中国农业科学 ›› 2021, Vol. 54 ›› Issue (18): 3984-3997.doi: 10.3864/j.issn.0578-1752.2021.18.016
施江1(),王佳童1,2,彭群华1,吕海鹏1,BALDERMANN Susanne3(
),林智1(
)
收稿日期:
2020-10-26
接受日期:
2020-12-29
出版日期:
2021-09-16
发布日期:
2021-09-26
联系方式:
施江,E-mail: shijiang@caas.cn。
基金资助:
SHI Jiang1(),WANG JiaTong1,2,PENG QunHua1,LÜ Haipeng1,BALDERMANN Susanne3(
),LIN Zhi1(
)
Received:
2020-10-26
Accepted:
2020-12-29
Published:
2021-09-16
Online:
2021-09-26
摘要:
【目的】系统开展外源茉莉酸甲酯诱导以及“做青”阶段机械损伤双重胁迫下茶叶中脂溶性色素的动态变化研究,阐明外源茉莉酸甲酯诱导后茶树鲜叶制得乌龙茶中类胡萝卜素含量提高的机理,为合理利用外源诱导提升鲜叶品质和加工制得的乌龙茶品质提供科学依据。【方法】0.25%外源茉莉酸甲酯喷施3—4年生盆栽‘金萱’茶树叶面,至均匀挂滴,对不同诱导时间(0、12、24、48和168 h)的鲜叶及利用该鲜叶制作得到的乌龙茶样品进行基于UPLC-QToFMS的靶标代谢组学分析,解析叶黄素、β-胡萝卜素、新叶黄素、玉米黄质、α-胡萝卜素和叶绿素a/b的含量变化;同时对乌龙茶制作的关键工序“做青”以及杀青后揉捻阶段样品中这些脂溶性色素的动态变化进行监测分析。同时,开展不同诱导时间采摘的鲜叶加工得到成品乌龙茶的香气感官评价。【结果】靶标代谢组学分析结果表明,叶黄素是‘金萱’鲜叶中含量最高的类胡萝卜素,其含量达到(405.06±17.71)µg·g-1,在成品乌龙茶中含量显著下降,仅为(277.36±32.72)µg·g-1。外源茉莉酸甲酯诱导后,脂溶性色素含量变化显著,诱导48 h内,茶树鲜叶中叶绿素a含量较对照鲜叶中(0 h)增加,随后显著下降;叶绿素b在诱导后的鲜叶中始终处于减少的趋势。叶黄素在12 h样品中含量显著下降,在24 h的样品中其含量均较对照升高;β-胡萝卜素在诱导后的鲜叶中含量始终低于对照,其中12 h的样品中含量仅为116.36 µg·g-1,减少34.55%。利用茉莉酸甲酯诱导后的鲜叶(12、24和48 h)制作得到的成品茶样品中叶绿素a含量较对照均显著下降;叶黄素含量显著升高,其中48 h的样品中含量最高,达到377.82 µg·g -1。“做青”过程中(W1—W3),对7种脂溶性色素含量变化进行相应的热图分析,与对照相比,叶绿素a含量均显著下降,而叶绿素b含量则在12 h样品中显著升高。5种类胡萝卜素的含量动态变化则更加复杂,含量最高的叶黄素在12 h样品中含量显著下降,随后在24和48 h的样品中含量略有升高;β-胡萝卜素的含量始终低于对照。此外,玉米黄质和α-胡萝卜素在诱导12 h以后的样品中始终维持非常高的含量。揉捻阶段的样品,7种脂溶性色素也呈现出显著变化,除了β-胡萝卜素含量较对照样品减少,叶黄素、新叶黄素、玉米黄质以及α-胡萝卜素的含量在诱导12 h后的样品中均比对照高。茉莉酸甲酯诱导的样品中,叶绿素a的含量降低,叶绿素b的含量在诱导12 h后增加。此外,茶叶感官审评结果表明,外源茉莉酸甲酯诱导后茶树鲜叶加工得到的乌龙茶香气品质显著提升,具有持久浓郁的花香,然而其叶底明亮度和柔软性较未处理的对照样品有所下降。【结论】外源茉莉酸甲酯诱导茶树鲜叶,24 h内可以显著提高鲜叶及成品茶中的类胡萝卜素含量,诱导12 h后鲜叶加工得到的成品茶香气品质显著提高,具有浓郁的花香。外源诱导与“做青”机械损伤双重胁迫激发茶鲜叶中脂溶性色素的差异积累。
施江,王佳童,彭群华,吕海鹏,BALDERMANN Susanne,林智. 外源茉莉酸甲酯诱导茶树鲜叶及其采后乌龙茶加工关键工序中七种脂溶性色素变化[J]. 中国农业科学, 2021, 54(18): 3984-3997.
