中国农业科学 ›› 2020, Vol. 53 ›› Issue (20): 4248-4258.doi: 10.3864/j.issn.0578-1752.2020.20.013
刘齐1(),梅延豪1,李琦1,马宏秀3,武永军2,杨振超1(
)
收稿日期:
2020-03-14
接受日期:
2020-05-12
出版日期:
2020-10-16
发布日期:
2020-10-26
通讯作者:
杨振超
作者简介:
刘齐,E-mail: 基金资助:
LIU Qi1(),MEI YanHao1,LI Qi1,MA HongXiu3,WU YongJun2,YANG ZhenChao1(
)
Received:
2020-03-14
Accepted:
2020-05-12
Online:
2020-10-16
Published:
2020-10-26
Contact:
ZhenChao YANG
摘要:
【目的】研究暗期前短暂远红光处理对南瓜幼苗生长形态、组织细胞形态和相关激素水平的影响,为远红光在农业上的应用提供理论依据。【方法】以南瓜品种‘日本雪松’为试验材料,分别在暗期前给予2(T1)、4(T2)、6(T3)、8(T4)、10(T5)和12(T6)mmol·m-2·d-1的远红光处理,以无远红光处理为对照(CK),测定植株生长形态下胚轴细胞形态以及生长素(IAA)、玉米素(ZT)、赤霉素(GA3)与油菜素内酯(BR)含量。【结果】在暗期短时外施远红光能显著提高南瓜幼苗下胚轴长度和株高,对植株茎粗,地上、地下部干/鲜重无显著影响;2、4、6、8、10和12 mmol·m-2·d-1远红光处理的下胚轴薄壁细胞轴向长度分别比CK显著增加34.6%、20.7%、31.3%、25.6%、32.8%和20.9%;下胚轴厚角组织厚度分别比CK显著增加19.6%、22.4%、21.2%、23.9%、19.6%和28%;经暗期前远红光处理后,南瓜幼苗根中生长素(IAA)含量,下胚轴中生长素(IAA)、赤霉素(GA3)、玉米素(ZT)含量,子叶中生长素(IAA)、赤霉素(GA3)、油菜素内酯(BR)含量以及真叶中生长素(IAA)与油菜素内酯(BR)含量均得到显著提高。【结论】暗期前短时远红光处理可能通过提高激素含量,进而改变细胞形态,促进下胚轴伸长生长。
刘齐,梅延豪,李琦,马宏秀,武永军,杨振超. 暗期短暂远红光处理对南瓜幼苗生长、细胞形态和激素含量的影响[J]. 中国农业科学, 2020, 53(20): 4248-4258.
LIU Qi,MEI YanHao,LI Qi,MA HongXiu,WU YongJun,YANG ZhenChao. Effects of End of Day Far-Red Light on Growth, Histiocyte Morphology and Phytohormones Content of Pumpkin Seedlings[J]. Scientia Agricultura Sinica, 2020, 53(20): 4248-4258.
