中国农业科学 ›› 2020, Vol. 53 ›› Issue (18): 3650-3664.doi: 10.3864/j.issn.0578-1752.2020.18.003
收稿日期:
2019-10-30
接受日期:
2020-03-13
出版日期:
2020-09-16
发布日期:
2020-09-25
通讯作者:
王学敏
作者简介:
崔苗苗,E-mail: 基金资助:
CUI MiaoMiao(),MA Lin,ZHANG JinJin,WANG Xiao,PANG YongZhen,WANG XueMin()
Received:
2019-10-30
Accepted:
2020-03-13
Online:
2020-09-16
Published:
2020-09-25
Contact:
XueMin WANG
摘要:
【目的】分离紫花苜蓿(Medicago sativa L.)油菜素内酯(brassionsterinds,BRs)合成酶基因MsDWF4,分析基因表达特性,开展基因的耐盐性研究,为揭示MsDWF4对紫花苜蓿非生物胁迫的调控机制提供参考。【方法】根据已知的拟南芥DWF4序列,应用同源克隆技术获得紫花苜蓿MsDWF4,对序列进行生物信息学分析。利用qRT-PCR技术分析MsDWF4的组织表达特异性,及其在多种非生物胁迫(高温、冷害、干旱和高盐)和激素(生长素、油菜素内酯、脱落酸和茉莉酸)处理下的表达模式;构建MsDWF4超表达载体,利用农杆菌介导遗传转化法转化紫花苜蓿,获得超表达MsDWF4的紫花苜蓿株系,用高盐(200 mmol·L -1 NaCl)处理紫花苜蓿转基因株系并结合抗氧化酶活性分析,研究MsDWF4是否提高紫花苜蓿的耐盐性。【结果】获得MsDWF4的cDNA序列,其CDS全长1 470 bp,编码489个氨基酸,该基因编码的蛋白质为P450超家族成员,共含有67个激酶磷酸化位点。序列分析和系统发育树分析表明紫花苜蓿MsDWF4与蒺藜苜蓿DWF4的亲缘关系最近,与禾本科的亲缘关系最远。组织特异性表达分析表明,MsDWF4在根尖中表达量最高,花和叶中次之。高温、冷、PEG、NaCl、ABA和IAA均诱导该基因在植株地上部和根部的表达;在BR处理下,MsDWF4在地上部下调表达,而在根部先被诱导后被抑制;JA处理下,MsDWF4在地上部和根中皆被抑制。构建35S∷MsDWF4超表达载体,并通过农杆菌介导的方式转化紫花苜蓿,PCR鉴定结果显示MsDWF4已经成功转入紫花苜蓿,并获得6个转基因阳性株系。盐胁迫处理下,转基因株系MsDWF4的表达量和抗氧化酶活性均显著高于对照。【结论】获得紫花苜蓿油菜素内酯合成酶基因MsDWF4的CDS序列;该基因在根尖等生长旺盛部位表达最高,基因表达响应多种逆境胁迫和外源激素处理;MsDWF4提高转基因紫花苜蓿对盐胁迫的抗性。MsDWF4可能参与转基因紫花苜蓿的多种逆境响应过程,并且正向调控紫花苜蓿的耐盐性。
崔苗苗,马琳,张锦锦,王筱,庞永珍,王学敏. 紫花苜蓿MsDWF4的表达特性及耐盐性效应[J]. 中国农业科学, 2020, 53(18): 3650-3664.
CUI MiaoMiao,MA Lin,ZHANG JinJin,WANG Xiao,PANG YongZhen,WANG XueMin. Gene Expression and Salt-Tolerance Analysis of MsDWF4 Gene from Alfalfa[J]. Scientia Agricultura Sinica, 2020, 53(18): 3650-3664.
