中国农业科学 ›› 2020, Vol. 53 ›› Issue (20): 4189-4203.doi: 10.3864/j.issn.0578-1752.2020.20.008
收稿日期:
2020-03-07
接受日期:
2020-04-03
出版日期:
2020-10-16
发布日期:
2020-10-26
通讯作者:
何永睿,李强
作者简介:
秦秀娟,E-mail:基金资助:
QIN XiuJuan(),QI JingJing,DOU WanFu,CHEN ShanChun,HE YongRui(
),LI Qiang(
)
Received:
2020-03-07
Accepted:
2020-04-03
Online:
2020-10-16
Published:
2020-10-26
Contact:
YongRui HE,Qiang LI
摘要:
【目的】活性氧(reactive oxygen species,ROS)是植物抗病反应中重要的信号分子,而Rboh是参与活性氧产生的关键酶之一。本研究通过鉴定和分析柑橘全基因组中Rboh基因家族生物信息学特性、生物胁迫相关植物激素和溃疡病菌(Xanthomonas citri subsp. citri,Xcc)侵染诱导下表达模式,为研究Rboh基因家族与柑橘抗溃疡病过程的相关性,进一步研究和利用柑橘Rboh基因打下基础。【方法】利用过氧化物酶数据库RedOxiBase和柑橘(甜橙)CAP数据库获得柑橘Rboh家族序列信息;利用生物信息学软件对CsRboh进行理化性质、系统进化关系、染色体定位、基因结构、蛋白功能结构域、保守基序和启动子元件系统分析。通过实时荧光定量PCR(qRT-PCR)分析植物激素水杨酸(salicylic acid,SA)、茉莉酸(jasmonic acid,JA)、脱落酸(abscisic acid,ABA)和溃疡病菌处理下CsRboh表达模式。【结果】鉴定得到7个柑橘Rboh家族成员(CsRboh01—CsRboh07),其编码蛋白包含784—946个不等的氨基酸残基,等电点(PI)分布在8.67—9.40,主要定位于细胞膜结构和细胞质。根据系统进化树可将柑橘Rboh家族划分为I—IV 4个亚家族。CsRboh家族基因不均匀分布在甜橙的5条染色体,均含有典型的呼吸爆发NADPH氧化酶结构域(NADPH_Ox)、铁还原酶跨膜组件(Ferric_reduct)、FAD结合结构域(FAD_binding)和铁还原酶NAD结合结构域(NAD_binding)4个功能结构域。CsRboh家族各基因的启动子区域含不同激素响应元件,数目和类型各有差异。qRT-PCR结果显示CsRboh基因家族各成员可响应激素和溃疡病菌诱导,在不同激素和溃疡病菌处理下感病品种晚锦橙和抗病品种四季橘中表达模式具有差异。结合系统进化树聚类分析、同源基因功能研究及其启动子区域顺式作用元件分析发现,CsRboh02、CsRboh04和CsRboh06在抗、感两个品种中受柑橘溃疡病菌诱导表现出明显不同的表达趋势和表达量。【结论】CsRboh02、CsRboh04和CsRboh06可能与柑橘品种抗、感性密切相关,是3个有潜力的抗溃疡病分子育种候选基因,初步确定CsRboh家族基因在柑橘响应溃疡病过程中发挥关键作用。
秦秀娟,祁静静,窦万福,陈善春,何永睿,李强. 柑橘Rboh家族鉴定及其对激素和柑橘溃疡病的响应[J]. 中国农业科学, 2020, 53(20): 4189-4203.
QIN XiuJuan,QI JingJing,DOU WanFu,CHEN ShanChun,HE YongRui,LI Qiang. Identification of Rboh Family and the Response to Hormone and Citrus Bacterial Canker in Citrus[J]. Scientia Agricultura Sinica, 2020, 53(20): 4189-4203.
