中国农业科学 ›› 2020, Vol. 53 ›› Issue (17): 3443-3454.doi: 10.3864/j.issn.0578-1752.2020.17.003
郝树琳1(),陈宏伟2,廖芳丽3,李莉2,刘昌燕2,刘良军2,万正煌2(
),沙爱华1(
)
收稿日期:
2019-12-19
接受日期:
2020-03-05
出版日期:
2020-09-01
发布日期:
2020-09-11
通讯作者:
万正煌,沙爱华
作者简介:
郝树琳,E-mail:基金资助:
HAO ShuLin1(),CHEN HongWei2,LIAO FangLi3,LI Li2,LIU ChangYan2,LIU LiangJun2,WAN ZhengHuang2(
),SHA AiHua1(
)
Received:
2019-12-19
Accepted:
2020-03-05
Online:
2020-09-01
Published:
2020-09-11
Contact:
ZhengHuang WAN,AiHua SHA
摘要:
【目的】通过生物信息学方法分析蚕豆F-box基因家族成员的分布、结构及进化,研究家族成员在不同处理时间条件下的表达模式及对盐胁迫的响应,为该类基因生物学功能和盐胁迫机制的研究提供参考。【方法】基于蚕豆盐胁迫转录组测序(RNA-seq)数据,利用NR、Swiss-prot和PFAM 3个数据库和NCBI网站,对蚕豆F-box基因进行筛选注释;利用Web Logo 3、Prot Comp 9.0、MEGA-X和MEME等软件进行保守结构域、亚细胞定位、系统进化树和Motif等生物信息学分析。基于盐胁迫转录组数据分析蚕豆(yz17134耐盐和yz17078不耐盐)F-box基因家族在盐胁迫下的差异表达模式,并采用实时荧光定量PCR技术(qRT-PCR)检测部分家族成员在16和24 h的表达情况。【结果】基于盐胁迫转录组测序数据,注释得到161个蚕豆F-box基因,均含有F-box保守结构域。根据C端结构域的不同,将其分成11个亚族:FBX、FBXFBA、FBXLRR、FBXPP2、FBXKelch、FBXTUB、FBXFBD、FBXDUF、FBXACTIN、FBXWD40和FBO。保守结构域分析表明,F-box保守基序中包含1个极度保守的色氨酸残基。比较分析蚕豆F-box家族和拟南芥F-box家族共同构建的进化树,发现同一C端结构域的基因大多聚集在一起。亚细胞定位预测结果显示,124个F-box基因定位于细胞外,37个定位于细胞核中。基因结构分析表明,蚕豆F-box家族基因的DNA序列中均无内含子,且均由UTR区和CDS区组成。基于盐胁迫转录组数据的F-box差异表达模式分析表明,蚕豆F-box基因在2个不同处理时间点上的表达各不相同,在盐处理16 h的表达较为明显。qRT-PCR分析结果表明,在F-box家族成员中,共存在5个差异基因。其中Vf056266.1、Vf062764.1和Vf024236.1在盐处理16 h的表达量均上调,Vf060904.1和Vf045761.1在盐处理16 h的表达量均下调。【结论】蚕豆F-box基因家族注释得到161个蚕豆F-box基因,分为11个亚族。其中5个重要的F-box基因在不同盐处理时间的表达量存在差异。
郝树琳,陈宏伟,廖芳丽,李莉,刘昌燕,刘良军,万正煌,沙爱华. 基于盐胁迫转录组信息的蚕豆F-box基因家族分析[J]. 中国农业科学, 2020, 53(17): 3443-3454.
HAO ShuLin,CHEN HongWei,LIAO FangLi,LI Li,LIU ChangYan,LIU LiangJun,WAN ZhengHuang,SHA AiHua. Analysis of F-Box Gene Family Based on Salt-Stressed Transcriptome Sequencing in Vicia faba L.[J]. Scientia Agricultura Sinica, 2020, 53(17): 3443-3454.