表1
本研究用到的生物信息学工具"
生物信息学工具 Bioinformatics tools | 网址 Website | 用途 Purpose |
---|---|---|
DNAMAN | https://www.lynnon.com/qa.html | 多序列比对Multiple sequence alignment |
MEGAX | https://www.megasoftware.net/ | 系统发育进化树的建Establishment of phylogenetic tree |
Evolview | https://www.evolgenius.info/evolview | 系统发育进化树的美Beautification of phylogenetic tree |
ExPASy | https://web.expasy.org/protparam/ | 蛋白质一级结构分析Protein primary structure analysis |
TMHMM2.0Server | http://www.cbs.dtu.dk/services/TMHMM | 蛋白跨膜结构域分析Analysis of protein transmembrane domain |
ExPASy-Protscale | https://web.expasy.org/protscale/ | 蛋白亲疏水性分析Protein hydrophobicity analysis |
ExPASy-Swiss-model | https://swissmodel.expasy.org/interactive | 蛋白三级结构预测Protein tertiary structure prediction |
CDD | https://www.ncbi.nlm.nih.gov/Structure/cdd | 蛋白保守结构域预测Protein conserved domain prediction |
NetPhos3.1Server | http://www.cbs.dtu.dk/services/NetPhos/ | 蛋白激酶磷酸化修饰位点预测 Prediction of protein kinase phosphorylation modification sites |
表2
本试验所用引物"
引物名称 Primer name | 引物序列 Primer sequence (5′-3′) |
---|---|
ORF-F | CACCCTATTGGCTTCACA |
ORF-R | GAAAGTGGTCCTATTGACA |
qDF | AACAAAACATGCCAAACCCAA |
qDR | CCATTTCCCAAGTATTCCACCA |
Msactin-F | CAAAAGATGGCAGATGCTGAGGAT |
Msactin-R | CATGACACCAGTATGACGAGGTCG |
pMsDWF4-F | ACGGGGGACGAGCTCGGTACCATGTCTGACTCAGATGTAACTT |
pMsDWF4-R | CTTGCTCACCATGTCGACTCTAGATATTATAGAGTGGGCTTGGACTCTAATTTGTAGG |
MDF | CCACTGACGTAAGGGATGACG |
MDR | TGTCGAAACCGATGATACGAACGAA |
[1] | 任继周, 王素香. 甘肃中部的紫花苜蓿在不同草原类型上的表现. 甘肃农业大学学报, 1959(4):1-9. |
REN J Z, WANG S X. Performance of alfalfa in different grassland types in central Gansu Province. Journal of Gansu Agricultural University, 1959(4):1-9. (in Chinese) | |
[2] | EARDLY B D, HANNAWAY D, BOTTOMLEY P J. Nitrogen nutrition and yield of seedling alfalfa as affected by ammonium nitrate fertilization. Agronomy Journal, 1985,77(1):57-62. |
[3] | 王加亭. 2011年我国紫花苜蓿生产与进口情况. 中国畜牧业, 2013(13):90. |
WANG J T. Production and import of Alfalfa in China in 2011, China Animal Industry, 2013(13):90. (in Chinese) | |
[4] | 黄文惠. 优良牧草--紫花苜蓿. 农业科技通讯, 1978(4):36. |
HUANG W H. Alfalfa, a good forage. Bulletin of Agricultural Science and Technology, 1978(4):36. (in Chinese) | |
[5] |
王晓娟, 张树振, 林双双, 邓志刚, 金樑. 紫花苜蓿(Medicago sativa L.)生物能源利用的研究进展. 中国农业科学, 2013,46(8):1694-1705.