表1
本研究使用的实时荧光定量PCR引物"
基因Gene | 上游引物Forward primer | 下游引物Reverse primer |
---|---|---|
CsRboh01 | GCTCTCGGCTTCAACTTCCT | TCAAAGCTCGAGCCGCTAAA |
CsRboh02 | ATGGAGCACCAGCTCAAGAC | AGTAGCCCCAATTCCAAGCC |
CsRboh03 | TTGGCCAGCAGATTGGAGAG | CTGCGAAACTTGCCTCAACC |
CsRboh04 | ACGCCCGTCTTCAGATTTTCT | GCCATAAGTGACTGACACGCT |
CsRboh05 | CCGGCGCAATCTGTTAAAGG | TGTAGGCTTCAGCTTCTGGC |
CsRboh06 | CGCATGAAAGGGACACCGAAT | CAAATGAGCCTTGTTCCCTTGTT |
CsRboh07 | AACCGGTGATCAAGTGGTCG | GCATGGCTACAAAATTTGAGGGAA |
CsActin | CATCCCTCAGCACCTTCC | CCAACCTTAGCACTTCTCC |
表2
CsRboh家族成员信息"
名称 Name | CAP号 CAP ID | 大小 Size (aa) | 分子量 Molecular weight (Da) | 等电点 Isoelectric point (PI) | 亲水性平均值 Grand average of hydropathicity | 脂肪指数 Aliphatic index | 不稳定系数 Instability index | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|---|
CsRboh01 | Cs5g02940.1 | 946 | 106370.8 | 9.40 | -0.247 | 87.68 | 50.16 | 细胞外膜Outer membrane |
CsRboh02 | Cs8g12000.1 | 912 | 103139.3 | 9.05 | -0.299 | 83.84 | 42.57 | 细胞质Cytoplasmic |
CsRboh03 | Cs3g14240.1 | 889 | 101017.9 | 9.10 | -0.265 | 85.43 | 40.96 | 细胞外膜Outer membrane |
CsRboh04 | Cs4g06920.1 | 875 | 99488.8 | 9.31 | -0.252 | 82.61 | 48.38 | 细胞内膜Inner membrane |
CsRboh05 | Cs7g19320.1 | 811 | 91648.2 | 8.67 | -0.269 | 86.94 | 40.91 | 细胞质Cytoplasmic |
CsRboh06 | Cs8g17640.1 | 844 | 96907.0 | 8.99 | -0.173 | 84.69 | 40.42 | 细胞内膜Inner membrane |
CsRboh07 | Cs5g11890.1 | 784 | 89837.0 | 9.09 | -0.015 | 89.06 | 44.93 | 细胞内膜Inner membrane |
表3
CsRboh的二级结构"
名称 Name | α-螺旋 Alpha helix (%) | β-转角 Beta turn (%) | 不规则卷曲 Random coil (%) | 伸展链 Extended strand (%) |
---|---|---|---|---|
CsRboh01 | 44.61 | 4.76 | 36.79 | 13.85 |
CsRboh02 | 43.75 | 5.26 | 34.87 | 16.12 |
CsRboh03 | 44.43 | 5.29 | 35.32 | 14.96 |
CsRboh04 | 41.83 | 4.57 | 38.29 | 15.31 |
CsRboh05 | 42.17 | 4.19 | 37.36 | 16.28 |
CsRboh06 | 43.60 | 5.21 | 36.85 | 14.34 |
CsRboh07 | 43.24 | 5.48 | 36.48 | 14.80 |
图1
多物种Rboh家族系统进化树 PtRboh01-10:杨树Rboh成员The Rbohs of Populus trichocarpa;AtRboh01-10:拟南芥Rboh成员The Rbohs of Arabidopsis thaliana;CsRboh01-07:柑橘Rboh成员The Rbohs of C. sinensis拟南芥和杨树Rboh蛋白序列获取自RedoxiBase数据库,比对采用蛋白的全长序列进行,进化树采用最大似然法和泊松模型The sequences of P. trichocarpa and A. thaliana are retrieved from RedoxiBase (http://peroxibase.toulouse.inra.fr). The full-length of protein sequences are used for the maximum likelihood phylogeny with Poisson model"
[1] |
PITINO M, ARMSTRONG C M, DUAN Y P. Rapid screening for citrus canker resistance employing pathogen-associated molecular pattern-triggered immunity responses. Horticulture Research, 2015,2:15042.
