[1] |
张玮, 李兴红, 郭飞飞, 刘梅, 黄金宝, 燕继晔 . 两种葡萄溃疡病菌双重PCR检测方法的建立与应用. 植物保护学报, 2017,44(4):636-642.
|
|
ZHANG W, LI X H, GUO F F, LIU M, HUANG J B, YAN J Y . Establishment and application of duplex PCR assay for grape canker pathogens Botryosphaeria dothidea and Neofusicoccum parvum. Journal of Plant Protection, 2017,44(4):636-642. (in Chinese)
|
[2] |
YAN J Y, XIE Y, YAO S W, WANG Z Y, LI X H . Characterization of Botryosphaeria dothidea, the causal agent of grapevine canker in China. Australasian Plant Pathology, 2012,41(4):351-357.
|
[3] |
YAN J Y, XIE Y, ZHANG W, WANG Y, LIU J K, HYDE K D, SEEM R C, ZHANG G Z, WANG Z Y, YAO S W, BAI X J, DISSANAYAKE A J, PENG Y L, LI X H . Species of Botryosphaeriaceae involved in grapevine dieback in China. Fungal Diversity, 2013,61(1):221-236.
|
[4] |
YAN J Y, LI X H, KONG F F, WANG Z Y, GONG L Z, HE H P . Occurrence of grapevine trunk disease caused by Botryosphaeria rhodina in China. Plant Disease, 2011,95(2):219.
|
[5] |
YAN J Y, PENG Y L, XIE Y, LI X H, YAO S W, TANG M L, WANG Z Y . First report of grapevine trunk disease caused by Botryosphaeria obtusa in China. Plant Disease, 2011,95(5):616.
|
[6] |
DISSANAYAKE A J, ZHANG W, LIU M, CHUKEATIROTE E, YAN J Y, LI X H, HYDE K D . Lasiodiplodia pseudotheobromae causes pedicel and peduncle discolouration of grapes in China. Australasian Plant Disease Notes, 2015,10:21.
|
[7] |
DISSANAYAKE A J, ZHANG W, LI X H, ZHOU Y, CHETHANA T, CHUKEATIROTE E, HYDE K D, YAN J Y, ZHANG G Z, ZHAO W S . First report ofNeofusicoccum mangiferae associated with grapevine dieback in China. Phytopathologia Mediterranea, 2015,54(2):414-419.
|
[8] |
ELGOORANI M A, ELMELEIGI M A . Dieback of grapevine by Botryodiplodia theobromae Pat. in Egypt. Phytopathologia Mediterranea, 1972,11(3):210-211.
|
[9] |
PHILLIPS A J L . Botryosphaeria dothidea and other fungi associated with excoriose and dieback of grapevines in Portugal. Journal of Phytopathology, 1998,146(7):327-332.
|
[10] |
LARIGNON P, FULCHIC R, CERE L, DUBOS B . Observation on black dead arm in French vineyards. Phytopathologia Mediterranea, 2001,40(Suppl.):S336-S342.
|
[11] |
PHILLIPS A J L . Botryosphaeria species associated with diseases of grapevines in Portugal. Phytopathologia Mediterranea, 2002,41(1):3-18.
|
[12] |
TAYLOR A, HARDY G E, WOOD P, BURGESS T . Identification and pathogenicity of Botiyosphaeria species associated with grapevine decline in Western Australia. Australasian Plant Pathology, 2005,34(2):187-195.
|
[13] |
URBEZ-TORRES J R . The status of Botryosphaeriaceae species infecting grapevines. Phytopathologia Mediterranea, 2011,50(Suppl.):S5-S45.
|
[14] |
VAN NIEKERK J M, FOURIE P H, HALLEEN F, CROUS P W . Botryosphaeria spp. as grapevine trunk pathogens. Phytopathologia Mediterranea, 2006,45(Suppl.):S43-S54.
|
[15] |
ÚRBEZ-TORRES J R, LEAVITT G M, GUERRERO J C, GUEVARA J, GUBLER W D . Identification and pathogenicity of Lasiodiplodia theobromae and Diplodia seriata, the causal agents of bot canker disease of grapevines in Mexico. Plant Disease, 2008,92(4):519-529.
|
[16] |
FAN K, WANG J, FU L, ZHANG G F, WU H B, FENG C, QU J L . Baseline sensitivity and control efficacy of pyraclostrobin againstBotryosphaeria dothidea isolates in China. Plant Disease, 2019,103(7):1458-1463.
|
[17] |
PAN J L, HAO X, YAO H W, GE K K, MA L, MA W . Matrine inhibits mycelia growth of Botryosphaeria dothidea by affecting membrane permeability. Journal of Forestry Research, 2019,30(3):1105-1113.
|
[18] |
TROTEL-AZIZ P, ABOU-MANSOUR E, COURTEAUX B, RABENOELINA F, CLÉMENT C, FONTAINE F, AZIZ A . Bacillus subtilis PTA-271 counteracts Botryosphaeria dieback in grapevine, triggering immune responses and detoxification of fungal phytotoxins. Frontiers in Plant Science, 2019,10:25.
|
[19] |
COBOS R, BARREIRO C, MATEOS R M COQUE J J R . Cytoplasmic- and extracellular-proteome analysis ofDiplodia seriata: A phytopathogenic fungus involved in grapevine decline. Proteome Science, 2010,8:46.
|
[20] |
PAOLINELLI-ALFONSO M, VILLALOBOS-ESCOBEDO J M, ROLSHAUSEN P, HERRERA-ESTRELLA A, GALINDO-SÁNCHEZ C, LÓPEZ-HERNÁNDEZ J F, HERNANDEZ-MARTINEZ R . Global transcriptional analysis suggests Lasiodiplodia theobromae pathogenicity factors involved in modulation of grapevine defensive response. BMC Genomics, 2016,17:615.