doi: 10.3864/j.issn.0578-1752.2013.08.020 |
WANG X J, ZHANG S Z, LING S S, DENG Z G, JIN L. Advances in study on bio-energy utilization of stem cell wall components in Alfalfa ( Medicago satival L.). Scientia Agricultura Sinica, 2013,46(8):1694-1705. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.08.020 |
|
[6] | 杨小翠. 苜蓿遗传多样性及3个主栽品种的产草量和品质分析[D]. 滁州: 安徽科技学院, 2017. |
YANG X C. Analysis of genetic diversity and forage production and quality of three major varieties in Alfalfa[D]. Chuzhou: Anhui Science and Technology University, 2017. (in Chinese) | |
[7] | 张文浩, 侯龙鱼, 杨杰, 宋世环, 毛小涛, 张强强, 白文明, 潘庆民, 周青平. 高寒地区苜蓿人工草地建植技术. 科学通报, 2018,63(17):1651-1663. |
ZHANG W H, HOU L Y, YANG J, SONG S H, MAO X T, ZHANG Q Q, BAI W M, PAN Q M, ZHOU Q P. Establishment and management of alfalfa pasture in cold regions of China. Chinese Science Bulletin, 2018,63(17):1651-1663. (in Chinese) | |
[8] | 李辉, 左钦月, 涂升斌. 油菜素内酯生物合成和代谢研究进展. 植物生理学报, 2015,51(11):1787-1798. |
[9] | 熊书. 油菜素内酯的生物合成及信号转导研究进展. 教育教学论坛, 2015(19):111-112. |
XIONG S. Progress in brassinolide biosynthesis and signal transduction. Education Forum, 2015(19):111-112. (in Chinese) | |
[10] | 孙超, 黎家. 油菜素甾醇类激素的生物合成、代谢及信号转导. 植物生理学报, 2017,53(3):291-307. |
SUN C, LI J. Biosynthesis, catabolism, and signal transduction of brassinosteroids. Plant Physiology Communications, 2017,53(3):291-307. (in Chinese) | |
[8] | LI H, ZUO Q Y, TU S B. Advances in brassinosteroid biosynthesis and metabolism. Plant Physiology Communications, 2015,51(11):1787-1798. (in Chinese) |
[11] |
MITCHELL J W, MANDAVA N, WORLEY J F, PLIMMER J R, SMITH M V. Brassins-a new family of plant hormones from rape pollen. Nature, 1970,225(5237):1065-1066.
doi: 10.1038/2251065a0 pmid: 16056912 |
[12] |
GROVE M, SPENCER G F, ROHWEDDER W K. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature, 1979,281(5728):216-217.
doi: 10.1038/281216a0 |
[13] |
CHOE S, FUJIOKA S, NOGUCHI T, TAKATSUTO S, YOSHIDA S, FELDMANN K A. Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. The Plant Journal, 2001,26(6):573-582.
doi: 10.1046/j.1365-313x.2001.01055.x pmid: 11489171 |
[14] | 任鸿雁, 王莉, 马青秀, 吴光. 油菜素内酯生物合成途径的研究进展. 植物学报, 2015,50(6):768-778. |
REN H Y, WANG L, MA Q X, WU G. Progress in biosynthetic pathways of brassinosteroids. Chinese Bulletin of Botany, 2015,50(6):768-778. (in Chinese) | |
[15] |
FUJIOKA S, TAKATSUTO S, YOSHIDA S. An early C-22 oxidationbranch in the brassinosteroid biosynthetic pathway. Plant Physiology, 2002,130(2):930-939.
doi: 10.1104/pp.008722 pmid: 12376657 |
[16] |
SHIMADA Y, GODA H, NAKAMURA A, TAKATSUTO S, FUJIOKA S, YOSHIDA S. Organ-specific expression of brassinosteroid- biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiology, 2003,131(1):287-297.
doi: 10.1104/pp.013029 pmid: 12529536 |
[17] | 束红梅, 郭书巧, 巩元勇, 蒋璐, 朱静雯, 倪万潮. 陆地棉油菜素内酯信号基因GhBES1家族的鉴定及表达分析. 华北农学报, 2017,32(4):7-12. |
SHU H M, GUO S Q, GONG Y Y, JIANG L, ZHU W J, NI W C. Identification and expression analysis of the brassinosteroid signal gene ghbes1 family in upland cotton. Acta Agriculturae Boreali-Sinica, 2017,32(4):7-12. (in Chinese) | |
[18] |
LIU T S, ZHANG J P, WANG M Y, WANG Z Y, LI G F, QU L, WANG G Y. Expression and functional analysis of Zm DWF4, an ortholog of Arabidopsis DWF4 from maize (Zea mays L.) Plant Cell Reports, 2007,26(12):2091-2099.