doi: 10.1038/hortres.2015.42 pmid: 26504581 |
[2] | 胡安华, 祁静静, 张庆雯, 陈善春, 邹修平, 许兰珍, 彭爱红, 雷天刚, 姚利晓, 龙琴, 何永睿, 李强. 柑橘溃疡病相关基因CsPGIP的克隆与表达. 中国农业科学, 2019,52(4):639-650. |
HU A H, QI J J, ZHANG Q W, CHEN S C, ZOU X P, XU L Z, PENG A H, LEI T G, YAO L X, LONG Q, HE Y R, LI Q. Cloning and expression analysis of the citrus bacterial canker-related gene CsPGIP in citrus. Scientia Agricultura Sinica, 2019,52(4):639-650. (in Chinese) | |
[3] | 贾瑞瑞, 周鹏飞, 白晓晶, 陈善春, 许兰珍, 彭爱红, 雷天刚, 姚利晓, 陈敏, 何永睿, 李强. 柑橘响应溃疡病菌转录因子CsBZIP40的克隆及功能分析. 中国农业科学, 2017,50(13):2488-2497. |
JIA R R, ZHOU P F, BAI X J, CHEN S C, XU L Z, PENG A H, LEI T G, YAO L X, CHEN M, HE Y R, LI Q. Gene cloning and expression analysis of canker-related transcription factor CsBZIP40 in citrus. Scientia Agricultura Sinica, 2017,50(13):2488-2497. (in Chinese) | |
[4] | HE Y R, JIA R R, QI J J, CHEN S C, LEI T G, XU L Z, PENG A H, YAO L X, LONG Q, LI Z G, LI Q. Functional analysis of citrus AP2 transcription factors identified CsAP2-09 involved in citrus canker disease response and tolerance. Gene, 2019,707:178-188. |
[5] | MENDES B M J, CARDOSO S C, BOSCARIOL-CAMARGO R L, CRUZ R B, MOURAO FILHO F A A, BERGAMIN FILHO A. Reduction in susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis expressing the rice Xa21 gene. Plant Pathology, 2010,59(1):68-75. |
[6] | 贾瑞瑞, 胡安华, 陈善春, 邹修平, 彭爱红, 许兰珍, 雷天刚, 姚利晓, 白晓晶, 何永睿, 李强. 柑橘响应溃疡病菌转录因子基因CsAP2-09的克隆与功能分析. 园艺学报, 2017,44(10):1881-1893. |
JIA R R, HU A H, CHEN S C, ZOU X P, PENG A H, XU L Z, LEI T G, YAO L X, BAI X J, HE Y R, LI Q. Cloning and expression analysis of CsAP2-09: A transcription factor related to citrus canker disease. Acta Horticulturae Sinica, 2017,44(10):1881-1893. (in Chinese) | |
[7] |
WANG W, CHEN D D, ZHANG X P, LIU D, CHENG Y Y, SHEN F F. Role of plant respiratory burst oxidase homologs in stress responses. Free Radical Research, 2018,52(8):826-839.
doi: 10.1080/10715762.2018.1473572 pmid: 29732902 |
[8] | FOREMAN J, DEMIDCHIK V, BOTHWELL J H, MYLONA P, MIEDEMA H, TORRES M A, LINSTEAD P, COSTA S, BROWNLEE C, JONES J D, DAVIES J M, DOLAN L. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 2003,422(6930):442-446. |
[9] | SAVELLI B, LI Q, WEBBER M, JEMMAT A M, ROBITAILLE A, ZAMOCKY M, MATHE C, DUNAND C. RedoxiBase: A database for ROS homeostasis regulated proteins. Redox Biology, 2019,26:101247. |
[10] | 刘秋圆, 贺浩华, 胡丽芳. 植物Rboh基因功能及其活性调节机制的研究进展. 生物技术通报, 2013(11):8-13. |
LIU Q Y, HE H H, HU L F. Research progress in plant Rboh genes function and activity regulation mechanism.Biotechnology Bulletin, 2013(11):8-13. (in Chinese) | |
[11] | STEFFENS B, SAUTER M. Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway. The Plant Cell, 2009,21(1):184-196. |
[12] | KELLER T, DAMUDE H G, WERNER D, DOERNER P, DIXON R A, LAMB C. A plant homolog of the neutrophil NADPH oxidase gp91 phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. The Plant Cell , 1998,10(2):255-266. |
[13] |
TORRES M A, ONOUCHI H, HAMADA S, MACHIDA C, HAMMOND-KOSACK K E, JONES J D. Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). The Plant Journal , 1998,14(3):365-370.