|
[21] |
YAN J Y, ZHAO W S, CHEN Z, XING Q K, ZHANG W, CHETHANA K W T, XUE M F, XU J P, PHILLIPS A J L, WANG Y, LIU J H, LIU M, ZHOU Y, JAYAWARDENA R S, MANAWASINGHE I S, HUANG J B, QIAO GH, FU C Y, GUO F F, DISSANAYAKE A J, PENG Y L, HYDE K D, LI X H . Comparative genome and transcriptome analyses reveal adaptations to opportunistic infections in woody plant degrading pathogens of Botryosphaeriaceae. DNA Research, 2018,25(1):87-102.
|
[22] |
MARTOS S, ANDOLFI A, LUQUE J, MUGNAI L, SURICO G, EVIDENTE A . Production of phytotoxic metabolites by five species of Botryosphaeriaceae causing decline on grapevines, with special interest in the species Neofusicoccum luteum and N. parvum. European Journal of Plant Pathology, 2008,121(4):451-461.
|
[23] |
EVIDENTE A, PUNZO B, ANDOLFI A, CIMMINO A, MELCK D, LUQUE J . Lipophilic phytotoxins produced by Neofusicoccum parvum, a grapevine canker agent. Phytopathologia Mediterranea, 2010,49(1):74-79.
|
[24] |
ANDOLFI A, MUGNAI L, LUQUE J, SURICO G, CIMMINO A, EVIDENTE A . Phytotoxins produced by fungi associated with grapevine trunk diseases. Toxins, 2011,3(12):1569-1605.
|
[25] |
ABOU-MANSOUR E, DÉBIEUX J L, RAMÍREZ-SUERO M, BÉNARD-GELLON M, MAGNIN-ROBERT M, SPAGNOLO A, CHONG J, FARINE S, BERTSCH C, L'HARIDON F, SERRANO M, FONTAINE F, REGO C, LARIGNON P . Phytotoxic metabolites from Neofusicoccum parvum, a pathogen of Botryosphaeria dieback of grapevine. Phytochemistry, 2015,115:207-215.
|
[26] |
VAAJE-KOLSTAD G, HORN S J, VAN AALTEN D M F, SYNSTAD B, EIJSINK V G H . The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. The Journal of Biological Chemistry, 2005,280(31):28492-28497.
|
[27] |
LANGSTON J A, SHAGHASI T, ABBATE E, XU F, VLASENKO E, SWEENEY M D . Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Applied and Environmental Microbiology, 2011,77(19):7007-7015.
|
[28] |
LOMBARD V, GOLACONDA RAMULU H, DRULA E, COUTINHO P M, HENRISSAT B . The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 2014,42(Database issue):D490-D495.
|
[29] |
KARKEHABADI S, HANSSON H, KIM S, PIENS K, MITCHINSON C, SANDGREN M . The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 Å resolution. Journal of Molecular Biology, 2008,383(1):144-154.
|
[30] |
SALINAS A, VEGA M, LIENQUEO M E, GARCIA A, CARMONA R, SALAZAR O . Cloning of novel cellulases from cellulolytic fungi: Heterologous expression of a family 5 glycoside hydrolase from Trametes versicolor in Pichia pastoris. Enzyme and Microbial Technology, 2011,49(6/7):485-491.
|
[31] |
KOSEKI T, MESE Y, FUSHINOBU S, MASAKI K, FUJII T, ITO K, SHIONO Y, MURAYAMA T, IEFUJI H . Biochemical characterization of a glycoside hydrolase family 61 endoglucanase from Aspergillus kawachii. Applied Microbiology and Biotechnology, 2008,77(6):1279-1285.
|
[32] |
RAJESHWARI R, JHA G, SONTI R V . Role of an in planta-expressed xylanase of Xanthomonas oryzae pv.oryzae in promoting virulence on rice. Molecular Plant-Microbe Interactions, 2005,18(8):830-837.
|
[33] |
JACOBS K A, COLLINS-RACIE L A, COLBERT M, DUCKETT M, GOLDEN-FLEET M, KELLEHER K, KRIZ R, LAVALLIE E R, MERBERG D, SPAULDING V, STOVER J, WILLIAMSON M J, MCCOY J M . A genetic selection for isolating cDNAs encoding secreted proteins. Gene, 1997,198(1/2):289-296.
|
[34] |
FANG A, HAN Y Q, ZHANG N, ZHANG M, LIU L J, LI S, LU F, SUN W X . Identification and characterization of plant cell death- inducing secreted proteins from Ustilaginoidea virens. Molecular Plant-Microbe Interactions, 2016,29(5):405-416.
|
[35] |
孔祥久, 石洁, 孔繁芳, 王忠跃, 张昊 . 葡萄霜霉菌候选效应子RXLR5信号肽的鉴定. 植物保护, 2016,42(1):40-44.
|
|
KONG X J, SHI J, KONG F F, WANG Z Y, ZHANG H . Identification of the signal peptide of candidate effector protein RXLR5 from Plasmopara viticola. Plant Protection, 2016,42(1):40-44. (in Chinese)
|
[36] |
GU B, KALE S D, WANG Q H, WANG D H, PAN Q N, CAO H, MENG Y L, KANG Z S, TYLER B M, SHAN W X . Rust secreted protein Ps87 is conserved in diverse fungal pathogens and contains a RXLR-like motif sufficient for translocation into plant cells. PLoS ONE, 2011,6(11):e27217.
|
[37] |
DOU D, KALE S D, WANG X, JIANG R H, BRUCE N A, ARREDONDO F D, ZHANG X, TYLER B M . RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. The Plant Cell, 2008,20(7):1930-1947.
|