SHI Jiang,WANG JiaTong,PENG QunHua,LÜ Haipeng,BALDERMANN Susanne,LIN Zhi. Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing[J]. Scientia Agricultura Sinica, 2021, 54(18): 3984-3997.
表1
外源茉莉酸甲酯诱导后的鲜叶加工成乌龙茶过程中叶绿素和类胡萝卜素含量变化"
样品 Sample | 叶黄素 Lutein | β-胡萝卜素 β-Carotene | 新叶黄素 Neoxanthin | 玉米黄质 Zeaxanthin | α-胡萝卜素 α-Carotene | 叶绿素a Chlorophyll a | 叶绿素b Chlorophyll b |
---|---|---|---|---|---|---|---|
0H-F | 405.06±17.71e | 177.81±5.34c | 117.49±6.98c | 117.38±10.22h | 42.24±3.87i | 986.71±96.83e | 521.48±49.1cd |
0H-W1 | 457.17±33.65bc | 227.31±4.33a | 70±5.76hi | 73.2±4.16n | 34.95±0.73k | 1284.89±126.09a | 472.84±44.52d |
0H-W2 | 457.67±14.78bc | 216.95±5.28ab | 84.77±8.05fg | 73.2±4.16n | 33.28±0.47kl | 1217.31±119.45b | 488.22±45.97cd |
0H-W3 | 427.22±9.86cd | 192.1±2.67b | 90.01±1.1ef | 94.66±8.28k | 33.28±0.47kl | 1080.04±105.98d | 440.22±41.45e |
0H-R | 331.29±4.28hi | 115.85±0.39hi | 84.48±3.07fg | 114.36±25.05hi | 30.56±0.18l | 634.34±62.25jk | 346.81±32.65gh |
0H-OT | 277.36±32.72j | 32.23±1.78k | 69.77±2.87i | 67.23±8.63 | 50.06±0.87fg | 181.03±17.76n | 164.92±15.53k |
12H-F | 306.84±12.45i | 116.36±3.03hi | 104.6±4.11de | 108.8±3.65j | 40.48±1.09ij | 915.49±89.84e | 499.63±47.04cd |
12H-W1 | 371.05±9.64fg | 138.97±5.29fg | 86.05±6.69f | 79.35±7.41mn | 34.95±0.73k | 796.17±78.13gh | 419.05±39.45ef |
12H-W2 | 359.35±8.33g | 142.57±3.06f | 84.75±1.61fg | 80±1.64mn | 33.28±0.47kl | 807.17±79.21g | 419.98±39.54ef |
12H-W3 | 345.36±15.67gh | 127.41±4.4g | 90.91±5.25ef | 87.03±6.62l | 33.49±0.79kl | 719.86±70.64hi | 389.96±36.72fg |
12H-R | 340.32±22.29h | 94.49±3.43j | 89.71±2.07ef | 114.36±25.05hi | 38.8±2.89j | 510.94±50.14l | 324.28±30.53h |
12H-OT | 332.76±9.34hi | 23.03±0.42lm | 101.97±1.9de | 159.92±14.99f | 50.35±0.6gh | 117.87±11.57n | 193.76±18.24ij |
24H-F | 436.19±16.67cd | 148.05±3.44ef | 156.4±6.44a | 159.46±18.4fg | 48.25±0.92gh | 590.95±57.99kl | 354.62±33.39gh |
24H-W1 | 467.24±15.08bc | 119.26±13.6h | 89.54±3.78ef | 204±43.21bc | 81.04±14.66bc | 647.49±63.54j | 597.51±56.26b |
24H-W2 | 413.49±15.61de | 127.37±5.44gh | 71.92±9.74hi | 182.35±13.46de | 51.78±13.71f | 691.16±67.82i | 567.33±53.42bc |