pmid: 9628030 |
[14] |
SAGI M, DAVYDOV O, ORAZOVA S, YESBERGENOVA Z, OPHIR R, STRATMANN J W, FLUHR R. Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. The Plant Cell, 2004,16(3):616-628.
pmid: 14973161 |
[15] |
OROZCO-CARDENAS M L, NARVAEZ-VASQUEZ J, RYAN C A. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. The Plant Cell, 2001,13(1):179-191.
pmid: 11158538 |
[16] | ZHANG H J, FANG Q, ZHANG Z G, WANG Y C, ZHENG X B. The role of respiratory burst oxidase homologues in elicitor-induced stomatal closure and hypersensitive response in Nicotiana benthamiana. Journal of Experimental Botany, 2009,60(11):3109-3122. |
[17] | ASAI S, OHTA K, YOSHIOKA H. MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. The Plant Cell, 2008,20(5):1390-1406. |
[18] | YOSHIOKA H, NUMATA N, NAKAJIMA K, KATOU S, KAWAKITA K, ROWLAND O, JONES J D G, DOKE N. Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. The Plant Cell , 2003,15(3):706-718. |
[19] |
SIMON-PLAS F, ELMAYAN T, BLEIN J P. The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. The Plant Journal, 2002,31(2):137-147.
doi: 10.1046/j.1365-313x.2002.01342.x pmid: 12121444 |
[20] |
YOSHIOKA H, SUGIE K, PARK H J, MAEDA H, TSUDA N, KAWAKITA K, DOKE N. Induction of plant gp91 phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Molecular Plant-Microbe Interactions, 2001,14(6):725-736.
pmid: 11386368 |
[21] | KOBAYASHI M, OHURA I, KAWAKITA K, YOKOTA N, FUJIWARA M, SHIMAMOTO K, DOKE N, YOSHIOKA H. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. The Plant Cell, 2007,19(3):1065-1080. |
[22] |
LIN F, DING H D, WANG J X, ZHANG H, ZHANG A Y, ZHANG Y, TAN M P, DONG W, JIANG M Y. Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling. Journal of Experimental Botany, 2009,60(11):3221-3238.
pmid: 19592501 |
[23] |
SI Y, DANE F, RASHOTTE A, KANG K, SINGH N K. Cloning and expression analysis of the Ccrboh gene encoding respiratory burst oxidase in Citrullus colocynthis and grafting onto Citrullus lanatus (watermelon). Journal of Experimental Botany, 2010,61(6):1635-1642.
pmid: 20181664 |
[24] |
TRUJILLO M, ALTSCHMIED L, SCHWEIZER P, KOGEL K H, HUCKELHOVEN R. Respiratory burst oxidase homologue A of barley contributes to penetration by the powdery mildew fungus Blumeria graminis f. sp. hordei. Journal of Experimental Botany, 2006,57(14):3781-3791.
pmid: 17046982 |
[25] | LIGHTFOOT D J, BOETTCHER A, LITTLE A, SHIRLEY N, ABLE A J. Identification and characterisation of barley (Hordeum vulgare) respiratory burst oxidase homologue family members. Functional Plant Biology, 2008,35(5):347-359. |
[26] | MARINO D, ANDRIO E, DANCHIN E G, OGER E, GUCCIARDO S, LAMBERT A, PUPPO A, PAULY N. A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning. New Phytologist, 2011,189(2):580-592. |
[27] |
MULLER K, LINKIES A, LEUBNER-METZGER G, KERMODE A R. Role of a respiratory burst oxidase of Lepidium sativum (cress) seedlings in root development and auxin signalling. Journal of Experimental Botany, 2012,63(18):6325-6334.
doi: 10.1093/jxb/ers284 pmid: 23095998 |
[28] |
SAGI M, FLUHR R. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiology, 2006,141(2):336-340.
pmid: 16760484 |
[29] |
SAITO N, MUNEMASA S, NAKAMURA Y, SHIMOISHI Y, MORI I C, MURATA Y. Roles of RCNl, regulatory a subunit of protein phosphatase 2A, in methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid. Plant and Cell Physiology, 2008,49(9):1396-1401.
