中国农业科学 ›› 2021, Vol. 54 ›› Issue (10): 2118-2131.doi: 10.3864/j.issn.0578-1752.2021.10.008
谭永安1(),赵旭东2,姜义平1,赵静1,肖留斌1(),郝德君2()
收稿日期:
2020-07-31
接受日期:
2020-09-07
出版日期:
2021-05-16
发布日期:
2021-05-24
通讯作者:
肖留斌,郝德君
作者简介:
谭永安,E-mail: 基金资助:
TAN YongAn1(),ZHAO XuDong2,JIANG YiPing1,ZHAO Jing1,XIAO LiuBin1(),HAO DeJun2()
Received:
2020-07-31
Accepted:
2020-09-07
Online:
2021-05-16
Published:
2021-05-24
Contact:
LiuBin XIAO,DeJun HAO
摘要:
【目的】克隆绿盲蝽(Apolygus lucorum)雷帕霉素靶标全长基因(AlTOR),研究AlTOR时空表达特性及在外源蜕皮激素(20E)诱导下的应答响应,进一步获得原核表达的重组蛋白及制备多克隆抗体,分析该抗体的特异性,为后续研究AlTOR蛋白功能打下基础。【方法】RACE法克隆AlTOR基因序列全长,qRT-PCR分析AlTOR表达特性以及在20E及其抑制剂U73122诱导下的应答响应;将含有AlTOR序列T载体经EcoR I及Xho I双酶切,构建原核表达载体pCzn1-AlTOR,经20℃、0.5 mmol·L-1 IPTG诱导表达、变性、复性和蛋白纯化后,以获得AlTOR重组蛋白,最后再通过免疫,制备AlTOR蛋白多克隆抗体,Western blot评价该抗体的特异性。【结果】AlTOR的开放阅读框编码包含435个氨基酸,具有典型的TOR基因序列特征,即SIN1结构域、高度保守的CRIM结构域及PH域;AlTOR在绿盲蝽不同日龄、不同组织中均有表达,且在1日龄以及脂肪体中表达量最高;20E可诱导绿盲蝽不同日龄若虫期AlTOR的表达,同时也能诱导成虫头、翅、卵巢和脂肪体中AlTOR表达上调,分别上调200.00%、118.89%、20.53%和60.82%,而U73122在中肠和卵巢中会显著抑制AlTOR的表达。经双酶切的重组克隆载体可成功亚克隆到pCzn1载体上,命名为pCzn1-AlTOR;IPTG诱导的重组质粒可特异性表达一个约36 kD的蛋白,且主要以包涵体形式存在;经Ni-IDA亲和层析纯化后,仅在36 kD附近有一条明显的特异性条带。进一步免疫及间接ELISA方法确定抗血清对TOR蛋白的效价,Western blot分析表明制备的多克隆抗体可以特异性与AlTOR重组蛋白及绿盲蝽3龄若虫总蛋白结合,说明制备的AlTOR多克隆抗体特异性较好,可以用于后续的蛋白研究。【结论】AlTOR在绿盲蝽体内的表达谱显示出发育阶段特异性和组织特异性;20E及其抑制剂诱导后,AlTOR呈现出相反的应答反应;本研究获得的AlTOR重组蛋白的多克隆抗体具有高特异性。
谭永安,赵旭东,姜义平,赵静,肖留斌,郝德君. 绿盲蝽雷帕霉素靶蛋白的克隆、抗体制备及在蜕皮激素诱导下的应答[J]. 中国农业科学, 2021, 54(10): 2118-2131.
TAN YongAn,ZHAO XuDong,JIANG YiPing,ZHAO Jing,XIAO LiuBin,HAO DeJun. Cloning, Preparation of Antibody and Response Induced by 20-Hydroxyecdysone of Target of Rapamycin in Apolygus lucorum[J]. Scientia Agricultura Sinica, 2021, 54(10): 2118-2131.