24H-W3 | 463.59±16.9cd | 159.88±5.08de | 94.86±4.2e | 193.53±4.28cd | 48.32±1.44g | 866.7±85.05fg | 599.04±56.4ab |
24H-R | 472.44±22.76b | 114.32±3.21hi | 107.88±9.32de | 219.36±12.68b | 90.83±6.47a | 614.67±60.32k | 440.66±41.49e |
24H-OT | 306.84±18.44i | 23.88±0.89l | 101.22±3.92e | 194.56±10.32cd | 85.21±4.12b | 93.93±9.22o | 186.66±17.57j |
48H-F | 447.09±7.61c | 149.78±7.42e | 62.46±0.86i | 82.76±20.67m | 30.01±1.06l | 1137.84±111.66c | 408.4±38.45f |
48H-W1 | 516.06±6.99a | 159.7±1.13de | 132.37±10.17b | 230.16±10.54a | 79.93±4.67c | 863.38±84.72fg | 631.3±59.44a |
48H-W2 | 417.33±3.31de | 160.16±8.31d | 79.35±4.21gh | 159.11±5.35fg | 71.06±2.37e | 868.99±85.27f | 517.39±48.71cd |
48H-W3 | 425.05±8.59d | 153.88±5.39de | 73.11±0.74hi | 151.08±2.24g | 67.52±1.07ef | 834.25±81.87fg | 532.58±50.14c |
48H-R | 410.59±5.46de | 89.22±1.16k | 77.51±4.75gh | 174.48±4.46de | 77.36±1.55cd | 474.9±46.6m | 388.54±36.58fg |
48H-OT | 377.82±23.33f | 22.1±0.87m | 72.13±4.39hi | 154.56±9.2fg | 67.81±3.55ef | 112.16±11.01no | 198.43±18.68i |
168H-F | 386.78±12.48ef | 147.76±2.82ef | 73.35±1.19h | 171.93±3.89e | 50.06±0.87gh | 642.37±63.04jk | 358.43±33.75g |
168H-W1 | 393.76±1.56ef | 111.86±2.4hi | 87.6±3.24f | 195.69±4.61c | 87.29±1.69ab | 597.65±58.65kl | 492.37±46.36cd |
168H-W2 | 369.34±7.64fg | 139.05±5.1fg | 81.59±2.04g | 182.62±2.11d | 81.86±0.85bc | 746.53±73.26h | 506.17±47.66cd |
168H-W3 | 409.1±6.92de | 149.62±1.87ef | 73.11±0.74hi | 170.36±5.05ef | 75.34±2.13d | 805.08±79gh | 530.75±49.97cd |
168H-R | 394.28±14.68ef | 109.56±2.29i | 77.51±4.75 | 170.93±6.14 | 76.38±2.52 | 587.16±57.62 | 451.54±43.1 |
168H-OT | 189.43±12.28k | 16.65±0.51 | 50.2±0.14 | 104.26±4.45 | 46.43±1.81 | 84.69±8.31 | 126.01±10.64 |
表2
外源茉莉酸甲酯诱导后茶鲜叶加工的成品乌龙茶感官品质"
处理时间 MeJA treated time (h) | 感官评价 Sensory evaluation | |||||
---|---|---|---|---|---|---|
香气 Aroma | 得分 Score | 滋味 Taste | 得分 Score | 叶底 Foliage Fundus | 得分 Score | |
0 | 高纯 High and pure aroma | 88.2±2.5 | 甘滑醇厚 Smooth, mellow and thick | 89.4±2.7 | 较柔软,尚完整,亮 Slight soft and intact, and bright | 88.4±2.1 |
12 | 花香浓郁,持久 Lasting rih floral aroma | 94.2±2.48** | 甘滑醇厚,花香显 Smooth, mellow and thick, with floral flavor | 92.1±2.15** | 尚柔软,较完整,尚亮 Slight soft, intact, and bright | 86.4±1.98* |