表1
实时荧光定量PCR所用的引物"
基因Gene | 正向引物序列Forward primer sequence (5′-3′) | 反向引物序列Reverse primer sequence (5′-3′) |
---|---|---|
Vf056266.1 | CACGCCCAAAATCTCAAGGT | AAGTTGCTAGGCCTTCCAGT |
Vf060904.1 | TGAACGAAACTGGCTTGA | CGATGGTGCGATAGAGGA |
Vf062764.1 | TTACCAATAACCCTTCCAC | TCAATACGATTAGCACCCT |
Vf024236.1 | CTGCTGCTGTTGTGAAGA | AACCAAACGGGAGAAGAT |
Vf045761.1 | CCGTCTCATACTATCGTCTGTT | GGGTCGGCTTGGGAGGAAT |
VfNADHD4 | AGGGTTAGTGAGCACCATGC | ATAGCCAAAGGGAATACGCC |
[11] |
XU G, MA H, NEI M, KONG H. Evolution of F-box genes in plants: Different modes of sequence divergence and their relationships with functional diversification. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(3):835-840.
doi: 10.1073/pnas.0812043106 pmid: 19126682 |
[12] | KIPREOS E T, PAGANO M. The F-box protein family. Genome Biology, 2000,1(5):1-7. |
[13] |
SONG J B, WANG Y X, LI H B, LI B W, ZHOU Z S, GAO S, YANG Z M. The F-box family genes as key elements in response to salt, heavy mental, and drought stresses in Medicago truncatula. Functional Integrative Genomics, 2015,15(4):495-507.
doi: 10.1007/s10142-015-0438-z pmid: 25877816 |
[14] |
JIA Q, XIAO Z X, WONG F L, SUN S, LIANG K J, LAM H M. Genome-wide analyses of the soybean F-box gene family in response to salt stress. International Journal of Molecular Sciences, 2017,18(4):818-835.
doi: 10.3390/ijms18040818 |
[15] |
JAIN M, NIJHAWAN A, ARORA R, AGARWAL P, RAY S, SHARMA P, KAPOOR S, TYAGI A K, KHURANA J P. F-Box proteins in rice. genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiology, 2007,143(4):1467-1483.
pmid: 17293439 |
[16] |
CUI H R, ZHANG Z R, LÜ W, XU J N, WANG X Y. Genome-wide characterization and analysis of F-box protein-encoding genes in the Malus domestica genome. Molecular Genetics and Genomics, 2015,290(4):1435-1446.
doi: 10.1007/s00438-015-1004-z pmid: 25855485 |
[17] |
GUPTA S, GARG V, KANT C, BHATIA S. Genome-wide survey and expression analysis of F-box genes in chickpea. BMC Genomics, 2015,16(1):1-15.
doi: 10.1186/1471-2164-16-1 |
[18] |
WANG G M, YIN H, QIAO X, TAN X, GU C, WANG B H, CHENG R, WANG Y Z, ZHANG S L. F-box genes: Genome-wide expansion, evolution and their contribution to pollen growth in pear (Pyrus bretschneideri). Plant Science, 2016,253:164-175.
doi: 10.1016/j.plantsci.2016.09.009 pmid: 27968985 |
[19] | 王秀燕, 孙莉萍, 张建锋, 李辉, 吕文清, 张其清. F-box蛋白家族及其功能. 生命科学, 2008,20(5):807-811. |
WANG X Y, SUN L P, ZHANG J F, LI H, LÜ W Q, ZHANG Q Q. F-box proteins and their functions. Life Sciences, 2008,20(5):807-811. (in Chinese) | |
[20] |
HEPWORTH S R, KLENZ J E, HAUGHN G W. UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression. Planta, 2006,223(4):769-778.
doi: 10.1007/s00425-005-0138-3 pmid: 16244866 |
[21] |
KEPINSKI S, LEYSER O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 2005,435(7041):446-451.
doi: 10.1038/nature03542 pmid: 15917798 |
[1] | 王海飞, 关建平, 孙雪莲, 马钰, 宗绪晓. 世界蚕豆种质资源遗传多样性和相似性的ISSR分析. 中国农业科学, 2011,44(5):1056-1062. |
WANG H F, GUAN J P, SUN X L, MA Y, ZONG X X. Genetic diversity and similarity of global faba bean (Vcia faba L.) germplasm revealed by ISSR markers. Scientia Agricultura Sinica, 2011,44(5):1056-1062. (in Chinese) | |
[22] |
WALSH T A, NEAL R, MERLO A O, HONMA M, HICKS G R, WOLFF K, MATSUMURA W, DAVIES J P. Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in Arabidopsis. Plant Physiology, 2006,142:542-552.
doi: 10.1104/pp.106.085969 pmid: 16920877 |
[23] |
GOMI K, SASAKI A, ITOH H, UEGUCHI-TANAKA M, ASHIKARI M, KITANO H, MATSUOKA M. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. The Plant Journal, 2004,37(4):626-634.