doi: 10.1007/s00299-007-0418-4 |
[19] | 王阳, 陈永富, 常晓涵, 王璇, 李娜, 高永峰. 异源过表达胡杨PeDWF4基因提高烟草对非生物胁迫的耐性. 基因组学与应用生物学, 2017,36(10):4242-4249. |
WANG Y, CHEN Y F, CHANG X H, WANG X, LI N, GAO Y F. Heterologous overexpression of PeDWF4 gene in Populus euphratica enhance tolerance of tobacco to abiotic stress. Genomics and Applied Biology, 2017,36(10):4242-4249. (in Chinese) | |
[20] | ZHOU X Y, ZHANG N, YANG J W, TANG X, WEN Y K, SI H J. Functional analysis of StDWF4 gene in response to salt stress in potato. Plant Physiology and Biochemistry, 2018(125):63-73. |
[21] | 兰彩耘. 超量表达AtDWF4基因对芥菜生长发育及抗寒性的影响[D]. 重庆: 西南大学, 2016. |
LAN C Y. Effect of AtDWF4 gene overexpression on growth,development and cold resistance in Brassica juncea[D]. Chongqing: Southwest University, 2016. (in Chinese) | |
[22] |
LI K R, FENG C H. Effects of brassinolide on drought resistance of Xanthoceras sorbifolia seedlings under water stress. Acta Physiologiae Plantarum, 2011,33(4):1293-1300.
doi: 10.1007/s11738-010-0661-0 |
[23] | 李程, 梁宝魁, 王晓峰. 油菜素内酯提高蔬菜作物抗逆性的研究进展. 中国蔬菜, 2015(11):12-18. |
LI C, LIANG B K, WANG X F. Research progress on brassinosteroids for improving stress resistance vegetable crops. China Vegetables, 2015(11):12-18. (in Chinese) | |
[24] | VARDHINI B V, ANJUM N A. Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defence system. Frontiers in Environmental Science, 2015: 2(67):1-16. |
[25] | 陆晓民, 杨威. 油菜素内酯对氯化钠胁迫下黄瓜幼苗的缓解效应. 应用生态学报, 2013,24(5):1409-1414. |
LU X M, YANG W. Alleviation effects of brassinolide on cucumber seeding under NaCl stress. Chinese Journal of Applied Ecology, 2013,24(5):1409-1414. (in Chinese) | |
[26] | 王秀峰, 王利波, 王学国, 于永辉, 王健鹂, 马艺荞. 外源油菜素内酯诱导辣椒幼苗抗盐性的研究. 辣椒杂志, 2012,10(4):23-25. |
WANG X F, WANG L B, WANG X G, YU Y H, WANG J L, MA Y Q. Resistance to salt stress in hot pepper seedling induced by exogenous brassinolide. Journal of China Capsicum, 2012,10(4):23-25. (in Chinese) | |
[27] |
DING H D, ZHU X H, ZHU Z W, YANG S J, ZHA D S, WU X X. Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. Biologia Plantarum, 2012,56(4):767-770.
doi: 10.1007/s10535-012-0108-0 |
[28] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.), 2001,25(4):402.
doi: 10.1006/meth.2001.1262 |
[29] |
HORSCH R B, ROGERS S G, FRALEY R T. Transgenic plants. Cold Spring Harbor Symposia on Quantitative Biology, 1985,50:433-437.
doi: 10.1101/sqb.1985.050.01.054 pmid: 3868487 |
[30] | 张海杰, 蒋丹, 曹宇虹. 蛋白质分离纯化技术的相关研究进展. 化工管理, 2017(20):173. |
ZHANG H J, JIANG D, CAO Y H. Progress in research of protein separation and purification technique. Chemical Enterprise Management, 2017(20):173. (in Chinese) | |
[31] |
FUJIYAMA K, HINO T, KANADANI M, WATANABE B, JAE L H, MIZUTANI M, NAGANO S. Structural insights into a key step of brassinosteroid biosynthesis and its inhibition. Nature Plants, 2019,5(6):589-594.
doi: 10.1038/s41477-019-0436-6 pmid: 31182839 |
[32] |
ASAMI T, NAKANO T, NAKASHITA H, SEKIMATA K, SHIMADA Y, YOSHIDA S. The influence of chemical genetics on plant science: Shedding light on functions and mechanism of action of brassinosteroids using biosynthesis inhibitors. Journal of Plant Growth Regulation, 2003,22(4):336-349.