24 | 显花香 Floral aroma | 90.8±2.86* | 甘滑醇厚 Mellow and thick | 92.8±2.36** | 尚柔软,较完整,尚亮 Slight soft, intact, and bright | 86.1±2.03* |
48 | 带果蜜香 Fruity aroma | 93.1±1.83** | 甘滑醇厚,带花香 Smooth, mellow and thick, with floral flavor) | 91.7±2.12** | 尚柔软,较完整,尚亮 Slight soft, intact, and bright | 87.1±2.13* |
168 | 带果蜜香,持久 Lasting fruity aroma | 94.8±2.09** | 甘滑醇厚,蜜香 Smooth, mellow and thick, with floral flavor | 91.8±1.99** | 较柔软,完整,尚亮 Slight soft, and bright, and intact | 88.6±2.08* |
[1] | 宛晓春, 李大祥, 张正竹, 夏涛, 凌铁军, 陈琪. 茶叶生物化学研究进展. 茶叶科学, 2015, 35(1): 1-10. |
WAN X C, LI D X, ZHANG Z Z, XIA T, LING T J, CHEN Q. Research advance on tea biochemistry. Journal of Tea Science, 2015, 35(1): 1-10. (in Chinese) | |
[2] | 张颖彬, 刘栩, 鲁成银. 中国茶叶感官审评术语基元语素研究与风味轮构建. 茶叶科学, 2019, 39(4): 474-483. |
ZHANG Y B, LIU X, LU C Y. Study on primitive morpheme in sensory terminology and flavor wheel construction of Chinese tea. Journal of Tea Science, 2019, 39(4): 474-483. (in Chinese) | |
[3] | WEI C L, YANG H, WANG S B, ZHAO J, LIU C, GAO L P, XIA E H, LU Y, TAI Y L, SHE G B, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18): 201719622. |
[4] | 陈勤操, 戴伟东, 蔺志远, 解东超, 吕美玲, 林智. 代谢组学解析遮阴对茶叶主要品质成分的影响. 中国农业科学, 2019, 52(6): 1066-1077. |
CHEN Q C, DAI W D, LIN Z Y, XIE D C, LÜ M L, LIN Z. Effects of shading on main quality components in tea (Camellia sinensis (L) O.Kuntze) leaves based on metabolomics analysis. Scientia Agricultura Sinica, 2019, 52(6): 1066-1077. (in Chinese) | |
[5] | 张海峰, 陈梅春, 陈峥. 初制茶色泽形成的影响因素研究现状. 食品安全质量检测学报, 2017, 8(7): 2687-2691. |
ZHANG H F, CHEN M C, CHEN Z. Research progress in influencing factors of crude tea color. Journal of Food Safety & Quality, 2017, 8(7): 2687-2691. (in Chinese) | |
[6] | 冯琳, 龚自明, 郑鹏程, 刘盼盼, 刘艳丽. 茶类胡萝卜素研究进展. 植物科学学报, 2018, 36(6): 899-905. |
FENG L, GONG Z M, ZHENG P C, LIU P P, LIU Y L. Advances in studies on carotenoids in Camellia sinensis. Plant Science Journal, 2018, 36(6): 899-905. (in Chinese) | |
[7] |
SHI J, MA C Y, QI D D, LV H P, YANG T, PENG Q H, CHEN Z M, LIN Z. Transcriptional responses and flavor volatiles biosynthesis in methyl jasmonate-treated tea leaves. BMC Plant Biology, 2015, 15(1): 233.