doi: 10.1111/j.1365-313x.2003.01990.x pmid: 14756772 |
[24] |
GAGNE J M, SMALLE J, GINGERICH D J, WALKER J M, YOO S D, YANAGISAWA S, VIERSTRA R D. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(17):6803-6808.
doi: 10.1073/pnas.0401698101 pmid: 15090654 |
[25] |
SHEARD L B, TAN X, MAO H, WITHERS J, BEN-NISSAN G, HINDS T R, KOBAYASHI Y, HSU F F, SHARON M, BROWSE J, HE S Y, RIZO J, HOWE G A, ZHENG N. Jasmonate perception by inositolphosphate-potentiated COI1-JAZ co-receptor. Nature, 2010,468(7322):400-405.
doi: 10.1038/nature09430 pmid: 20927106 |
[26] |
IMAIZUMI T, SCHULTZ T F, HARMON F G, HO L A, KAY S A. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science, 2005,309(5732):293-297.
doi: 10.1126/science.1110586 pmid: 16002617 |
[27] |
ZHANG Y, XU W Y, LI Z H, DENG X W, WU W H, XUE Y B. F-Box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in Arabidopsis. Plant Physiology, 2008,148(4):2121-2133.
doi: 10.1104/pp.108.126912 pmid: 18835996 |
[28] |
SONG S, DAI X, ZHANG W H. A rice F-box gene, OsFbx352, is involved in glucose-delayed seed germination in rice. Journal of Experimental Botany, 2012,63(15):5559-5568.
pmid: 22859682 |
[29] |
SONNEVELD T, TOBUTT K R, VAUGHAN S P, ROBBINS T P. Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-Box gene. The Plant Cell, 2005,17(1):37-51.
doi: 10.1105/tpc.104.026963 pmid: 15598801 |
[30] |
GRABHERR M G, HAAS B J, YASSOUR M, LEVIN J Z, THOMPSON D A, AMIT I, ADICONIS X, FAN L, RAYCHOWDHURY R, ZENG Q, CHEN Z, MAUCELI E, HACOHEN N, GNIRKE A, RHIND N, DI PALMA F, BIRREN B W, NUSBAUM C, LINDBLAD- TOH K, FRIEDMAN N, REGEV A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011,29(7):644-652.
doi: 10.1038/nbt.1883 pmid: 21572440 |
[31] | CHEN C J, XIA R, CHEN H, HE Y H. TBtools, a Toolkit for biologists integrating various biological data handing tools with a user friendly interface. Biorxiv.org, 2018,3(27):1020-1027. |
[32] |
WANG G M, YIN H, QIAO X, TAN X, GU C, WANG B H, CHENG R, WANG Y Z, ZHANG S L. F-box genes: Genome-wide expansion, evolution and their contribution to pollen growth in pear ( Pyrus bretschneideri). Plant Science, 2016,253:164-175.
doi: 10.1016/j.plantsci.2016.09.009 pmid: 27968985 |
[33] |
KOU Y, QIAO L, WANG Q. RETRACTED ARTICLE: Identification of core miRNA based on small RNA-seq and RNA-seq for colorectal cancer by bioinformatics. Tumor Biology, 2015,36(4):2249-2255.
doi: 10.1007/s13277-014-2832-x pmid: 25412953 |
[34] |
ZHANG H M, WHEELER S L, XIA X, COLYVAS K, OFFLER C E, PATRICK J W. Transcript profiling identifies gene cohorts controlled by each signal regulating trans-differentiation of epidermal cells of Vicia faba cotyledons to a transfer cell phenotype. Frontiers in Plant Science, 2017,8:2021.
doi: 10.3389/fpls.2017.02021 pmid: 29234338 |
[35] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT-method . Methods, 2001,25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[36] |
BAI C, SEN P, HOFMANN K, MA L, GOEBL M, HARPER J W, ELLEDGE S J. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell, 1996,86(2):263-274.
doi: 10.1016/s0092-8674(00)80098-7 pmid: 8706131 |
[37] |
KURODA H, YANAGAWA Y, TAKAHASHI N, HORII Y, MATSUI M. A comprehensive analysis of interaction and localization of Arabidopsis SKP1-like (ASK) and F-box (FBX) proteins. PLoS ONE, 2012,7(11):e50009.
doi: 10.1371/journal.pone.0050009 pmid: 23166809 |
[38] |
JIA F Y, WANG C Y, HUANG J G, YANG G D, WU C G, ZHENG C C. SCF E3 ligase PP2-B11 plays a positive role in response to salt stress in Arabidopsis. Journal of Experimental Botany, 2015,66(15):4683-4697.