表2
不同剂量的远红光处理对南瓜幼苗其他生长指标和生物量的影响"
处理 Treatment | 株高 Plant height (cm) | 茎粗 Stem diameter (mm) | 地上鲜重 Above ground fresh weight (g) | 地下鲜重 Root fresh weight (g) | 地上干重 Above ground part dry weight (g) | 地下干重 Root dry weight (g) | 壮苗指数 Index of vigorous seedings |
---|---|---|---|---|---|---|---|
CK | 9.668±0.488bA | 3.277±0.077aA | 2.460±0.107aA | 0.323±0.015aA | 0.177±0.008aA | 0.023±0.003aA | 0.069±0.005aA |
T1 | 10.998±0.480abA | 3.303±0.100aA | 2.970±0.155aA | 0.380±0.034aA | 0.191±0.010aA | 0.023±0.002aA | 0.065±0.006aA |
T2 | 10.602±0.521abA | 3.410±0.140aA | 2.901±0.266aA | 0.423±0.043aA | 0.172±0.008aA | 0.025±0.002aA | 0.065±0.006aA |
T3 | 10.620±0.471abA | 3.133±0.110aA | 2.836±0.092aA | 0.351±0.037aA | 0.177±0.007aA | 0.020±0.001aA | 0.058±0.003aA |
T4 | 11.072±0.397abA | 3.100±0.140aA | 2.700±0.140aA | 0.318±0.032aA | 0.182±0.009aA | 0.021±0.001aA | 0.057±0.004aA |
T5 | 11.383±0.235aA | 3.457±0.118aA | 2.887±0.144aA | 0.321±0.017aA | 0.174±0.008aA | 0.021±0.001aA | 0.059±0.004aA |
T6 | 10.615±0.633abA | 3.187±0.073aA | 2.749±0.201aA | 0.404±0.044aA | 0.182±0.016aA | 0.021±0.002aA | 0.061±0.005aA |
表3
不同剂量的远红光处理对南瓜下胚轴纵切面筛管分子细胞和表皮细胞的影响"
处理 Treatment | 筛管分子细胞轴向长度 Axial length (μm) | 筛管分子细胞径向长度 Radial length (μm) | 表皮细胞轴向长度 Axial length (μm) | 表皮细胞径向长度 Radial length (μm) |
---|---|---|---|---|
CK | 67.025±1.355bA | 36.118±0.766aA | 89.465±2.368cD | 21.988±0.368aA |
T1 | 69.620±1.632abA | 37.226±0.918aA | 93.426±2.605cCD | 21.737±0.468aAB |
T2 | 69.114±1.779abA | 35.566±0.7191aA | 96.210±3.026bcBCD | 20.234±0.358bBC |
T3 | 74.384±2.035aA | 35.954±0.991aA | 110.782±3.866aA | 22.564±0.433aA |
T4 | 74.309±2.105aA | 37.464±0.724aA | 91.352±1.875cD | 22.666±0.440aA |
T5 | 68.732±1.956abA | 34.663±0.869aA | 106.237±3.280aAB | 22.148±0.444aA |
T6 | 73.032±2.118aA | 37.032±1.161aA | 104.202±3.511abAB | 19.656±0.481bC |
表4
不同剂量的远红光处理对南瓜下胚轴导管细胞面积和维管束面积的影响"
处理 Treatment | 导管细胞面积 The size of duct cells (×102 μm2) | 维管束面积 The size of vascular (×103 μm2) |
---|---|---|
CK | 11.153±0.804aA | 92.559±7.113abAB |
T1 | 10.898±0.654aA | 110.71±8.555aA |
T2 | 11.323±0.650aA | 97.097±4.855abAB |
T3 | 12.135±0.674aA | 96.939±7.441abAB |
T4 | 10.997±0.501aA | 87.595±5.354bB |
T5 | 12.468±0.754aA | 83.292±4.726bAB |
T6 | 11.972±0.687aA | 88.102±6.51bAB |
表5
不同剂量的远红光处理对于南瓜幼苗IAA水平的影响"
处理 Treatment | 根中IAA质量分数 The content of IAA in root (ng?g-1 FW) | 下胚轴中IAA质量分数 The content of IAA in hypocotyl (ng?g-1 FW) | 子叶中IAA质量分数 The content of IAA in cotyledon (ng?g-1 FW) | 真叶中IAA质量分数 The content of IAA in euphylla (ng?g-1 FW) |
---|---|---|---|---|
CK | 23.163±0.757dC | 29.614±1.21bcdA | 39.854±1.357cC | 39.139±1.180bD |
T1 | 31.118±1.283abA | 29.359±1.493cdA | 53.109±0.891bAB | 51.137±2.246aA |
T2 | 28.664±1.373abAB | 31.993±1.289abcdA | 50.130±1.698bAB | 43.475±0.892bBCD |
T3 | 24.235±0.994cdBC | 29.004±0.835cA | 48.372±0.380bBC | 50.501±1.317aAB |