pmid: 18650210 |
[30] | 李业, 陈银华, 吴家和, 何朝族. OsRboh基因家族在水稻免疫应答中的表达及功能分析. 生物工程学报, 2011,27(11):1574-1585. |
LI Y, CHEN Y H, WU J H, HE C Z. Expression and functional analysis of OsRboh gene family in rice immune response. Chinese Journal of Biotechnology, 2011,27(11):1574-1585. (in Chinese) | |
[31] |
JIANG M Y, ZHANG J H. Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta, 2002,215(6):1022-1030.
pmid: 12355163 |
[32] |
WU G A, PROCHNIK S, JENKINS J, SALSE J, HELLSTEN U, MURAT F, PERRIER X, RUIZ M, SCALABRIN S, TEROL J,et al. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nature Biotechnology, 2014,32(7):656-662.
pmid: 24908277 |
[33] |
XU Q, CHEN L L, RUAN X, CHEN D, ZHU A, CHEN C, BERTRAND D, JIAO W B, HAO B H, LYON M P,et al. The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 2013,45(1):59-66.
doi: 10.1038/ng.2472 pmid: 23179022 |
[34] |
WANG J, CHEN D, LEI Y, CHANG J W, HAO B H, XING F, LI S, XU Q, DENG X X, CHEN L L. Citrus sinensis annotation project (CAP): A comprehensive database for sweet orange genome. PLoS ONE, 2014,9(1):e87723.
pmid: 24489955 |
[35] |
FAWAL N, LI Q, MATHE C, DUNAND C. Automatic multigenic family annotation: Risks and solutions. Trends in Genetics, 2014,30(8):323-325.
pmid: 25017189 |
[36] |
FAWAL N, LI Q, SAVELLI B, BRETTE M, PASSAIA G, FABRE M, MATHE C, DUNAND C. PeroxiBase: A database for large-scale evolutionary analysis of peroxidases. Nucleic Acids Research, 2013,41(Database issue):D441-D444.
pmid: 23180785 |
[37] |
KELLER O, ODRONITZ F, STANKE M, KOLLMAR M, WAACK S. Scipio: Using protein sequences to determine the precise exon/intron structures of genes and their orthologs in closely related species. BMC Bioinformatics, 2008,9:278.
pmid: 18554390 |
[38] | EI-GEBALI S, MISTRY J, BATEMAN A, EDDY S R, LUCIANI A, POTTER S C, QURESHI M, RICHARDSON L J, SALAZAR G A, SMART A, SONNHAMMER E L L, HIRSH L, PALADIN L, PIOVESAN D, TOSATTO S C E, FINN R D. The Pfam protein families database in 2019. Nucleic Acids Research, 2019,47(Database issue):D427-D432. |
[39] |
LI Q, QI J J, QIN X J, DOU W F, LEI T G, HU A H, JIA R R, JIANG G J, ZOU X P, LONG Q, XU L Z, PENG A H, YAO L X, CHEN S C, HE Y R. CitGVD: A comprehensive database of citrus genomic variations. Horticulture Research, 2020,7:12.
doi: 10.1038/s41438-019-0234-3 pmid: 32025315 |
[40] |
ARTIMO P, JONNALAGEDDA M, ARNOLD K, BARATIN D, CSARDI G, DE CASTROE E, DUVAUD S, FLEGEL V, FORTIER A, GASTEIGER E,et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 2012,40(Web server issue):W597-W603.
doi: 10.1093/nar/gks400 pmid: 22661580 |
[41] | YU C S, LIN C J, HWANG J K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Science, 2004,13(5):1402-1406. |
[42] |
KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016,33(7):1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904 |
[43] | 郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007,29(8):1023-1026. |
GUO A Y, ZHU Q H, CHEN X, LUO J C. GSDS: A gene structure display server. Hereditas, 2007,29(8):1023-1026. (in Chinese) | |
[44] |
BAILEY T L, BODEN M, BUSKE F A, FRITH M, GRANT C E, CLEMENTI L, REN J, LI W W, NOBLE W S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 2009,37(Web server issue):W202-W208.
pmid: 19458158 |
[45] |
LI Q, DOU W F, QI J J, QIN X J, CHEN S C, HE Y R. Genomewide analysis of the CIII peroxidase family in sweet orange (Citrus sinensis) and expression profiles induced by Xanthomonas citri subsp. citri and hormones. Journal of Genetics, 2020,99:10.