doi: 10.1007/s00344-003-0065-0 |
[33] |
ASAMI T, MIZUTANI M, FUJIOKA S, GODA H, MIN Y K, SHIMADA Y, NAKANO T, TAKATSUTO S, MATSUYAMA T, NAGATA N, SAKATA K, YOSHIDA S. Selective interaction of triazole derivatives with DWF4, a cytochrome P450 monooxygenase of the brassinosteroid biosynthetic pathway, correlates with brassinosteroid deficiency in planta. Journal of Biological Chemistry, 2001,276(28):25687-25691.
doi: 10.1074/jbc.M103524200 pmid: 11319239 |
[34] |
TAKAKUSAGI Y, MANITA D, KUSAYANAGI T, IZAGUIRRE- CARBONELL J, TAKAKUSAGI K, KURAMOCHI K, IWABATA K, KANAI Y, SAKAGUCHI K, SUGAWARA F. Mapping a disordered portion of the Brz2001-binding site on a plant monooxygenase, DWARF4, using a quartz-crystal microbalance biosensor-based T7 phage display. Assay and Drug Development Technologies, 2013,11(3):206-215.
doi: 10.1089/adt.2012.478 |
[35] |
梁前进, 王鹏程, 白燕荣. 蛋白质磷酸化修饰研究进展. 科技导报, 2012,30(31):73-79.
doi: 10.3981/j.issn.1000-7857.2012.31.011 |
LIANG Q J, WANG P C, BAI Y R. Summarization on the progress in protein phosphorylation. Science & Technology Review, 2012,30(31):73-79. (in Chinese)
doi: 10.3981/j.issn.1000-7857.2012.31.011 |
|
[36] |
CROW T, XUE-BIAN J J. Proteomic analysis of post-translational modifications in conditioned Hermissenda. Neuroscience, 2010,165(4):1182-1190.
doi: 10.1016/j.neuroscience.2009.11.066 pmid: 19961907 |
[37] |
BANCOS S, NOMURA T, SATO T, MOLNÁR G, BISHOP G J, KONCZ C, YOKOTA T, NAGY F, SZEKERES M. Regulation of transcript levels of the Arabidopsis cytochrome p450 genes involved in brassinosteroid biosynthesis. Plant Physiology, 2002,130(1):504-513.
doi: 10.1104/pp.005439 pmid: 12226529 |
[38] |
SAHNI S, PRASAD B D, LIU Q, GRBIC V, SHARPE A, SINGH S P, KRISHNA P. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Scientific Reports, 2016,6:28298.
doi: 10.1038/srep28298 pmid: 27324083 |
[39] |
DIVI U K, KRISHNA P. Overexpression of the brassinosteroid biosynthetic gene AtDWF4 in Arabidopsis seeds overcomes abscisic acid-induced inhibition of germination and increases cold tolerance in transgenic seedlings. Journal of Plant Growth Regulation, 2010,29(4):385-393.