doi: 10.1186/s12870-015-0609-z |
[8] |
SHI J, XIE D C, QI D D, PENG Q H, CHEN Z M, SCHREINER M, LIN Z, BALDERMANN S. Methyl jasmonate-induced changes of flavor profiles during the processing of green, oolong, and black tea. Frontiers in Plant Science, 2019, 10:781.
doi: 10.3389/fpls.2019.00781 |
[9] | 崔席席, 李富军, 张新华, 郭衍银, 李晓安. 茉莉酸甲酯调控果蔬采后品质的机制及应用研究进展. 食品科学, 2019(13): 304-311. |
CUI X X, LI F J, ZHANG X H, GUO Y Y, LI X A. Recent progress in mechanism of action and application of methyl jasmonate in postharvest quality regulation of fruits and vegetables. Food Science, 2019(13): 304-311. (in Chinese) | |
[10] | 张知晓, 泽桑梓, 户连荣, 刘凌, 季梅. 茉莉酸甲酯生物活性研究进展. 河南农业科学, 2018, 47(11): 1-7. |
ZHANG Z X, ZE S Z, HU L R, LIN L, JI M. Research advance in biological activities of methyl jasmonate. Journal of Henan Agricultural Sciences, 2018, 47(11): 1-7. (in Chinese) | |
[11] | 孙晓文, 高登涛, 魏志峰, 郭景南, 曹锰. 茉莉酸酯类对‘圣诞玫瑰’葡萄果实着色及品质的影响. 果树学报, 2016, 33(1): 43-51. |
SUN X W, GAO D T, WEI Z F, GUO J N, CAO M. Effect of jasmonates on coloration and quality of the ‘Christmas Rose’ grape berry. Journal of Fruit Science, 2016, 33(1): 43-51. (in Chinese) | |
[12] | 施江. 外源茉莉酸甲酯诱导对茶树鲜叶次生代谢产物的影响[D]. 北京: 中国农业科学院, 2014. |
SHI J. Effect on secondary metabolites in tea leaves induced by exogenous methyl jasmonate[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese) | |
[13] | 姚雪倩, 岳川, 杨国一, 陈丹, 张冬桃, 陈桂信, 叶乃兴. 茶树牻牛儿基牻牛儿基焦磷酸合成酶基因CsGGDPS的克隆及表达分析. 茶叶科学, 2017, 37(1): 86-96. |
YAO X Q, YUE C, YANG G Y, CHEN D, ZHANG D T, CHEN G X, YE N X. Cloning and expression analysis of geranylgeranyl diphosphate synthase gene CsGGDPS in tea plant (Camellia sinensis). Journal of Tea Science, 2017, 37(1): 86-96. (in Chinese) | |
[14] |
HO C T, ZHENG X, LI S M. Tea aroma formation. Food Science and Human Wellness, 2015, 4(1): 9-27.
doi: 10.1016/j.fshw.2015.04.001 |
[15] | 邵晨阳, 吕海鹏, 朱荫, 张悦, 林智. 不同茶类中挥发性萜类化合物的对映异构体. 中国农业科学, 2017, 50(6): 1109-1125. |
SHAO C Y, LÜ H P, ZHU Y, ZHANG Y, LIN Z. Enantiomeric analysis of volatile terpenoids in different teas. Scientia Agricultura Sinica, 2017, 50(6): 1109-1125. (in Chinese) | |
[16] | 范延艮. ‘黄金芽’茶树不同色泽新梢多组学比较及生理特性研究[D]. 泰安: 山东农业大学, 2019. |
FAN Y G. Multiomics comparison and physiological characteristics of different colour shoots of Camellia sinensis var. Huangjinya[D]. Tai’an: Shandong Agricultureal University, 2019. (in Chinese) | |
[17] |
WANG X C, CHEN L, MA C L, YAO M Z, YANG Y J. Genotypic variation of beta-carotene and lutein contents in tea germplasms, Camellia sinensis (L.) O. Kuntze. Journal of food composition and analysis, 2010, 23(1): 9-14.
