中国农业科学 ›› 2020, Vol. 53 ›› Issue (18): 3638-3649.doi: 10.3864/j.issn.0578-1752.2020.18.002
龚强1,2(),王轲2(
),叶兴国2,杜丽璞2,徐延浩1(
)
收稿日期:
2019-11-15
接受日期:
2020-03-09
出版日期:
2020-09-16
发布日期:
2020-09-25
通讯作者:
王轲,徐延浩
作者简介:
龚强,Tel:13397221716;E-mail: 基金资助:
GONG Qiang1,2(),WANG Ke2(
),YE XingGuo2,DU LiPu2,XU YanHao1(
)
Received:
2019-11-15
Accepted:
2020-03-09
Online:
2020-09-16
Published:
2020-09-25
Contact:
Ke WANG,YanHao XU
摘要:
【目的】目前,国内外大麦遗传转化主要利用Golden Promise品种,基因依赖性严重,尤其是大麦的转化效率较低,并且获得安全型转基因大麦植株对其进一步产业化非常重要。建立高效、无筛选标记大麦遗传转化体系,拓展大麦遗传转化的受体基因型,为大麦基因功能解析和大麦转基因育种及商业化种植提供技术保障。【方法】以优良大麦品种Vlamingh为受体,取开花授粉后14 d左右的幼胚为转化材料,通过对培养基成分及培养步骤优化,建立农杆菌介导的高效遗传转化体系,并利用该体系将Bar和GUS在不同T-DNA区段的双T-DNA表达载体pWMB123转化大麦,获得候选转基因植株,然后利用PCR、Bar试纸条、组织化学染色和Southern blot等检测方法,在T1代转基因植株中成功获得无筛选标记大麦转基因植株。【结果】在愈伤组织分化阶段,发现培养基中添加1.0 mg·L-1 KT、0.5 mg·L-1 6-BA和0.05 mg·L-1 NAA明显促进愈伤组织分化。在转基因植株生根阶段,发现采用添加1.0 mg·L-1的IBA的SM1(无其他生长素)的生根效果最佳,培养基中添加2.5 mg·L-1 CuSO4显著降低了大麦转基因植株白化现象。共转化了138个幼胚,最终获得14株大麦转基因植株,转化效率10.14%。PCR、Bar试纸条、GUS染色等检测证实,T0代转基因植株中均含有Bar,而仅有10株含有GUS,2个T-DNA的共转化效率为71.43%。选取4个同时含有Bar和GUS的转基因植株,对其自交后代进行检测,在BL8株系中筛选到2株只含GUS而不含Bar的转基因植株,无筛选标记效率为6.9%。在T1代转基因植株中对Bar和GUS进行了Southern blot鉴定,发现在多数转基因植株中Bar和GUS均为多拷贝整合,进一步证实BL8-15和BL8-19为无筛选标记的转基因植株。【结论】利用大麦品种Vlamingh为转化材料可以较高效率获得转基因植株,提高愈伤组织分化效率和转基因植株生根效率,降低转基因植株白化现象。利用农杆菌介导双T-DNA表达载体转化大麦,成功获得了无筛选标记转基因植株。
龚强,王轲,叶兴国,杜丽璞,徐延浩. 农杆菌介导大麦无筛选标记转基因植株的获得[J]. 中国农业科学, 2020, 53(18): 3638-3649.
GONG Qiang,WANG Ke,YE XingGuo,DU LiPu,XU YanHao. Generation of Marker-Free Transgenic Barley Plants by Agrobacterium-Mediated Transformation[J]. Scientia Agricultura Sinica, 2020, 53(18): 3638-3649.
表1
农杆菌介导转化大麦幼胚所用培养基及其组成"
组分 Composition | 侵染液 IM | 共培养培养基 CM | 第一次筛选培养基 SM1 | 第二次筛选培养基 SM2 | 过渡培养基 TM | 分化培养基 DM |
---|---|---|---|---|---|---|
MS | 0.434 | 0.434 | 4.340 | 4.340 | 2.700 | 2.170 |
麦芽糖 Maltose | 30 | 30 | 20 | 20 | ||
葡萄糖 Glucose | 10 | 10 | ||||
乙酰丁香酮Acetosyringone | 0.02745 | 0.03924 | ||||
谷氨酰胺 Glutamine | 0.75 | |||||
酪蛋白水解物Casein hydrolysate | 1 | 1 | ||||
肌醇 Myoinositol | 0.35 | 0.35 | ||||
脯氨酸 Proline | 0.69 | 0.69 | ||||
盐酸硫胺Thiamine HCl | 0.001 | 0.001 | 0.004 | |||
麦草畏Dicamba | 0.0025 | 0.0025 | ||||
二氯苯氧乙酸2, 4-D | 0.0025 | |||||
硫酸铜CuSO4 | 0.00125 | 0.00125 | 0.00125 | 0.00125 | ||
6-苄氨基嘌呤6-BA | 0.0001 | |||||
琼脂糖Agarose | 8 | |||||
植物凝胶Phytagel | 3.5 | 3.5 | 3.5 | 3.0 | ||
草铵膦Phosphinothricina | 0.005 | 0.010 | 0.010 | 0.005 | ||
羧苄青霉素Carbenicillina | 0.25 | 0.25 | 0.25 | 0.25 | ||
头孢噻肟Cefotaximea | 0.25 |
[1] | 国家大麦青稞产业技术体系. 中国现代农业产业可持续发展战略研究·大麦青稞分册, 北京: 中国农业出版社, 2018. |
China Agriculture Research System Of Barley. China's Modern Agricultural Industry Sustainable Development Strategy Research · Barley Volume. Beijing: China Agriculture Press, 2018: 2-8. (in Chinese) | |
[2] |