T4 | 27.471±1.762bcABC | 34.399±2.031abA | 52.805±2.420bAB | 43.726±2.277bBCD |
T5 | 30.719±0.733abA | 33.942±2.036abcA | 52.649±0.837bAB | 49.795±1.312aABC |
T6 | 32.385±0.86aA | 34.598±0.894aA | 59.778±4.592aA | 43.156±1.303bCD |
表6
不同剂量的远红光处理对南瓜幼苗ZT水平的影响"
处理 Treatment | 根中ZT质量分数 The content of ZT in root (ng?g-1 FW) | 下胚轴中ZT质量分数 The content of ZT in hypocotyl (ng?g-1 FW) | 子叶中ZT质量分数 The content of ZT in cotyledon (ng?g-1 FW) | 真叶中ZT质量分数 The content of ZT in euphylla (ng?g-1 FW) |
---|---|---|---|---|
CK | 4.618±0.147bcB | 3.750±147dC | 11.217±0.356bB | 7.703±0.302bB |
T1 | 5.543±0.165aA | 4.659±0.262bcAB | 11.521±0.493bcAB | 7.741±0.407bB |
T2 | 4.738±0.211bcB | 4.566±0.149cAB | 12.360±0.332abAB | 7.077±0.241bcB |
T3 | 4.290±0.111cB | 5.282±0.177aA | 12.912±0.363aA | 7.305±0.332bcB |
T4 | 4.696±0.143bcB | 5.155±0.250abAB | 12.185±0.389abAB | 9.135±0.362aA |
T5 | 4.310±0.223cB | 5.285±0.116aA | 11.226±0.286bcB | 6.599±0.299cB |
T6 | 5.025±0.141bAB | 4.421±0.114cBC | 10.926±0.201cB | 6.521±0.272cB |
表7
不同剂量的远红光处理对南瓜幼苗GA3水平的影响"
处理 Treatment | 根中GA3质量分数 The content of GA3 in root (ng?g-1FW) | 下胚轴中GA3质量分数 The content of GA3 in hypocotyl (ng?g-1FW) | 子叶中GA3质量分数 The content of GA3 in cotyledon (ng?g-1FW) | 真叶中GA3质量分数 The content of GA3 in euphylla (ng?g-1FW) |
---|---|---|---|---|
CK | 5.201±0.123bBC | 4.461±0.112cB | 6.742±0.309cB | 6.966±0.135cdBC |
T1 | 5.633±0.015bAB | 4.902±0.314bcB | 7.167±0.164bcB | 8.161±0.156aA |
T2 | 4.769±0.205cC | 4.789±0.175bcB | 7.187±0.140bcB | 7.706±0.402abABC |
T3 | 5.596±0.103bAB | 5.316±0.136abAB | 8.362±0.425aA | 6.580±0.276dC |
T4 | 5.410±0.204bB | 4.562±0.119cB | 7.027±0.084bcB | 6.562±0.130dC |
T5 | 5.418±0.160bB | 5.683±0.218aA | 7.290±0.059bcAB | 7.090±0.076bcdBC |
T6 | 6.125±0.050aA | 5.205±0.160abAB | 7.722±0.375abAB | 7.439±0.182bcABC |
表8
不同剂量的远红光处理对南瓜幼苗BR水平的影响"
处理 Treatment | 根中BR质量分数 The content of BR in root (ng?g-1 FW) | 下胚轴中BR质量分数 The content of BR in hypocotyl (ng?g-1 FW) | 子叶中BR质量分数 The content of BR in cotyledon (ng?g-1 FW) | 真叶中BR质量分数 The content of BR in euphylla (ng?g-1 FW) |
---|---|---|---|---|
CK | 5.528±0.343abAB | 5.901±0.222aA | 5.108±0.144bB | 5.432±0.119cC |
T1 | 4.466±0.198dB | 4.022±0.217cB | 5.860±0.172aAB | 6.357±0.309bBC |
T2 | 5.185±0.097abcdAB | 6.236±0.171aA | 5.619±0.217bcAB | 6.805±0.223abAB |
T3 | 4.944±0.114bcdAB | 5.665±0.199aA | 6.370±0.168aA | 7.205±0.0316aAB |
T4 | 5.906±0.381aA | 5.852±0.256aA | 5.060±0.158bB | 7.550±0.310aA |
T5 | 4.648±0.302cdB | 4.720±0.115bB | 6.270±0.348aA | 7.576±0.445aA |
T6 | 5.410±0.215abcAB | 6.245±0.24aA | 5.054±0.338bB | 6.303±0.183bBC |
[1] |
SASSI M, RUBERTI I, VERNOUX T, XU J. Shedding light on auxin movement: Light-regulation of polar auxin transport in the photocontrol of plant development. Plant Signaling & Behavior, 2013,8(3):e23355.
