中国农业科学 ›› 2021, Vol. 54 ›› Issue (19): 4169-4178.doi: 10.3864/j.issn.0578-1752.2021.19.012

• 园艺 • 上一篇    下一篇

洋葱γ-谷氨酰转肽酶AcGGT的克隆与鉴定

徐欢欢1,2(),李逸1,高伟1,王永勤2(),刘乐承1()   

  1. 1长江大学园艺园林学院,湖北荆州 434025
    2北京市农林科学院蔬菜研究中心/农业农村部华北地区园艺作物生物学与种质创制重点实验室/蔬菜种质改良北京市重点实验室,北京 100097
  • 收稿日期:2020-11-12 接受日期:2021-01-08 出版日期:2021-10-01 发布日期:2021-10-12
  • 通讯作者: 王永勤,刘乐承
  • 作者简介:徐欢欢,E-mail: sr19951010@126.com
  • 基金资助:
    国家自然科学基金(31972409);国家自然科学基金(31572119);北京市农林科学院科技创新能力项目(KJCX20200113)

Cloning and Identification of γ-Glutamyl Transpeptidase AcGGT Gene from Onion (Allium cepa)

XU HuanHuan1,2(),LI Yi1,GAO Wei1,WANG YongQin2(),LIU LeCheng1()   

  1. 1College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei
    2Vegetable Research Center, Beijing Academy of Agriculture and Forestry/Key Laboratory of Biology and Genetic Improvement of Horticultural (North China), Ministry of Agriculture and Rural Affairs, P.R. China/Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097
  • Received:2020-11-12 Accepted:2021-01-08 Online:2021-10-01 Published:2021-10-12
  • Contact: YongQin WANG,LeCheng LIU

摘要:

【目的】葱属植物代谢产生的蒜氨酸具有重要的药学价值,γ-谷氨酰转肽酶是蒜氨酸合成中作为脱谷氨酰化步骤的关键酶。研究洋葱γ-谷氨酰转肽酶基因的功能,揭示γ-谷氨酰转肽酶在洋葱蒜氨酸合成途径中的作用,为体外合成蒜氨酸提供理论依据,为进一步深入研究洋葱蒜氨酸合成机制奠定基础。【方法】以洋葱为材料,依据洋葱RNA-seq数据库设计引物,利用RT-PCR从洋葱中克隆γ-谷氨酰转肽酶基因,并进行生物信息学分析;构建CaMV 35S-AcGGT-GFP载体,利用微粒轰击技术,以金粉-质粒微载体轰击洋葱内表皮细胞,构建带有AcGGT的酿酒酵母表达载体,转化并诱导表达AcGGT,利用γ-谷氨酰转肽酶催化谷氨酰对硝基苯胺生成对硝基苯胺的方法测定转入AcGGT的酿酒酵母总蛋白的谷氨酰转肽酶活性;利用实时荧光定量PCR方法分析该基因在洋葱组织间差异表达模式;利用γ-谷氨酰转肽酶催化谷氨酰对硝基苯胺生成对硝基苯胺的方法测定组织间内源性转肽酶酶活性。【结果】克隆获得AcGGT,长度为1 869 bp;生物学信息学分析显示,洋葱AcGGT编码622个氨基酸,蛋白保守结构域预测显示具有谷氨酰转肽酶结构域,二级结构主要以α-螺旋为主,跨膜区分析推测GGT蛋白具有跨膜区,氨基酸多重比对结果显示植物中的GGT具有一定的保守性,进化分析表明AcGGT与大蒜AsGGT2亲缘关系最接近。CaMV 35S-AcGGT-GFP融合蛋白的荧光信号位于液泡中,表明该基因编码蛋白位于液泡。外源表达AcGGT蛋白的谷氨酰转肽酶活性测定结果显示,转入AcGGT的酵母谷氨酰转肽酶活性显著高于对照,表明AcGGT编码的蛋白具有转肽酶活性。AcGGT组织差异表达结果分析显示,该基因的表达主要在叶鞘,鳞茎和叶鞘次之;不同组织谷氨酰转肽酶活性显示,在叶中活性最高,叶鞘次之。相关性分析显示组织间谷氨酰转肽酶活性与AcGGT表达相关性不显著。【结论】克隆了洋葱AcGGT。洋葱蒜氨酸合成途径中脱谷氨酰化先于S-加氧。AcGGT的表达与洋葱内源性的谷氨酰转肽酶活性相关性不显著,洋葱中可能存在多个谷氨酰转肽酶基因。

