proceedings /. International Conference on Intelligent Systems for Molecular Biology; ISMB. International Conference on Intelligent Systems for Molecular Biology, 1998,6:175-182. |
[21] |
BLOM N, GAMMELTOFT S, BRUNAK S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology, 1999,294(5):1351-1362.
pmid: 10600390 |
[22] |
BLOM N, SICHERITZ-PONTéN T, GUPTA R, GAMMELTOFT S, BRUNAK S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics, 2004,4(6):1633-1649.
doi: 10.1002/pmic.200300771 pmid: 15174133 |
[23] |
STEENTOFT C, VAKHRUSHEV S Y, JOSHI H J, KONG Y, VESTER-CHRISTENSEN M B, KATRINE T, SCHJOLDAGER B, LAVRSEN K, DABELSTEEN S, PEDERSEN N B. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. The EMBO Journal, 2013,32(10):1478-1488.
doi: 10.1038/emboj.2013.79 pmid: 23584533 |
[24] |
DENETCLAW W, CHRIST B, ORDAHL C P. Location and growth of epaxial myotome precursor cells. Development, 1997,124(8):1601-1610.
pmid: 9108376 |
[25] |
VENTERS S J, ORDAHL C P. Persistent myogenic capacity of the dermomyotome dorsomedial lip and restriction of myogenic competence. Development, 2002,129(16):3873-3885.
pmid: 12135925 |
[26] |
KAZANSKAYA O, GLINKA A, DEL BARCO BARRANTES I, STANNEK P, NIEHRS C, WU W. R-Spondin2 is a secreted activator of Wnt/β-catenin signaling and is required for Xenopus myogenesis. Developmental Cell, 2004,7(4):525-534.
doi: 10.1016/j.devcel.2004.07.019 pmid: 15469841 |
[27] |
TAJBAKHSH S, BORELLO U, VIVARELLI E, KELLY R, PAPKOFF J, DUPREZ D, BUCKINGHAM M, COSSU G. Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development, 1998,125(21):4155-4162.
pmid: 9753670 |
[28] |
WANG Y X, ZHANG C L, RUTH T Y, CHO H K, NELSON M C, BAYUGA-OCAMPO C R, HAM J, KANG H, EVANS R M. Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biology, 2004,2(10):e294.
pmid: 15328533 |
[29] | ZIZOLA C, KENNEL P J, AKASHI H, JI R, CASTILLERO E, GEORGE I, HOMMA S, SCHULZE P C. Activation of PPARδ signaling improves skeletal muscle oxidative metabolism and endurance function in an animal model of ischemic left ventricular dysfunction. American Journal of Physiology-Heart and Circulatory Physiology, 2015,308(9):1078-1085. |
[30] |
WANG X Y, SHI T P, ZHAO Z D, HOU H B, ZHANG L. Proteomic analyses of sheep (ovisaries) embryonic skeletal muscle. Scientific Reports, 1750(2020)10:1750.
pmid: 32019949 |
[31] | 李雪娇, 刘晨曦, 杨开伦, 刘明军. 德美羊与中美羊胎儿期骨骼肌组织学结构发育特征差异性研究. 草食家畜, 2017 (04):1-6. |
LI X J, LIU C X, YANG K L, LIU M J. Study on differentiation of fetal skeletal muscle development characteristics between German and Chinese merino sheep. Grass-Feeding Livestock, 2017 (04):1-6. (in Chinese) | |
[32] |
BAI L, LIANG R, YANG Y, HOU X, WANG Z, ZHU S, WANG C, TANG Z, LI K. Microrna-21 regulates pi3k/akt/mtor signaling by targeting tgfβi during skeletal muscle development in pigs. PLoS One, 2015,10(5):e0119396.
doi: 10.1371/journal.pone.0119396 pmid: 25950587 |
[33] |
ROMMEL C, BODINE S C, CLARKE B A, ROSSMAN R, NUNEZ L, STITT T N, YANCOPOULOS G D, GLASS D J. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI (3) K/Akt/mTOR and PI (3) K/Akt/GSK3 pathways. Nature Cell Biology, 2001,3(11):1009.
doi: 10.1038/ncb1101-1009 pmid: 11715022 |
[34] |
NICHOLSON K M, ANDERSON N G. The protein kinase B/Akt signalling pathway in human malignancy. Cellular Signalling, 2002,14(5):381-395.
pmid: 11882383 |
[35] |
AMIROUCHE A, DURIEUX A-C, BANZET S, KOULMANN N, BONNEFOY R, MOURET C, BIGARD X, PEINNEQUIN A, FREYSSENET D. Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology, 2008,150(1):286-294.
pmid: 18801898 |
[36] |
JI M, ZHANG Q, YE J, WANG X, YANG W, ZHU D. Myostatin induces p300 degradation to silence cyclin D1 expression through the PI3K/PTEN/Akt pathway. Cellular Signalling, 2008,20(8):1452-1458.
doi: 10.1016/j.cellsig.2008.03.013 pmid: 18472397 |
[37] |
TRENDELENBURG A U, MEYER A, ROHNER D, BOYLE J, HATAKEYAMA S, GLASS D J. Myostatin reduces Akt/TORC1/ p70S6K signaling, inhibiting myoblast differentiation and myotube size. American Journal of Physiology-Cell Physiology, 2009,296(6):C1258-C1270.