doi: 10.4161/psb.23355 pmid: 23333970 |
[2] | PARK Y, RUNKLE E S. Investigating the merit of including far-red radiation in the production of ornamental seedlings grown under sole-source lighting. Acta Horticulturae, 2016,1134(1134):259-266. |
[3] |
JI Y R, OUZOUNIS T, COURBIER S, KAISER E, NGUYEN P T, SCHOUTEN H J, VISSER R G F, PIERIK R, MARCELIS L F M, HEUVELINK E. Far-red radiation increases dry mass partitioning to fruits but reduces Botrytis cinerea resistance in tomato. Environmental and Experimental Botany, 2019,168:103889.
doi: 10.1016/j.envexpbot.2019.103889 |
[4] | GOMMERS C M M, BUTI S, TARKOWSKÁ D, PĚNČÍK A, BANDA J P, ARRICASTRES V, PIERIK R. Organ-specific phytohormone synthesis in two Geranium species with antithetical responses to far-red light enrichment. Plant Direct, 2018,2(8):e66. |
[5] |
KALAITZOGLOU P, VAN IEPEREN W, HARBINSON J, VAN DER MEER M, MARTINAKOS S, WEERHEIM K, NICOLE C C S, MARCELIS L F M. Effects of continuous or end-of-day far-red light on tomato plant growth, morphology, light absorption, and fruit production. Frontiers in Plant Science, 2019,10:322.
doi: 10.3389/fpls.2019.00322 pmid: 30984211 |
[6] | 浩二島. 明期終了時における遠赤色光照射の光強度および照射時間がスプレーギクの茎伸長に及ぼす影響. 園芸学研究. 2011,10(3):401-406. |
KOHJI S. Effect of the irradiance and duration with far-red light at the end of day (eod-fr) on stem elongation of spray type chrysanthemum. Horticultural Research (Japan), 2011,10(3):401-406. (in Japanese) | |
[7] | 圭弘竹村. 明期終了時の遠赤色光照射処理および昇温処理がトルコギキョウの生育に及ぼす影響. 園芸学研究, 2014,13(3):255-260. |
YOSHIHIRO T. Effect of far-red light and heating treatment at end of day on growth of eustoma grandiflorum (Raf.) Shinn.Horticultural Research (Japan), 2014,13(3):255-260. (in Japanese) | |
[8] |
STEWART S J, PRATT L H, CORDONNIER-PRATT I M. Phytochrome levels in light-grown avena change in response to end-of-day irradiations. Plant Physiology, 1992,99(4):1708-1710.
pmid: 16669098 |
[9] |
OLSEN J E, JUNTTILA O. Far red end-of-day treatment restores wild type‐like plant length in hybrid aspen overexpressing phytochrome A. Physiologia Plantarum, 2002,115(3):448-457.
doi: 10.1034/j.1399-3054.2002.1150315.x pmid: 12081538 |
[10] | 曹凯, 于捷, 叶林, 赵海亮, 邹志荣. 暗前适宜LED远红光光照强度促进设施番茄种苗生长发育. 农业工程学报, 2016,32(8):171-176. |
CAO K, YU J, YE L, ZHAO H L, ZOU Z R. Optimal LED far-red light intensity in end-of-day promoting tomato growth and development in greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(8):171-176. (in Chinese) | |
[11] |
QIN S S, CHEN X Y, JIANG C, LI M J, YUAN Y, YANG J, WU Q H. Pruning induced yield and quality variations and the correlated gene expression and phytohormone changes in Lonicera japonica. Industrial Crops and Products, 2019,132:386-395.