pmid: 32089529 |
[46] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method . Methods, 2001,25(4):402-408.
pmid: 11846609 |
[47] |
KURUSU T, KUCHITSU K, TADA Y. Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress . Frontiers in Plant Science, 2015,6:427.
pmid: 26113854 |
[48] |
NAVATHE S, SINGH S, SINGH V K, CHAND R, MISHRA V K, JOSHI A K. Genome-wide mining of respiratory burst homologs and its expression in response to biotic and abiotic stresses in Triticum aestivum. Genes and Genomics, 2019,41(9):1027-1043.
doi: 10.1007/s13258-019-00821-x pmid: 31140145 |
[49] |
YU S Z, KAKAR K U, YANG Z X, NAWAZ Z, LIN S F, GUO Y S, REN X L, BALOCH A A, HAN D J. Systematic study of the stress-responsive Rboh gene family in Nicotiana tabacum: Genome- wide identification, evolution and role in disease resistance. Genomics, 2020,112(2):1404-1418.
doi: 10.1016/j.ygeno.2019.08.010 pmid: 31430516 |
[50] |
CHENG C X, XU X Z, GAO M, LI J, GUO C L, SONG J Y, WANG X P. Genome-wide analysis of respiratory burst oxidase homologs in grape (Vitis vinifera L.). International Journal of Molecular Sciences, 2013,14(12):24169-24186.
pmid: 24351809 |
[51] | RUSHTON P J, SOMSSICH I E, RINGLER P, SHEN Q J. WRKY transcription factors. Trends in Plant Science, 2010,15(5):247-258. |
[52] |
SPOEL S H, JOHNSON J S, DONG X N. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(47):18842-18847.
doi: 10.1073/pnas.0708139104 pmid: 17998535 |
[53] |
NAKASHIMA K, ITO Y, YAMAGUCHI-SHINOZAKI K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 2009,149(1):88-95.
doi: 10.1104/pp.108.129791 pmid: 19126699 |
[54] |
KAUR G, SHARMA A, GURUPRASAD K, PATI P K. Versatile roles of plant NADPH oxidases and emerging concepts. Biotechnology Advances, 2014,32(3):551-563.
doi: 10.1016/j.biotechadv.2014.02.002 |
[55] |
TORRES M A, DANGI J L, JONES J D G. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences of the United States of America , 2002,99(1):517-522.
doi: 10.1073/pnas.012452499 pmid: 11756663 |
[56] | 周喆, 张彩霞, 张利义, 王强, 李武兴, 田义, 丛佩华. 苹果LysM基因家族的生物信息学及表达分析. 中国农业科学, 2014,47(13):2602-2612. |
ZHOU Z, ZHANG C X, ZHANG L Y, WANG Q, LI W X, TIAN Y, CONG P H. Bioinformatics and expression analysis of the LysM gene family in apple. Scientia Agricultura Sinica, 2014,47(13):2602-2612. (in Chinese) | |
[57] |
KAUR G, PATI P K. Analysis of cis-acting regulatory elements of respiratory burst oxidase homolog (Rboh) gene families in arabidopsis and rice provides clues for their diverse functions. Computational Biology and Chemistry, 2016,62:104-118.
doi: 10.1016/j.compbiolchem.2016.04.002 pmid: 27111707 |
[58] | CHEN F, HU Y, VANNOZZI A, WU K, CAI H, QIN Y, MULLIS A, LIN Z, ZHANG L. The WRKY transcription factor family in model plants and crops. Critical Reviews in Plant Sciences, 2018,36(5/6):311-335. |
[59] |
POTOCKY M, JONES M, BEZVODA R, SMIRNOFF N, ZARSKY V. Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytologist, 2007,174(4):742-751.
doi: 10.1111/j.1469-8137.2007.02042.x pmid: 17504458 |
[60] |
LI Q, HU A H, DOU W F, QI J J, LONG Q, ZOU X P, LEI T G, YAO L X, HE Y R, CHEN S C. Systematic analysis and functional validation of citrus XTH genes reveal the role of Csxth04 in citrus bacterial canker resistance and tolerance. Frontiers in Plant Science, 2019,10:1109.