doi: 10.1093/jxb/erv245 pmid: 26041321 |
[39] | AN J P, LI R, QU F J, YOU C X, WANG X F, HAO Y J. Apple F-Box protein MdMAX2 regulates plant photomorphogenesis and stress response. Frontiers in Plant Science, 2016,7:01685. |
[40] |
HEPWORTH S R, KLENZ J E, HAUGHN G W. UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression. Planta, 2006,223(4):769-778.
doi: 10.1007/s00425-005-0138-3 pmid: 16244866 |
[41] | 刘巧红, 杨亮, 刘志斌, 李旭锋, 杨毅. 拟南芥AtTR1在盐胁迫应答中的功能初探. 四川大学学报(自然科学版), 2016,53(4):895-901. |
LIU Q H, YANG L, LIU Z B, LI X F, YANG Y. First exploration on protein function of Arabidopsis AtTR1 in response to salt stress. Journal of Sichuan University (Natural Science Edition), 2016,53(4):895-901. (in Chinese) | |
[42] |
严莉, 王翠平, 陈建伟, 乔改霞, 李健. 基于转录组信息的黑果枸杞MYB转录因子家族分析. 中国农业科学, 2017,50(20):3991-4002.
doi: 10.3864/j.issn.0578-1752.2017.20.013 |
YAN L, WANG C P, CHEN J W, QIAO G X, LI J. Analysis of MYB Transcription Factor Family Based on Transcriptome Sequencing in Lycium ruthenicum Murr. Scientia Agricultura Sinica, 2017,50(20):3991-4002. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.20.013 |
|
[43] | 段桂芳, 王立群, 李新梅, 赵福, 罗俊, 赵小英, 刘选明. 拟南芥F-box基因At3g16740的表达分析. 生命科学研究, 2013,17(6):486-492. |
DUAN G F, WANG L Q, LI X M, ZHAO F, LUO J, ZHAO X Y, LIU X M. Expression Analysis of F-box Gene At3g16740 in Arabidopsis. Life Science Research, 2013,17(6):486-492. (in Chinese) | |
[44] |
MÁS P, KIM W Y, SOMERS D E, KAY S A. Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature, 2003,426(6966):567-570.
doi: 10.1038/nature02163 pmid: 14654842 |
[2] |
BAUTE J, POLYN S, DE BLOCK J, BLOMME J, VAN LIJSEBETTENS M, INZÉ D. F-Box protein FBX92 affects leaf size in Arabidopsis thaliana. Plant Cell Physiology, 2017,58(5):962-975.
doi: 10.1093/pcp/pcx035 pmid: 28340173 |
[3] |
ZHAO Z, ZHANG G, ZHOU S, REN Y, WANG W. The improvement of salt tolerance in transgenic tobacco by overexpression of wheat F-box gene TaFBA1. Plant Science, 2017,259:71-85.
doi: 10.1016/j.plantsci.2017.03.010 pmid: 28483055 |
[4] |
STEFANOWICZ K, LANNOO N, ZHAO Y, EGGERMONT L, VAN HOVE J, AL ATALAH B, VAN DAMME E J. Glycan-binding F-box protein from Arabidopsis thaliana protects plants from Pseudomonas syringae infection. BMC Plant Biology, 2016,16(1):213-226.
pmid: 27716048 |
[5] |
SMALLE J, VIERSTRA R D. The ubiquitin 26S proteasome proteolytic pathway. Annual Review of Plant Biology, 2004,55:555-590.
doi: 10.1146/annurev.arplant.55.031903.141801 pmid: 15377232 |
[6] |
SADANANDOM A, BAILEY M, EWAN R, LEE J, NELIS S. The ubiquitin-proteasome system: Central modifier of plant signalling. New Phytologist, 2012,196(1):13-28.
doi: 10.1111/j.1469-8137.2012.04266.x pmid: 22897362 |
[7] |
HO M S, OU C, CHAN Y R, CHIEN C T, PI H. The utility Fbox for protein destruction. Cellular and Molecular Life Sciences, 2008,65(13):1977-2000.
doi: 10.1007/s00018-008-7592-6 pmid: 18344020 |
[8] |
SOMERS D E, FUJIWARA S. Thinking outside the F-box: Novel ligands for novel receptors. Trends in Plant Science, 2009,14(4):206-213.
doi: 10.1016/j.tplants.2009.01.003 pmid: 19285909 |
[9] |
HUA Z, ZOU C, SHIU S H, VIERSTRA R D. Phylogenetic comparison of F-Box (FBX) gene superfamily within the plant kingdom reveals divergent evolutionary histories indicative of genomic drift. PLoS ONE, 2011,6(1):e16219.