doi: 10.1007/s00344-010-9150-3 |
[40] | 周杰. 活性氧、激素互作、自噬和转录因子在番茄和拟南芥逆境胁迫响应中的作用机理和调控[D]. 杭州: 浙江大学, 2014. |
ZHOU J. Action mechanisms and regulation of reactive oxygen species, phytohormone interaction, transcription factors and autophagy in tomato and Arabidopsis stress response[D]. Hangzhou: Zhejiang University, 2014. (in Chinese) | |
[41] | 王琳. AT14A在拟南芥响应PEG模拟干旱胁迫中的功能分析[D]. 扬州: 扬州大学, 2016. |
WANG L. Functional analysis of AT14A in response to PEG simulated drought stress in Arabidopsis[D]. Yangzhou: Yangzhou University, 2016. (in Chinese) | |
[42] | 王玲. 油菜素内酯对盐和高温胁迫下羊草生理特性的影响[D]. 重庆: 西南大学, 2017. |
WANG L. Effect of brassinolide on physiological characteristics of Leymus chinensis(Trin) under salt stress and high temperature stress[D]. Chongqing: Southwest University, 2017. (in Chinese) | |
[43] | 钱琼秋. 硅提高黄瓜耐盐性的生理和生化机制研究[D]. 杭州: 浙江大学, 2006. |
QIAN Q Q. Studies on physiological and biochemical mechanisms of salt tolerance improved by silicon in cucumber(Cucumis sativus L.)[D]. Hangzhou: Zhejiang University, 2006. (in Chinese) | |
[44] | 王露. 胡杨DWF4(PeDWF4)异源表达对新疆杨生长发育、愈伤组织诱导和耐盐性的影响[D]. 兰州: 兰州大学, 2016. |
WANG L. Effects of heterotopic expression of Populus euphratica DWF4(PeDWF4) on the growth, callus formation and salt tolerance of Populus bolleana[D]. Lanzhou: Lanzhou University, 2016. (in Chinese) | |
[45] | 刚爽. ABA对亚高温强光胁迫下番茄叶片光合作用影响及分子机制研究[D]. 沈阳: 沈阳农业大学, 2016. |
GANG S. Studies on regulation of ABA on photosynthesis and molecular mechanism of tomato under subhigh temperature and high light intensity stress[D]. Shenyang: Shenyang Agricultural University, 2016. (in Chinese) | |
[46] | 段方猛, 罗秋兰, 鲁雪莉, 齐娜伟, 刘宪舜, 宋雯雯. 玉米油菜素甾醇生物合成关键酶基因ZmCYP90B1的克隆及其对逆境胁迫的响应. 作物学报, 2018,44(3):343-356. |
DUAN F M, LUO Q L, LU X L, QI N W, LIU X S, SONG W W. Cloning of the key gene ZmCYP90B1 in brassinosteroids biosynthesis from Zea mays and its response to to adversity stresses. The Crop Journal, 2018,44(3):343-356. (in Chinese) | |
[47] |
BANCOS S. Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiology, 2002,130(1):504-513.
doi: 10.1104/pp.005439 pmid: 12226529 |
[48] |
SUN Y, FAN X Y, CAO D M, TANG W Q, HE K, ZHU J Y, HE J X, BAI M Y, ZHU S W, OH E, PATIL S, KIM T, JI H K, WONG W H, RHEE S Y, WANG Z Y. Integration of Brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell, 2010,19(5):765-777.
doi: 10.1016/j.devcel.2010.10.010 |
[49] |
MATHUR J, MOLNÁR G, FUJIOKA S, TAKATSUTO S, SAKURAI A, YOKOTA T, ADAM G, VOIGT B, NAGY F, MAAS C, SCHELL J, KONCZ C, SZEKERES M. Transcription of the Arabidopsis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. The Plant Journal for Cell and Molecular Biology, 1998,14(5):593-602.
doi: 10.1046/j.1365-313x.1998.00158.x pmid: 9675902 |
[50] |
REN C, HAN C Y, PENG W, HUANG Y, PENG Z H, XIONG X Y, ZHU Q, GAO B D, XIE D X. A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by jasmonate in Arabidopsis. Plant Physiology, 2009,151(3):1412-1420.
doi: 10.1104/pp.109.140202 pmid: 19741050 |
[51] |
KIM B, FUJIOKA S, KWON M, JEON J Y, CHOE S. Arabidopsis brassinosteroid-overproducing gulliver3-D/dwarf4- D mutants exhibit altered responses to jasmonic acid and pathogen. Plant Cell Reports, 2013,32(7):1139-1149.
doi: 10.1007/s00299-012-1381-2 |
[52] |
CHUNG Y, MAHARJAN P M, LEE O, FUJIOKA S, JANG S, KIM B, TAKATSUTO S, TSUJIMOTO M, KIM H, CHO S, PARK T, CHO H, HWANG I, CHOE S. Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. The Plant Journal, 2011,66(4):564.
doi: 10.1111/j.1365-313X.2011.04513.x pmid: 21284753 |
[53] |
YOSHIMITSU Y, TANAKA K, FUKUDA W, ASAMI T, YOSHIDA S, HAYASHI K, KAMIYA Y, JIKUMARU Y, SHIGETA T, NAKAMURA Y, MATSUO T, OKAMOTO S. Transcription of DWARF4 plays a crucial role in auxin-regulated root elongation in addition to brassinosteroid homeostasis in Arabidopsis thaliana. PLoS ONE, 2011,6(8):e23851.