表1
本研究所用的引物"
引物名称/目的 Primer name/Purpose | 序列 Primer sequence (5′ to 3′) |
---|---|
克隆Cloning | |
5′-AlTOR-1 | AACGACTGGGCAAGAA |
5′-AlTOR-2 | CAAGACGTTTGGGTAGCA |
3′-AlTOR-1 | AGAGACTCAGTCGCTCACTATCAAGA |
3′-AlTOR-2 | CATTGAGACCACACCCCAGACACA |
AlTOR-F | ATGGTGGAAAAATATGCTCG |
AlTOR-R | GCTAGCCAGTATACAACG |
表达谱分析qRT-PCR | |
RT-AlTOR-F | GGGGTCGTCAACTGGCAGAA |
RT-AlTOR-R | CCTCCTTCTTCTTGGGTGCGA |
Al-β-Actin-F | ACCTGTACGCCAACACCGT |
Al-β-Actin-R | TGGAGAGAGAGGCGAGGAT |
图3
AlTOR与其他半翅目昆虫TOR氨基酸序列多重比对 TOR来源物种及GenBank登录号Origin species of TORs and their GenBank accession numbers:温带臭虫Cimex lectularius (XP_014251577);茶翅蝽Halyomorpha halys (XP_014272645);麦双尾蚜Diuraphis noxia (XP_015365434);棉蚜Aphis gossypii (XP_027843790)。红色方框为AlTOR N-末端的SIN1结构域;蓝色方框为高度保守的CRIM结构域;黄色方框为脂质与膜结合相关C-末端的PH域Red boxes represent SIN1 domain of N-terminus, blue boxes represent highly conserved CRIM domain, and yellow boxes represent PH domain of the C-terminus associated with lipid-membrane binding"
图9
原核表达质粒pCzn1-AlTOR诱导表达蛋白的SDS-PAGE分析(A)和pCzn1-AlTOR表达蛋白纯化的SDS-PAGE分析(B) M:蛋白分子量标准物Protein molecular weight marker。A:1:未经IPTG诱导的pCzn1-AlTOR表达蛋白pCzn1-AlTOR expressed protein without induced by IPTG;2:IPTG诱导的pCzn1-AlTOR表达蛋白pCzn1-AlTOR expressed protein induced by IPTG;3:重组质粒pCzn1-AlTOR表达蛋白上清Supernatant of pCzn1-AlTOR expressed protein induced by IPTG;4:重组质粒pCzn1-AlTOR表达蛋白沉淀Precipitate of pCzn1-AlTOR expressed protein induced by IPTG。B:1:未纯化的包涵体Unpurified inclusion body;2:未与Ni柱结合的杂蛋白Uncombined heterozygous protein with Ni NTA column;3:与Ni柱结合的目的蛋白Combined target protein with Ni NTA column"
[1] |
LU Y H, WU K M, JIANG Y Y, XIA B, LI P, FENG H Q, WYCKHUYS K A G, GUO Y Y. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science, 2010,328(5982):1151-1154.
doi: 10.1126/science.1187881 |
[2] |
WU K M, MU W, LIANG G M, GUO Y Y. Regional reversion of insecticide resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) is associated with the use of Bt cotton in northern China. Pest Management Science, 2005,61(5):491-498.
doi: 10.1002/(ISSN)1526-4998 |
[3] | 陆宴辉, 梁革梅, 吴孔明. 棉盲蝽综合治理研究进展. 植物保护, 2007,33(6):10-15. |
LU Y H, LIANG G M, WU K M. Advances in integrated management of cotton mirids. Plant Protection, 2007,33(6):10-15. (in Chinese) | |
[4] |
LU Y H, WU K M, JIANG Y Y, GUO Y Y, DESNEUX N. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature, 2012,487(7407):362-365.
doi: 10.1038/nature11153 |
[5] |
NELSEN C J, RICKHEIM D G, TUCKER M M, HANSEN L K, ALBRECHT J H. Evidence that cyclin D1 mediates both growth and proliferation downstream of TOR in hepatocytes. The Journal of Biological Chemistry, 2003,278(6):3656-3663.
doi: 10.1074/jbc.M209374200 |
[6] |
DE VIRGILIO C, LOEWITH R. The TOR signalling network from yeast to man. The International Journal of Biochemistry and Cell Biology, 2006,38(9):1476-1481.
doi: 10.1016/j.biocel.2006.02.013 |
[7] |
AVRUCH J, LONG X M, LIN Y, ORTIZ-VEGA S, RAPLEY J, PAPAGEORGIOU A, OSHIRO N, KIKKAWA U. Activation of mTORC1 in two steps: Rheb-GTP activation of catalytic function and increased binding of substrates to raptor1. Biochemical Society Transactions, 2009,37(1):223-226.
doi: 10.1042/BST0370223 |
[8] | 刘南南, 姚军虎. 营养素和激素对乳蛋白合成过程中哺乳动物雷帕霉素靶蛋白信号通路调节作用的研究进展. 动物营养学报, 2013,25(6):1158-1163. |
LIU N N, YAO J H. Research advance in regulation of mTOR signaling pathway by nutrients and hormones in milk protein synthesis. Chinese Journal of Animal Nutrition, 2013,25(6):1158-1163. (in Chinese) | |
[9] |
LIU L, LUO Y, CHEN L, SHEN T, XU B S, CHEN W X, ZHOU H Y, HAN X Z, HUANG S L. Rapamycin inhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity. The Journal of Biological Chemistry, 2010,285(49):38362-38373.