doi: 10.1371/journal.pone.0016219 pmid: 21297981 |
[10] |
NAVARRO-QUEZADA A, SCHUMANN N, QUINT M. Plant F-box protein evolution is determined by lineage-specific timing of major gene family expansion waves. PLoS ONE, 2013,8(7):e68672.
doi: 10.1371/journal.pone.0068672 pmid: 23904908 |
[1] | 莫文静,朱嘉伟,何新华,余海霞,江海玲,覃柳菲,张艺粒,李雨泽,罗聪. 芒果MiZAT10A和MiZAT10B功能分析[J]. 中国农业科学, 2023, 56(1): 193-202. |
[2] | 赵慧婷,彭竹,姜玉锁,赵淑果,黄丽,杜亚丽,郭丽娜. 中华蜜蜂气味结合蛋白AcerOBP7的表达及结合特性[J]. 中国农业科学, 2022, 55(3): 613-624. |
[3] | 由玉婉,张雨,孙嘉毅,张蔚. ‘月月粉’月季NAC家族全基因组鉴定及皮刺发育相关成员的筛选[J]. 中国农业科学, 2022, 55(24): 4895-4911. |
[4] | 刘鑫,张亚红,袁苗,党仕卓,周娟. ‘红地球’葡萄花芽分化过程中的转录组分析[J]. 中国农业科学, 2022, 55(20): 4020-4035. |
[5] | 张云秀,蒋旭,尉春雪,蒋学乾,卢栋宇,龙瑞才,杨青川,王珍,康俊梅. 紫花苜蓿高迁移率族蛋白基因MsHMG-Y调控花期的功能分析[J]. 中国农业科学, 2022, 55(16): 3082-3092. |
[6] | 胡亚丽,聂靖芝,吴霞,潘姣,曹珊,岳娇,罗登杰,王财金,李增强,张辉,吴启境,陈鹏. 水杨酸引发对红麻幼苗耐盐性的影响[J]. 中国农业科学, 2022, 55(14): 2696-2708. |
[7] | 朱春艳,宋佳伟,白天亮,王娜,马帅国,普正菲,董艳,吕建东,李杰,田蓉蓉,罗成科,张银霞,马天利,李培富,田蕾. NaCl胁迫对不同耐盐性粳稻种质幼苗叶绿素荧光特性的影响[J]. 中国农业科学, 2022, 55(13): 2509-2525. |
[8] | 刘闯,高振,姚玉新,杜远鹏. 葡萄钾离子转运基因VviHKT1;7在盐胁迫下的功能鉴定[J]. 中国农业科学, 2021, 54(9): 1952-1963. |
[9] | 张桂云,朱静雯,孙明法,严国红,刘凯,宛柏杰,代金英,朱国永. 盐胁迫条件下长白10号水稻籽粒中差异代谢物的分析[J]. 中国农业科学, 2021, 54(4): 675-683. |
[10] | 王洁,吴晓宇,杨柳,段巧红,黄家保. 大白菜ACA基因家族的全基因组鉴定与表达分析[J]. 中国农业科学, 2021, 54(22): 4851-4868. |
[11] | 邵美琪,赵卫松,苏振贺,董丽红,郭庆港,马平. 盐胁迫下枯草芽孢杆菌NCD-2对番茄促生作用及对土壤微生物群落结构的影响[J]. 中国农业科学, 2021, 54(21): 4573-4584. |
[12] | 王娜,赵资博,高琼,何守朴,马晨辉,彭振,杜雄明. 陆地棉盐胁迫应答基因GhPEAMT1的克隆及功能分析[J]. 中国农业科学, 2021, 54(2): 248-260. |
[13] | 徐欢欢,李逸,高伟,王永勤,刘乐承. 洋葱γ-谷氨酰转肽酶AcGGT的克隆与鉴定[J]. 中国农业科学, 2021, 54(19): 4169-4178. |
[14] | 孔亚丽,朱春权,曹小闯,朱练峰,金千瑜,洪小智,张均华. 土壤微生物介导植物抗盐性机理的研究进展[J]. 中国农业科学, 2021, 54(10): 2073-2083. |
[15] | 石国良,武强,杨念婉,黄聪,刘万学,钱万强,万方浩. 苹果蠹蛾几丁质脱乙酰基酶2的基因克隆、表达模式和分子特性[J]. 中国农业科学, 2021, 54(10): 2105-2117. |
|