关键词: 洋葱, γ-谷氨酰转肽酶, 生物信息学, 亚细胞定位, 真核表达, 表达模式

Abstract:

【Objective】Alliin metabolized by Allium plants had important pharmaceutical value. γ-glutamyl transpeptidase was a key enzyme in the deglutamylation step of the process of alliin synthesis. Studying the function of γ-glutamyl transpeptidase gene in onion can reveal the role of γ-glutamyl transpeptidase in alliin synthesis pathway, providing theoretical basis for alliin synthesis in vitro and laying a foundation for further study on alliin synthesis mechanism. 【Method】Using onion as material, the primers were designed according to onion RNA-seq database, and the gene, γ-glutamyl transpeptidase, was cloned from onion by RT-PCR and analyzed by bioinformatics. The CAMV 35S-AcGGT-GFP vector was used to bombard onion inner epidermis cells with gold powder plasmid microcarrier by particle bombardment technology, and the subcellular localization of AcGGT was determined by fusion green fluorescent expression protein. The Saccharomyces cerevisiae expression vector with AcGGT was constructed, transforming and inducing the expression of AcGGT, and using the method of transforming glutamyl-p-nitroaniline to p-nitroaniline by γ-glutamyl transpeptidase to determine the glutamyl transpeptidase activity of the total protein of Saccharomyces cerevisiae transferred into AcGGT. Real time quantitative PCR was used to analyze the differential expression pattern of the gene in onion tissues. The activity of endogenous transpeptidase in onion tissues was determined by the method of γ-glutamyl transpeptidase catalyzing the production of p-nitroaniline from p-nitroaniline. 【Result】AcGGT was cloned and its length was 1 869 bp. Bioinformatics analysis showed that AcGGT encoded 622 amino acids, protein domain prediction showed that it had glutamyl transpeptidase domain, secondary structure was mainly α - helix, transmembrane region analysis suggested that GGT protein had transmembrane region, amino acid multiple alignment results showed that GGT in plants had certain conservation, evolutionary analysis showed that AcGGT was related to garlic AsGGT2, and the relationship is closest. The fluorescence signal of CaMV 35S-AcGGT-GFP fusion protein was located in the vacuole, indicating that the protein encoded by CaMV 35S-AcGGT-GFP was located in the vacuole. The results of glutamyl transpeptidase activity assay showed that the glutamyl transpeptidase activity of yeast transformed with AcGGT was significantly higher than the control, indicating that the protein encoded by AcGGT had transpeptidase activity. The results of differential expression analysis of AcGGT showed that the expression of AcGGT was mainly in leaf sheath, bulb and leaf sheath followed by. The activity of glutamyl transpeptidase in different tissues, the highest activity in leaf, followed by leaf sheath. Correlation analysis showed that there was no significant correlation between the activity of transglutaminase and the expression of AcGGT. 【Conclusion】The enzymatic reaction data of exogenous AcGGT expression were obtained. The deglutination of alliin synthesis pathway preceded S-oxygenation; there was no significant correlation between AcGGT expression and endogenous transglutaminase activity in onion, suggesting that there may be multiple transglutaminase genes in onion.

Key words: onion, γ-glutamyl transpeptidase, bioinformatics, subcellular localization, eukaryotic expression, expression pattern