doi: 10.1074/jbc.M110.141168 |
[10] |
LIN X Y, SMAGGHE G. Roles of the insulin signaling pathway in insect development and organ growth. Peptides, 2019,122:169923.
doi: 10.1016/j.peptides.2018.02.001 |
[11] |
LIN X Y, DE SCHUTTER K, CHAFINO S, FRANCH-MARRO X, MARTIN D, SMAGGHE G. Target of rapamycin (TOR) determines appendage size during pupa formation of the red flour beetle Tribolium castaneum. Journal of Insect Physiology, 2019,117:103902.
doi: 10.1016/j.jinsphys.2019.103902 |
[12] |
LAYALLE S, ARQUIER N, LEOPOLD P. The TOR pathway couples nutrition and developmental timing in Drosophila. Developmental Cell, 2008, 15(4):568-577.
doi: 10.1016/j.devcel.2008.08.003 |
[13] |
OKAMOTO N, YAMANAKA N, YAGI Y, NISHIDA Y, KATAOKA H, O’CONNOR M B, MIZOGUCHI A. A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila. Developmental Cell, 2009,17(6):885-891.
doi: 10.1016/j.devcel.2009.10.008 |
[14] |
DELANOUE R, SLAIDINA M, LEOPOLD P. The steroid hormone ecdysone controls systemic growth by repressing dMyc function in Drosophila fat cells. Developmental Cell, 2010,18(6):1012-1021.
doi: 10.1016/j.devcel.2010.05.007 |
[15] |
COLOMBANI J, RAISIN S, PANTALACCI S, RADIMERSKI T, MONTAGNE J, LEOPOLD P. A nutrient sensor mechanism controls Drosophila growth. Cell, 2003,114(6):739-749.
doi: 10.1016/S0092-8674(03)00713-X |
[16] |
COLOMBANI J, BIANCHINI L, LAYALLE S, PONDEVILLE E, DAUPHIN-VILLEMANT C, ANTONIEWSKI C, CARRE C, NOSELLI S, LEOPOLD P. Antagonistic actions of ecdysone and insulins determine final size in Drosophila. Science, 2005,310(5748):667-670.
doi: 10.1126/science.1119432 |
[17] | MENAND B, DESNOS T, NUSSAUME L, BERGER F, BOUCHEZ D, MEYER C, ROBAGLIA C. Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proceedings of the National Academy of Sciences of the United States of America, 2002,99(9):6422-6427. |
[18] |
DAMES S A, MULET J M, RATHGEB-SZABO K, HALL M N, GRZESIEK S. The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. The Journal of Biological Chemistry, 2005,280(21):20558-20564.
doi: 10.1074/jbc.M501116200 |
[19] | 宋晓丹, 张园, 邹祥. TOR信号调控真菌细胞的生长与代谢. 微生物学报, 2018,58(10):1691-1700. |
SONG X D, ZHANG Y, ZOU X. Fungal cell growth and metabolism regulated by the TOR signal pathway. Acta Microbiologica Sinica, 2018,58(10):1691-1700. (in Chinese) | |
[20] |
SUN Y, XIAO L B, CAO G C, ZHANG Y J, XIAO Y F, XU G C, ZHAO J, TAN Y A, BAI L X. Molecular characterisation of the vitellogenin gene (AlVg) and its expression after Apolygus lucorum had fed on different hosts. Pest Management Science, 2016,72(9):1743-1751.
doi: 10.1002/ps.4203 |
[21] |
KLEIN R R, BOURDON D M, COSTALES C L, WAGNER C D, WHITE W L, WILLIAMS J D, HICKS S N, SONDEK J, THAKKER D R. Direct activation of human phospholipase C by its well known inhibitor U73122. Journal of Biological Chemistry, 2011,286(14):12407-12416.
doi: 10.1074/jbc.M110.191783 |
[22] |
SONG N N, DING W H, CHU S Y, ZHAO J, DONG X, DI B B, TANG C S. Urotensin II stimulates vascular endothelial growth factor secretion from adventitial fibroblasts in synergy with angiotensin II. Circulation Journal, 2012,76(5):1267-1273.
doi: 10.1253/circj.CJ-11-0870 |
[23] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 |
[24] |
LUSHCHAK O, STRILBYTSKA O, PISKOVATSKA V, STOREY K B, KOLIADA A, VAISERMAN A. The role of the TOR pathway in mediating the link between nutrition and longevity. Mechanisms of Ageing and Development, 2017,164:127-138.