pmid: 19357233 |
[38] | 孙伟, 王鹏, 丁家桐, 马月辉, 关伟军, 储明星, 李碧春, 吴文忠陈玲. 湖羊Myostain和Myogenin基因表达的发育性变化及与屠宰性状的关联分析. 中国农业科学, 2010,43(24):5129-5136. |
SUN W, WANG P, DING J T, MA Y H, GUAN W J, CHU M X, LI B C, WU W Z, CHEN L. Developmental changes of gene expression of myostain and myogenin genes and their association analysis with carcass traits in Hu Sheep. Scientia Agricultura Sinica, 2010,43(24):5129-5136. (in Chinese) | |
[39] | 李晶, 张云生, 李宁, 胡晓湘, 石国庆, 刘守仁, 柳楠. PI3K/AKT信号通路调控 Myogenin和MCK基因的表达. 遗传, 2013,35(5):637-642. |
LI J, ZHANG Y S, LI N, HU X X, SHI G Q, LIU S R, LIU N. Expression of Myogenin and MCK genes regulated by PI3K/AKT pathway, Hereditas(Beijing), 2013,35(5):637-642. (in Chinese) | |
[40] |
FIGUEROA A, CUADRADO A, FAN J, ATASOY U, MUSCAT G E, MUNOZ-CANOVES P, GOROSPE M, MUNOZ A. Role of HuR in skeletal myogenesis through coordinate regulation of muscle differentiation genes. Molecular and Cellular Biology, 2003,23(14):4991-5004
doi: 10.1128/mcb.23.14.4991-5004.2003 pmid: 12832484 |
[1] | 李世佳,吕紫敬,赵锦. 枣R2R3-MYB亚家族基因鉴定及其在果实发育中的表达分析[J]. 中国农业科学, 2022, 55(6): 1199-1212. |
[2] | 王朝,方东路,张攀容,姜雯,裴斐,胡秋辉,马宁. 基于TMT定量蛋白质组学揭示纳米包装双孢蘑菇采后冷藏生理代谢规律[J]. 中国农业科学, 2022, 55(23): 4728-4742. |
[3] | 周桂盈,杨晓敏,滕子文,孙丽娟,郑长英. 螺虫乙酯抑制西花蓟马卵孵化的蛋白质组学分析[J]. 中国农业科学, 2022, 55(15): 2938-2948. |
[4] | 李晨,赵雪惠,王庆杰,王旭旭,肖伟,陈修德,付喜玲,李玲,李冬梅. 桃GRAS家族全基因组鉴定与响应UV-B的表达模式分析[J]. 中国农业科学, 2019, 52(24): 4567-4581. |
[5] | 张艳,董照明,席星航,张晓璐,叶林,郭凯雨,夏庆友,赵萍. 家蚕脱胶蚕丝的蛋白组成成分[J]. 中国农业科学, 2018, 51(11): 2216-2224. |
[6] | 刘鹭,芦晶,王莹,逄晓阳,许嫚,张书文,吕加平. 基于差异蛋白质组学解析紫色杆菌素抑制结肠癌细胞HT29的作用机制[J]. 中国农业科学, 2017, 50(9): 1694-1704. |
[7] | 郝文媛,李飞武,闫伟,李葱葱,郝东云,郭长虹. 蛋白质组学方法评估转基因抗虫玉米非预期效应[J]. 中国农业科学, 2017, 50(19): 3652-3664. |
[8] | 于涛,李耕,刘鹏,董树亭,张吉旺,赵斌. 蛋白质组学分析揭示玉米籽粒发育过程中胁迫相关蛋白的表达特性[J]. 中国农业科学, 2017, 50(11): 2114-2128. |
[9] | 徐 闯,朱奎玲,陈媛媛,杨 威,夏 成,张洪友,吴 凌,舒 适,沈泰钰,于洪江,许秋实,张子扬. 应用SELDI-TOF-MS技术对患脂肪肝奶牛血浆差异蛋白的分离鉴定及生物学分析[J]. 中国农业科学, 2016, 49(8): 1585-1598. |
[10] | 杨丽群,贾乐梅,唐梅,陈毅彪,崔红娟. 家蚕BmYki-1基因鉴定与表达特征[J]. 中国农业科学, 2016, 49(8): 1607-1616. |
[11] | 马双新,刘 宁,贾 慧,戴冬青,许苗苗,曹志艳,董金皋. 玉米大斑病菌漆酶基因Stlac2结构分析及原核表达[J]. 中国农业科学, 2016, 49(21): 4130-4139. |
[12] | 徐 莹,晏国全,张 扬,余红秀. 中国3个主栽烟草品种的差异蛋白质组学研究[J]. 中国农业科学, 2016, 49(16): 3084-3097. |
[13] | 于洁,王登杰,雷仲仁,王海鸿. 烟粉虱溶菌酶基因的鉴定及表达分析[J]. 中国农业科学, 2016, 49(13): 2534-2543. |
[14] | 吕晓苏,李宇轩,苗 英,陈良珂,沈元月,秦 岭,邢 宇. 草莓果实不同发育时期的蛋白磷酸化水平[J]. 中国农业科学, 2016, 49(10): 1946-1959. |
[15] | 王祥宇,魏珊珊,董树亭,刘鹏,张吉旺,赵斌. 氮素对灌浆期夏玉米叶片蛋白质表达的调控[J]. 中国农业科学, 2015, 48(9): 1727-1736. |
|