doi: 10.1016/j.indcrop.2019.02.048 |
[12] |
PRADKO A G, LITVINOVSKAYA R P, SAUCHUK A L, DRACH S V, BARANOVSKY A V, ZHABINSKII V N, MIRANTSOVA T V, KHRIPACH V A. A new ELISA for quantification of brassinosteroids in plants. Steroids, 2015,97:78-86.
pmid: 25201263 |
[13] |
CHEN X L, GUO W Z, XUE X Z, WANG L C, QIAO X J. Growth and quality responses of ‘Green Oak Leaf’ lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Scientia Horticulturae, 2014,172:168-175.
doi: 10.1016/j.scienta.2014.04.009 |
[14] |
VIRŠILĖ A, BRAZAITYTĖ A, VAŠTAKAITĖ-KAIRIENĖ V, JANKAUSKIENĖ J, MILIAUSKIENĖ J, SAMUOLIENĖ G, NOVIČKOVAS A, DUCHOVSKIS P. Nitrate, nitrite, protein, amino acid contents, and photosynthetic and growth characteristics of tatsoi cultivated under various photon flux densities and spectral light compositions. Scientia Horticulturae, 2019,258:108781.
doi: 10.1016/j.scienta.2019.108781 |
[15] | 杨有新, 王峰, 蔡加星, 喻景权, 周艳虹. 光质和光敏色素在植物逆境响应中的作用研究进展. 园艺学报, 2014,41(9):1861-1872. |
YANG Y X, WANG F, CAI J X, YU J Q, ZHOU Y H. Recent advances in the role of light quality and phytochrome in plant defense resistance against environmental stresses. Acta Horticulturae Sinica, 2014,41(9):1861-1872. (in Chinese) | |
[16] |
HOLMES M, SMITH H. The function of phytochrome in the natural environment: I. Characterization of daylight for studies in photomorphogenesis and photoperiodism. Photochemistry and Photobiology, 2008,25(6):533-538.
doi: 10.1111/php.1977.25.issue-6 |
[17] |
FRANKLIN K A. Shade avoidance. New Phytologist, 2008,179(4):930-944.
doi: 10.1111/j.1469-8137.2008.02507.x pmid: 18537892 |
[18] |
CHIA P, KUBOTA C. End-of-day far-red light quality and dose requirements for tomato rootstock hypocotyl elongation. HortScience, 2010,45(10):1501-1506.
doi: 10.21273/HORTSCI.45.10.1501 |
[19] |
GRAHAM H H A, DECOTEAU D R. Young watermelon plant growth responses to end-of-day red and far-red light are affected by direction of exposure and plant part exposed. Scientia Horticulturae, 1997,69(2):41-49.
doi: 10.1016/S0304-4238(96)00991-0 |
[20] |
XIONG J Q, PATIL G G, MOE R. Effect of DIF and end-of-day light quality on stem elongation in Cucumis sativus. Scientia Horticulturae, 2002,94(4):219-229.
doi: 10.1016/S0304-4238(02)00002-X |
[21] |
HALIAPAS S, YUPSANIS T A, SYROS T D, KOFIDIS G, ECONOMOU A S. Petunia × hybrida during transition to flowering as affected by light intensity and quality treatments. Acta Physiologiae Plantarum, 2008,30(6):807-815.
doi: 10.1007/s11738-008-0185-z |
[22] |
SASIDHARAN R, CHINNAPPA C C, VOESENEK L A C J, PIERIK R. The regulation of cell wall extensibility during shade avoidance: a study using two contrasting ecotypes of Stellaria longipes. Plant Physiology, 2008,148(3):1557-1569.