doi: 10.1016/j.mad.2017.03.005 |
[25] |
YERLIKAYA S, MEUSBURGER M, KUMARI R, HUBER A, ANRATHER D, COSTANZO M, BOONE C, AMMERER G, BARANOV P V, LOEWITH R. TORC1 and TORC2 collude to regulate Ribosomal Protein S6 phosphorylation in Saccharomyces cerevisiae. Molecular Biology of the Cell, 2016,27(2):397-409.
doi: 10.1091/mbc.e15-08-0594 |
[26] | AVRUCH J, PRASKOVA M, ORTIZ-VEGA S, LIU M, ZHANG X F. Nore1 and RASSF1 regulation of cell proliferation and of the MST1/2 kinases//Methods in Enzymology, 2006,407:290-310. |
[27] |
LOEWITH R, HALL M N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics, 2011,189(4):1177-1201.
doi: 10.1534/genetics.111.133363 |
[28] |
ZHA X J, SUN Q, ZHANG H B. mTOR upregulation of glycolytic enzymes promotes tumor development. Cell Cycle, 2011,10(7):1015-1016.
doi: 10.4161/cc.10.7.15063 |
[29] |
RAJAN A, PERRIMON N. Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell, 2012,151(1):123-137.
doi: 10.1016/j.cell.2012.08.019 |
[30] |
FENG Y H, WU L S. mTOR up-regulation of PFKFB3 is essential for acute myeloid leukemia cell survival. Biochemical and Biophysical Research Communication, 2017,483(2):897-903.
doi: 10.1016/j.bbrc.2017.01.031 |
[31] | GHOSH D, SRIVASTAVA G P, XU D, SCHULZ L C, ROBERTS R M. A link between SIN1 (MAPKAP1) and poly (rC) binding protein 2 (PCBP2) in counteracting environmental stress. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(33):11673-11678. |
[32] |
SMYKAL V, RAIKHEL A S. Nutritional control of insect reproduction. Current Opinion in Insect Science, 2015,11:31-38.
doi: 10.1016/j.cois.2015.08.003 |
[33] | DANIELSEN E T, MOELLER M E, REVITZ K F. Nutrient signaling and developmental timing of maturation. Current Topics in Developmental Biology, 2013,105(3):37-67. |
[34] |
CARPENTER V K, DRAKE L L, AGUIRRE S E, PRICE D P, RODRIGUEZ S D, HANSEN I A. SLC7 amino acid transporters of the yellow fever mosquito Aedes aegypti and their role in fat body TOR signaling and reproduction. Journal of Insect Physiology, 2012,58(4):513-522.
doi: 10.1016/j.jinsphys.2012.01.005 |
[35] |
LU K, CHEN X, LIU W T, ZHOU Q. TOR pathway-mediated juvenile hormone synthesis regulates nutrient-dependent female reproduction in Nilaparvata lugens (Stål). International Journal of Molecular Sciences, 2016,17(4):438.
doi: 10.3390/ijms17040438 |
[36] | KOYAMA T, MENDES C C, MIRTH C K. Mechanisms regulating nutrition-dependent developmental plasticity through organ-specific effects in insects. Frontiers in Physiology, 2013,4:263. |
[37] |
KADAMUR G, ROSS E M. Mammalian phospholipase C. Annual Review of Physiology, 2013,75:127-154.
doi: 10.1146/annurev-physiol-030212-183750 |
[38] |
GU S H, CHEN C H, LIN P L, HSIEH H Y. Role of protein phosphatase 2A in PTTH-stimulated prothoracic glands of the silkworm, Bombyx mori. General and Comparative Endocrinology, 2019,274:97-105.
doi: 10.1016/j.ygcen.2019.01.009 |
[39] |
GU S H, HSIEH Y C, LIN P L. Signaling involved in PTTH- stimulated 4E-BP phosphorylation in prothoracic gland cells of Bombyx mori. Journal of Insect Physiology, 2017,96:1-8.