doi: 10.1371/journal.pone.0023851 pmid: 21909364 |
[1] | 苏倩,杜文宣,马琳,夏亚迎,李雪,祁智,庞永珍. 紫花苜蓿MsCIPK2的克隆及功能分析[J]. 中国农业科学, 2022, 55(19): 3697-3709. |
[2] | 张云秀,蒋旭,尉春雪,蒋学乾,卢栋宇,龙瑞才,杨青川,王珍,康俊梅. 紫花苜蓿高迁移率族蛋白基因MsHMG-Y调控花期的功能分析[J]. 中国农业科学, 2022, 55(16): 3082-3092. |
[3] | 史晓龙,郭佩,任婧瑶,张鹤,董奇琦,赵新华,周宇飞,张正,万书波,于海秋. 基于花生//高粱间作模式的花生盐胁迫耐受性效应研究[J]. 中国农业科学, 2022, 55(15): 2927-2937. |
[4] | 李建鑫,王文平,胡璋健,师恺. 模拟酸雨对番茄光合作用和病害发生的影响及油菜素内酯对其缓解效应[J]. 中国农业科学, 2021, 54(8): 1728-1738. |
[5] | 孟蕊,刘晔,赵爽,房伟民,蒋甲福,陈素梅,陈发棣,管志勇. 砧穗互作对菊花嫁接苗耐盐性的影响[J]. 中国农业科学, 2021, 54(3): 629-642. |
[6] | 马琳,温红雨,王学敏,高洪文,庞永珍. 紫花苜蓿MsMAX2的克隆及功能研究[J]. 中国农业科学, 2021, 54(19): 4061-4069. |
[7] | 李昕芫, 娄金秀, 刘清源, 胡健, 张英俊. 中国东北和华北地区紫花苜蓿根瘤菌遗传多样性研究[J]. 中国农业科学, 2021, 54(16): 3393-3405. |
[8] | 张翔宇,郭佳,王三,陈聪萍,孙昌辉,邓晓建,王平荣. 水稻粒宽突变体gw87的基因定位及候选基因分析[J]. 中国农业科学, 2021, 54(12): 2487-2498. |
[9] | 王笑,蔡剑,周琴,戴廷波,姜东. 非生物逆境锻炼提高作物耐逆性的生理机制研究进展[J]. 中国农业科学, 2021, 54(11): 2287-2301. |
[10] | 孔亚丽,朱春权,曹小闯,朱练峰,金千瑜,洪小智,张均华. 土壤微生物介导植物抗盐性机理的研究进展[J]. 中国农业科学, 2021, 54(10): 2073-2083. |
[11] | 康俊梅,张俏燕,蒋旭,王珍,张铁军,龙瑞才,崔会婷,杨青川. 紫花苜蓿MsSQE1的克隆及对皂甙合成的功能分析[J]. 中国农业科学, 2020, 53(2): 247-260. |
[12] | 蒋旭,崔会婷,王珍,张铁军,龙瑞才,杨青川,康俊梅. 紫花苜蓿MsNST的克隆及对木质素与纤维素合成的功能分析[J]. 中国农业科学, 2020, 53(18): 3818-3832. |
[13] | 刘佼佼,王学敏,马琳,崔苗苗,曹晓宇,赵威. 紫花苜蓿MsWRKY42的分离、鉴定及其对非生物胁迫的响应[J]. 中国农业科学, 2020, 53(17): 3455-3466. |
[14] | 李强, 黄迎新, 钟荣珍, 孙海霞, 周道玮. 豆-禾混播草地中紫花苜蓿比例对其固氮效率的影响及潜在生理机制[J]. 中国农业科学, 2020, 53(13): 2647-2656. |
[15] | 巩皓,杨柳,李丹丹,刘国富,肖知新,吴清莹,崔国文. 寒地黑土农区紫花苜蓿生产与品质对施肥和刈割频次的响应及效益分析[J]. 中国农业科学, 2020, 53(13): 2657-2667. |
|