doi: 10.1104/pp.108.125518 pmid: 18768908 |
[23] |
MOUTINHO-PEREIRA J M, BACELAR E A, GONÇALVES B, FERREIRA H F, COUTINHO J F, CORREIA C M. Effects of Open-Top Chambers on physiological and yield attributes of field grown grapevines. Acta Physiologiae Plantarum, 2010,32(2):395-403.
doi: 10.1007/s11738-009-0417-x |
[24] |
LEROUX O. Collenchyma: A versatile mechanical tissue with dynamic cell walls. Annals of Botany, 2012,110(6):1083-1098.
doi: 10.1093/aob/mcs186 pmid: 22933416 |
[25] | ROWE N P, SPECK T. Hydraulics and mechanics of plants: Novelty, innovation and evolution. The Evolution of Plant Physiology, 2004: 297-325. |
[26] | DE WIT M, GALVÃO V C, FANKHAUSER C. Light-mediated hormonal regulation of plant growth and development. Annual Review of Plant Biology, 2016,67(1):513-537. |
[27] |
PROCKO C, CRENSHAW C M, LJUNG K, NOEL J P, CHORY J. Cotyledon-generated auxin is required for shade-induced hypocotyl growth in Brassica rapa. Plant Physiology, 2014,165(3):1285-1301.
pmid: 24891610 |
[28] | TAO Y, FERRER J, LJUNG K, POJER F, HONG F, LONG J A, LI L, MORENO J E, BOWMAN M E, IVANS L J, CHENG Y, LIM J, ZHAO Y, BALLARÉ C L, SANDBERG G, NOEL J P, CHORY J. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell, 2008,133(1):164-176. |
[29] |
DEVOGHALAERE F, THOMAS D, BAPTISTE G J K, WENDY P, TOBY J L, ROSS J J, IAN C H, KULARAJATHEVAN G, GA D, ROBERT D, KEN C B, TUSTIN D S, EVELYNE C, DAVID C, ROBERT J S A K. A genomics approach to understanding the role of auxin in apple (Malus×domestica) fruit size control. BMC Plant Biology, 2012,12:7.
doi: 10.1186/1471-2229-12-7 pmid: 22243694 |
[30] |
CONG L, YUE R R, WANG H B, LIU J L, ZHAI R, YANG J, WU M, SI M, ZHANG H Q, YANG C Q, XU L F, WANG Z G. 2,4-D-induced parthenocarpy in pear is mediated by enhancement of GA4 biosynthesis. Physiologia Plantarum, 2019,166(3):812-820.
pmid: 30203555 |
[31] |
SCHWECHHEIMER C. Understanding gibberellic acid signaling--are we there yet? Current Opinion in Plant Biology, 2008,11(1):9-15.
doi: 10.1016/j.pbi.2007.10.011 pmid: 18077204 |
[32] | RAGHAVENDRA A S. Physiology of Trees. Published Simaltaneously in Canada, 1991: 175-178. |
[33] | ARTECA R N, TSAI D S, SCHLAGNHAUFER C, MANDAVA N B. The effect of brassinosteroid on auxin-induced ethylene production by etiolated mung bean segments. Physiologia Plantarum, 1983,59(4):539-544. |
[34] |
XIONG F J, ZHUO F P, REITER R J, WANG L L, WEI Z Z, DENG K X, SONG Y, QANMBER G, FENG L, YANG Z R, LI F G, REN M Z. Hypocotyl elongation inhibition of melatonin is involved in repressing brassinosteroid biosynthesis in Arabidopsis. Frontiers in Plant Science, 2019,10:1082.