doi: 10.3389/fpls.2019.01109 pmid: 31611887 |
[1] | 肖桂华,文康,韩健,郝晨星,叶蓉春,朱亦赤,萧顺元,邓子牛,马先锋. 钙对枳生长发育及柑橘溃疡病抗性的影响[J]. 中国农业科学, 2022, 55(19): 3767-3778. |
[2] | 温玉霞,张坚,王琴,王靖,裴悦宏,田绍锐,樊光进,马小舟,孙现超. 本氏烟NbMBF1c的克隆、表达及在TMV侵染过程中的功能[J]. 中国农业科学, 2022, 55(18): 3543-3555. |
[3] | 胡亚丽,聂靖芝,吴霞,潘姣,曹珊,岳娇,罗登杰,王财金,李增强,张辉,吴启境,陈鹏. 水杨酸引发对红麻幼苗耐盐性的影响[J]. 中国农业科学, 2022, 55(14): 2696-2708. |
[4] | 赵珂,郑林,杜美霞,龙俊宏,何永睿,陈善春,邹修平. 柑橘SAR及其信号转导基因CsSABP2在黄龙病菌侵染中的响应特征[J]. 中国农业科学, 2021, 54(8): 1638-1652. |
[5] | 毕蒙蒙,刘迪,高歌,祝朋芳,毛洪玉. CmWRKY15-1通过水杨酸信号通路调控菊花白色锈病抗性[J]. 中国农业科学, 2021, 54(3): 619-628. |
[6] | 张婧芸,刘语诺,王兆昊,彭爱红,陈善春,何永睿. 转CiNPR4基因柑橘抗溃疡病的机制解析[J]. 中国农业科学, 2021, 54(18): 3871-3880. |
[7] | 施江,王佳童,彭群华,吕海鹏,BALDERMANN Susanne,林智. 外源茉莉酸甲酯诱导茶树鲜叶及其采后乌龙茶加工关键工序中七种脂溶性色素变化[J]. 中国农业科学, 2021, 54(18): 3984-3997. |
[8] | 彭蕴,雷天刚,邹修平,张靖芸,张庆雯,姚家欢,何永睿,李强,陈善春. 柑橘溃疡病抗性SNP验证及其相关钙依赖性蛋白激酶基因诱导表达[J]. 中国农业科学, 2020, 53(9): 1820-1829. |
[9] | 赵雪,王锋,王文静,刘晓峰,卞士权,刘艳华,刘新民,杜咏梅,张忠锋,张洪博. 烟草PR3b转录后剪切元件NRSE1与GUS融合表达后的可变剪切[J]. 中国农业科学, 2020, 53(8): 1524-1531. |
[10] | 龙琴,杜美霞,龙俊宏,何永睿,邹修平,陈善春. 转录因子CsWRKY61对柑橘溃疡病抗性的影响[J]. 中国农业科学, 2020, 53(8): 1556-1571. |
[11] | 姚利晓,范海芳,张庆雯,何永睿,许兰珍,雷天刚,彭爱红,李强,邹修平,陈善春. 柑橘溃疡病抗性相关转录因子CitMYB20的功能[J]. 中国农业科学, 2020, 53(10): 1997-2008. |
[12] | 白辉扬, 鲁庚, 陆俊杏, 管丽, 唐鑫, 张涛. 紫苏茉莉酸羟基甲基转移酶基因PfJMT的克隆及表达分析[J]. 中国农业科学, 2019, 52(9): 1657-1666. |
[13] | 胡安华,祁静静,张庆雯,陈善春,邹修平,许兰珍,彭爱红,雷天刚,姚利晓,龙琴,何永睿,李强. 柑橘溃疡病相关基因CsPGIP的克隆与表达[J]. 中国农业科学, 2019, 52(4): 639-650. |
[14] | 邹修平,龙俊宏,彭爱红,陈敏,龙琴,陈善春. 超量表达CsGH3.6通过抑制生长素信号转导 增强柑橘溃疡病抗性[J]. 中国农业科学, 2019, 52(21): 3806-3818. |
[15] | 窦万福,祁静静,胡安华,陈善春,彭爱红,许兰珍,雷天刚,姚利晓,何永睿,李强. GST pull-down联合LC-MS/MS筛选柑橘抗溃疡病转录因子CsBZIP40的互作蛋白[J]. 中国农业科学, 2019, 52(13): 2243-2255. |
|