doi: 10.1016/j.jfca.2009.01.016 |
[18] | 陈文凤, 郭雅玲. 乌龙茶做青过程中细胞变化研究进展. 茶叶通讯, 2019, 46(3): 263-268. |
CHEN W F, GUO Y L. Research progress on cell changes during rotating process of oolong tea. Tea Communication, 2019, 46(3): 263-268. (in Chinese) | |
[19] | 何加兴, 欧伊伶, 宋加艳, 肖力争. 黄金茶1号夏秋乌龙茶加工过程化学成分变化与品质形成分析. 食品工业科技, 2020, 41(18): 223-230. |
HE J X, OU Y L, SONG J Y, XIAO L Z. Analysis of chemical components changes and quality formation of Huangjincha 1 summer oolong tea during processing. Science and Technology of Food Industry, 2020, 41(18): 223-230. (in Chinese) | |
[20] | 张磊, 曹德美, 胡建军. 植物叶色形成调控机制研究进展. 植物遗传资源学报. 2021(2): 293-303. |
ZHANG L, CAO D M, HU J J. Advance of the regulation mechanism of leaf color formation in plants. Journal of Plant Genetic Resources, 2021(2): 293-303. (in Chinese) | |
[21] |
DU Y Y, SHIN S, WANG K R, LU J L, LIANG Y R. Effect of temperature on the expression of genes related to the accumulation of chlorophylls and carotenoids in albino tea. The Journal of Horticultural Science and Biotechnology, 2009, 84(3): 365-369.
doi: 10.1080/14620316.2009.11512533 |
[22] |
FENG L, GAO M J, HOU R Y, HU X Y, ZHANG L, WAN X C, WEI S. Determination of quality constituents in the young leaves of albino tea cultivars. Food Chemistry, 2014, 155:98-104.
doi: 10.1016/j.foodchem.2014.01.044 |
[23] | ZENG L T, ZHOU X C, SU X G, YANG Z Y. Chinese oolong tea: An aromatic beverage produced under multiple stresses. Trends in Food Science & Technology, 2020, 106:242-253. |
[24] | 陈寿松, 林宏政, 孙云, 金心怡, 胡娟, 周子维. 乌龙茶萜类物质及其代谢调控研究进展. 中国农业科技导报, 2016, 18(5): 72-80. |
CHEN S S, LIN H Z, SUN Y, JIN X Y, HU J, ZHOU Z W. Research progress on terpenoids and metabolic regulation in oolong tea. Journal of Agricultural Science and Technology, 2016, 18(5): 72-80. (in Chinese) | |
[25] |
ZENG L T, WATANABE N, YANG Z Y. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition, 2019, 59(14): 2321-2334.
doi: 10.1080/10408398.2018.1506907 |
[26] |
FENG Z H, LI Y F, LI M L, WANG Y J, ZHANG L, WAN X C, YANG X G. Tea aroma formation from six model manufacturing processes. Food chemistry, 2019, 285:347-354.
doi: 10.1016/j.foodchem.2019.01.174 |
[27] |
WANG J M, WU B, ZHANG N, ZHAO M Y, JING T T, WU Y, HU Y Q, YU F, WAN X C, SCHWAB W, SONG C K. Dehydration-induced carotenoid cleavage dioxygenase 1 reveals a novel route for β-ionone formation during tea (Camellia sinensis) withering. Journal of Agricultural and Food Chemistry, 2020, 68(39): 10815-10821.