doi: 10.1016/j.jinsphys.2016.10.007 |
[40] | SCHLUEPMANN H, PELLNY T, VAN DIJKEN A, SEMMKENS S, PAUL M. Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(11):6849-6854. |
[41] | 谭永安, 肖留斌, 孙洋, 柏立新. 绿盲蝽水溶性海藻糖酶ALTre-1基因原核表达、纯化与酶学特性. 中国农业科学, 2013,46(17):3587-3593. |
TAN Y A, XIAO L B, SUN Y, BAI L X. Prokaryotic expression, purification and functional activity assay in vitro of soluble trehalse from Apolygus lucorum. Scientia Agricultura Sinica, 2013,46(17):3587-3593. (in Chinese) |
[1] | 沈龙仙, 王丽婷, 何珂, 杜雪, 颜菲菲, 陈维虎, 吕耀平, 汪涵, 周晓龙, 赵阿勇. 褪黑素和烟酰胺单核苷酸对鹅骨骼肌卫星细胞增殖的影响[J]. 中国农业科学, 2023, 56(2): 391-404. |
[2] | 古丽旦,刘洋,李方向,成卫宁. 小麦吸浆虫小热激蛋白基因Hsp21.9的克隆及在滞育过程与温度胁迫下的表达特性[J]. 中国农业科学, 2023, 56(1): 79-89. |
[3] | 张克坤,陈可钦,李婉平,乔浩蓉,张俊霞,刘凤之,房玉林,王海波. 灌水量对限根栽培‘阳光玫瑰’葡萄果实发育与香气物质积累的影响[J]. 中国农业科学, 2023, 56(1): 129-143. |
[4] | 莫文静,朱嘉伟,何新华,余海霞,江海玲,覃柳菲,张艺粒,李雨泽,罗聪. 芒果MiZAT10A和MiZAT10B功能分析[J]. 中国农业科学, 2023, 56(1): 193-202. |
[5] | 李世佳,吕紫敬,赵锦. 枣R2R3-MYB亚家族基因鉴定及其在果实发育中的表达分析[J]. 中国农业科学, 2022, 55(6): 1199-1212. |
[6] | 赖春旺, 周小娟, 陈燕, 刘梦雨, 薛晓东, 肖学宸, 林文忠, 赖钟雄, 林玉玲. 龙眼乙烯合成途径基因鉴定及响应ACC处理的分析[J]. 中国农业科学, 2022, 55(3): 558-574. |
[7] | 束婧婷,单艳菊,姬改革,章明,屠云洁,刘一帆,巨晓军,盛中伟,唐燕飞,李华,邹剑敏. 广西麻鸡m6A甲基转移酶基因表达与肌纤维类型及成肌分化的关系[J]. 中国农业科学, 2022, 55(3): 589-601. |
[8] | 赵慧婷,彭竹,姜玉锁,赵淑果,黄丽,杜亚丽,郭丽娜. 中华蜜蜂气味结合蛋白AcerOBP7的表达及结合特性[J]. 中国农业科学, 2022, 55(3): 613-624. |
[9] | 李雨泽,朱嘉伟,林蔚,蓝茉莹,夏黎明,张艺粒,罗聪,黄桂香,何新华. 香水柠檬RHF2A的克隆与互作蛋白的筛选[J]. 中国农业科学, 2022, 55(24): 4912-4926. |
[10] | 郭绍雷,许建兰,王晓俊,宿子文,张斌斌,马瑞娟,俞明亮. 桃XTH家族基因鉴定及其在桃果实贮藏过程中的表达特性[J]. 中国农业科学, 2022, 55(23): 4702-4716. |
[11] | 张琦,段玉,苏越,蒋琪琪,王春庆,宾羽,宋震. 基于柑橘叶斑驳病毒的表达载体构建及应用[J]. 中国农业科学, 2022, 55(22): 4398-4407. |
[12] | 郝艳,李晓颍,叶茂,刘亚婷,王天宇,王海静,张立彬,肖啸,武军凯. ‘21世纪’桃与‘久脆’桃及其杂交后代果实挥发性成分特征分析[J]. 中国农业科学, 2022, 55(22): 4487-4499. |
[13] | 康忱,赵雪芳,李亚栋,田哲娟,王鹏,吴志明. 黄瓜CC-NBS-LRR家族基因鉴定及在霜霉病和白粉病胁迫下的表达分析[J]. 中国农业科学, 2022, 55(19): 3751-3766. |
[14] | 温玉霞,张坚,王琴,王靖,裴悦宏,田绍锐,樊光进,马小舟,孙现超. 本氏烟NbMBF1c的克隆、表达及在TMV侵染过程中的功能[J]. 中国农业科学, 2022, 55(18): 3543-3555. |
[15] | 张云秀,蒋旭,尉春雪,蒋学乾,卢栋宇,龙瑞才,杨青川,王珍,康俊梅. 紫花苜蓿高迁移率族蛋白基因MsHMG-Y调控花期的功能分析[J]. 中国农业科学, 2022, 55(16): 3082-3092. |
|