pmid: 31616446 |
[35] | 丁锦新, 马国瑞, 黄素青, 叶孟兆. 表油菜素内酯对黄瓜的生理效应. 浙江农业大学学报, 1995,21(6):615-621. |
DING J X, MA G R, HUANG S Q, YE M Z. Studies on physiological effects of epiBR on cucumber (Cucumis sativus L.). Journal of Zhejiang Agricultural University, 1995,21(6):615-621. (in Chinese) |
[1] | 董桑婕,姜小春,王羚羽,林锐,齐振宇,喻景权,周艳虹. 远红光补光对辣椒幼苗生长和非生物胁迫抗性的影响[J]. 中国农业科学, 2022, 55(6): 1189-1198. |
[2] | 刘鑫,张亚红,袁苗,党仕卓,周娟. ‘红地球’葡萄花芽分化过程中的转录组分析[J]. 中国农业科学, 2022, 55(20): 4020-4035. |
[3] | 沙月霞, 黄泽阳, 马瑞. 嗜碱假单胞菌Ej2对稻瘟病的防治效果及对水稻内源激素的影响[J]. 中国农业科学, 2022, 55(2): 320-328. |
[4] | 马玉峰,周忠雄,李雨桐,高雪琴,乔亚丽,张文斌,颉建明,胡琳莉,郁继华. 氮素水平及形态对娃娃菜根系特征及生理指标的影响[J]. 中国农业科学, 2022, 55(2): 378-389. |
[5] | 张静,张姬越,岳永起,赵丹,范依琳,马妍,熊燕,熊显荣,字向东,李键,杨丽雪. LKB1基因对卵巢颗粒细胞类固醇激素生成相关基因的调控作用[J]. 中国农业科学, 2022, 55(10): 2057-2066. |
[6] | 谭永安,姜义平,赵静,肖留斌. 绿盲蝽G蛋白偶联受体激酶2基因(AlGRK2)的表达分析及在绿盲蝽生长发育中的功能[J]. 中国农业科学, 2021, 54(22): 4813-4825. |
[7] | 王君杰,田翔,秦慧彬,王海岗,曹晓宁,陈凌,刘思辰,乔治军. 光周期对糜子生长发育及叶片内源激素的调控效应[J]. 中国农业科学, 2021, 54(2): 286-295. |
[8] | 郑逢盛,王海华,邬清韬,申权,田建红,彭喜旭,唐新科. 苦荞VQ基因家族的全基因组鉴定及其在叶斑病原与激素处理下的表达谱分析[J]. 中国农业科学, 2021, 54(19): 4048-4060. |
[9] | 李艳林,SHAHID Iqbal,侍婷,宋娟,倪照君,高志红. 梅PmARF17克隆及其在花发育中与内源激素的调控模式[J]. 中国农业科学, 2021, 54(13): 2843-2857. |
[10] | 张志兴,敏秀梅,宋果,陈花,许海龙,林文雄. 14-3-3蛋程中的互作靶蛋白鉴定及其对外源激素的响应[J]. 中国农业科学, 2021, 54(12): 2523-2537. |
[11] | 石国良,武强,杨念婉,黄聪,刘万学,钱万强,万方浩. 苹果蠹蛾几丁质脱乙酰基酶2的基因克隆、表达模式和分子特性[J]. 中国农业科学, 2021, 54(10): 2105-2117. |
[12] | 谭永安,赵旭东,姜义平,赵静,肖留斌,郝德君. 绿盲蝽雷帕霉素靶蛋白的克隆、抗体制备及在蜕皮激素诱导下的应答[J]. 中国农业科学, 2021, 54(10): 2118-2131. |
[13] | 刘海英,冯必得,茹振钢,陈向东,黄培新,邢晨涛,潘茵茵,甄俊琦. BNS和BNS366小麦雄性不育与内源激素的关系[J]. 中国农业科学, 2021, 54(1): 1-18. |
[14] | 郭美俊,白亚青,高鹏,申洁,董淑琦,原向阳,郭平毅. 二甲四氯胁迫对谷子幼苗叶片衰老特性和 内源激素含量的影响[J]. 中国农业科学, 2020, 53(3): 513-526. |
[15] | 葛霞,徐瑞,李梅,田甲春,李守强,程建新,田世龙. 香芹酮对马铃薯种薯发芽的调控机制[J]. 中国农业科学, 2020, 53(23): 4929-4939. |
|