doi: 10.1021/acs.jafc.0c04208 |
[28] |
WANG J M, ZHANG N, ZHAO M Y, JING T T, JIN J Y, WU B, WAN X C, SCHWAB W, SONG C K. Carotenoid cleavage dioxygenase 4 catalyzes the formation of carotenoid-derived volatile β-ionone during tea (Camellia sinensis) withering. Journal of Agricultural and Food Chemistry, 2020, 68(6): 1684-1690.
doi: 10.1021/acs.jafc.9b07578 |
[29] |
SHI J A, WANG L, MA C Y, LV H P, CHEN Z M, LIN Z. Aroma changes of black tea prepared from methyl jasmonate treated tea plants. Journal of Zhejiang University Science B, 2014, 15(4): 313-321.
doi: 10.1631/jzus.B1300238 |
[30] |
MAGENEY V, BALDERMANN S, ALBACH D C. Intraspecific variation in carotenoids of brassica oleracea var. sabellica. Journal of Agricultural and Food Chemistry, 2016, 64(16): 3251-3257.
doi: 10.1021/acs.jafc.6b00268 |
[31] | 郭亚飞, 王君雅, 郭飞, 倪德江. 茶树1-脱氧-D-木酮糖-5-磷酸合成酶基因CsDXS1的克隆与表达分析. 生物技术通报, 2018, 34(1): 144-152. |
GUO Y F, WANG J Y, GUO F, NI D J. Cloning and expression analysis of CsDXS1 gene encoding 1-deoxy-D-xylulose-5-phosphate synthase in Camellia sinensis. Biotechnology Bulletin, 2018, 34(1): 144-152. (in Chinese) | |
[32] | 付建玉. 茶树倍半萜类物质代谢及其对虫害胁迫响应[D]. 北京: 中国农业科学院, 2017. |
FU J Y. The sesquiterpene metabolism and response to diverse biotic stresses in tea plant[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese) | |
[33] | 蒋正中. 茶树MEP途径中HDS与HDR基因的cDNA全长克隆、功能分析与表达特征研究[D]. 合肥: 安徽农业大学, 2013. |
JIANG Z Z. Molecular cloning, functional identification and expression characteristic of the HDR, HDS gene from MEP pathway in Camellia sinensis [D]. Hefei: Anhui Agricultural University, 2013. (in Chinese) | |
[34] |
FREDE K, SCHREINE M, BALDERMANN S. Light quality-induced changes of carotenoid composition in pak choi Brassica rapa ssp. chinensis. Journal of Photochemistry and Photobiology B: Biology, 2019, 193:18-30.
doi: 10.1016/j.jphotobiol.2019.02.001 |
[35] |
ZENG L T, ZHOU Y, FU X M, MEI X, CHENG S H, GUI J D, DONG F, TANG J C, MA S Z, YANG Z Y. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Food chemistry, 2017, 237:488-498.
doi: 10.1016/j.foodchem.2017.05.137 |
[36] |
TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. The Plant Journal, 2008, 54(4): 733-749.
doi: 10.1111/j.1365-313X.2008.03447.x |
[37] |
CHO J Y, MIZUTANI M, SHIMIZU B I, KINOSHITA T, OGURA M, TOKORO K, LIN M L, SAKATA K. Chemical profiling and gene expression profiling during the manufacturing process of Taiwan oolong tea “oriental beauty”. Bioscience, Biotechnology, and Biochemistry, 2007, 71(6): 1476-1486.
doi: 10.1271/bbb.60708 |
[1] | 彭佳堃, 戴伟东, 颜涌泉, 张悦, 陈丹, 董明花, 吕美玲, 林智. 基于代谢组学的‘永春佛手’乌龙茶化学成分解析[J]. 中国农业科学, 2022, 55(4): 769-784. |
[2] | 刁卫楠,袁平丽,龚成胜,赵胜杰,朱红菊,路绪强,何楠,杨东东,刘文革. 西瓜果肉柠檬黄色的遗传分析和基因定位[J]. 中国农业科学, 2021, 54(18): 3945-3958. |
[3] | 王昊,尹莲,刘洁霞,贾丽丽,丁旭,沈迪,冯凯,徐志胜,熊爱生. 类胡萝卜素裂解双加氧酶基因AgCCD4调控芹菜不同组织的着色[J]. 中国农业科学, 2021, 54(15): 3279-3294. |
[4] | 白辉扬, 鲁庚, 陆俊杏, 管丽, 唐鑫, 张涛. 紫苏茉莉酸羟基甲基转移酶基因PfJMT的克隆及表达分析[J]. 中国农业科学, 2019, 52(9): 1657-1666. |
[5] | 孙佳静, 李貌, 孙志洪, 唐志如, 张相鑫, 陈进超. 胶红酵母产类胡萝卜素固态发酵工艺[J]. 中国农业科学, 2018, 51(10): 1982-1994. |
[6] | 刘晓丛,曾丽,刘国锋,彭勇政,陶懿伟,张邀月,王梦茹. 万寿菊类胡萝卜素裂解双加氧酶基因CCD1克隆与表达分析[J]. 中国农业科学, 2017, 50(10): 1930-1940. |
[7] | 李燕群, 钟萍, 高志艳, 朱柏羊, 陈丹, 孙昌辉, 王平荣, 邓晓建. 水稻斑马叶突变体zebra524的表型鉴定及候选基因分析[J]. 中国农业科学, 2014, 47(15): 2907-2915. |
[8] | 闫志强1, 徐海1, 马作斌1, 2, 高东昌1, 徐正进1. 籼稻与粳稻花时对茉莉酸甲酯(MeJA)响应的敏感性差异[J]. 中国农业科学, 2014, 47(13): 2529-2540. |
[9] | 郑文寅, 汪帆, 司红起, 张文明, 姚大年. 普通小麦籽粒LOX、PPO活性和类胡萝卜素含量 变异及对全麦粉色泽的影响[J]. 中国农业科学, 2013, 46(6): 1087-1094. |
[10] | 后猛, 张允刚, 王欣, 唐维, 刘亚菊, 唐忠厚, 靳容, 闫会, 马代夫, 李强. 橘红肉甘薯块根类胡萝卜素的变化规律及其与主要经济性状的相关性[J]. 中国农业科学, 2013, 46(19): 3988-3996. |
[11] | 田义12, 陈可钦1, 安秀红1, 郝红梅2, 刘志3, 丛佩华2, 郝玉金1. 两个苹果乙烯反应因子MdAP2D4与MdAP2D19的序列分析及原核表达[J]. 中国农业科学, 2013, 46(17): 3635-3642. |
[12] | 孟祥春,高子祥,张昭其,张爱玉. 夏橙果实发育后期及返青期类胡萝卜素积累及乙烯的调控 [J]. 中国农业科学, 2011, 44(3): 538-544 . |
[13] | 宋朝鹏,武圣江,高远,许自成,张卫建,宫长荣 . 烤烟密集烘烤变黄期类胡萝卜素及其降解香气成分的变化 [J]. 中国农业科学, 2010, 43(20): 4246-4254 . |
[14] | 颉建明,郁继华,黄高宝,冯 致 . 弱光或低温弱光下辣椒叶片类胡萝卜素含量与品种耐性的关系[J]. 中国农业科学, 2010, 43(19): 4036-4044 . |
[15] | 宋朝鹏,高 远,武圣江,许自成,宫长荣,张卫建 . 密集烘烤定色期烟叶类胡萝卜素降解及相关酶活性变化[J]. 中国农业科学, 2009, 42(8): 2875-2881 . |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 848
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 480
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|