MASCHER M, GUNDLACH H, HIMMELBACH A, BEIER S, TWARDZIOK S O, WICKER T, RADCHUK V, DOCKTER C, HEDLEY P E, RUSSELL J, BAYER M, RAMSAY L, LIU H, HABERER G, ZHANG X Q, ZHANG Q, BARRERO R A, LI L, TAUDIEN S, GROTH M, FELDER M, HASTIE A, SIMKOVA H, STANKOVA H, VRANA J, CHAN S, MUNOZ-AMATRIAIN M, OUNIT R, WANAMAKER S, BOLSER D, COLMSEE C, SCHMUTZER T, ALIYEVA-SCHNORR L, GRASSO S, TANSKANEN J, CHAILYAN A, SAMPATH D, HEAVENS D, CLISSOLD L, CAO S, CHAPMAN B, DAI F, HAN Y, LI H, LI X, LIN C, MCCOOKE J K, TAN C, WANG P, WANG S, YIN S, ZHOU G, POLAND J A, BELLGARD M I, BORISJUK L, HOUBEN A, DOLEZEL J, AYLING S, LONARDI S, KERSEY P, LANGRIDGE P, MUEHLBAUER G J, CLARK M D, CACCAMO M, SCHULMAN A H, MAYER KF X, PLATZER M, CLOSE T J, SCHOLZ U, HANSSON M, ZHANG G, BRAUMANN I, SPANNAGL M, LI C, WAUGH R, STEIN N. A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017,544(7651):427-433.
doi: 10.1038/nature22043 pmid: 28447635 |
[3] |
WAN Y, LEMAUX P G. Generation of large numbers of independently transformed fertile barley plants. Plant Physiology, 1994,104(1):37-48.
doi: 10.1104/pp.104.1.37 pmid: 12232059 |
[4] |
TINGAY S, MCELROY D, KALLA R, FIEG S, WANG M, THORNTON S, BRETTELL R. Agrobacterium tumefaciens-mediated barley transformation. The Plant Journal, 1997,11(6):1369-1376.
doi: 10.1046/j.1365-313X.1997.11061369.x |
[5] |
TRIFONOVA A, MADSEN S, OLESEN A. Agrobacterium -mediated transgene delivery and integration into barley under a range of in vitro culture conditions. Plant Science, 2001,161(5):871-880.
doi: 10.1016/S0168-9452(01)00479-4 |
[6] |
FANG Y D, AKULA C, ALTPETER F. Agrobacterium -mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA: barley genomic DNA junctions. Journal of Plant Physiology, 2002,159(10):1131-1138.
doi: 10.1078/0176-1617-00707 |
[7] |
TRAVELLA S, ROSS S M, HARDEN J, EVERETT C, SNAPE J W, HARWOOD W A. A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Reports, 2005,23(12):780-789.
doi: 10.1007/s00299-004-0892-x |
[8] |
BARTLETT J G, ALVES S C, SMEDLEY M, SNAPE J W, HARWOOD W A. High-throughput Agrobacterium -mediated barley transformation. Plant Methods, 2008,4(1):22.
doi: 10.1186/1746-4811-4-22 |
[9] |
HENSEL G, VALKOV V, MIDDLEFELL-WILLIAMS J, KUMLEHN J. Efficient generation of transgenic barley: The way forward to modulate plant-microbe interactions. Journal of Plant Physiology, 2008,165(1):71-82.
doi: 10.1016/j.jplph.2007.06.015 pmid: 17905476 |
[10] | 马春业. 农杆菌介导miR396基因对大麦愈伤组织的遗传转化[D]. 武汉: 华中农业大学, 2016. |
MA C Y. Genetic transformation of miR396 gene into barley callus by Agrobacterium tumefaciens infection[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese) | |
[11] | 马玲珑, 任盼荣, 汪军成, 孟亚雄, 马小乐, 李葆春, 王化俊. 啤酒大麦品种甘啤4号成熟胚再生体系的建立. 分子植物育种, 2015,13(3):663-669. |
MA L L, REN P R, WANG J C, MENG Y X, MA X L, LI B C, WANG H J. Establishing regeneration system from mature embryos of beer barley variety Ganpi 4. Molecular Plant Breeding, 2015, 2015,13(3):663-669. (in Chinese) | |
[12] | 余桂红, 张旭, 孙晓波, 马鸿翔. 大麦苏啤4号幼胚愈伤组织的诱导及植株的高频再生. 江苏农业学报, 2013,29(5):953-956. |
YU G H, ZHANG X, ZHANG X B, MA H X. Calli induction from immature embryos and plantlet high frequency regeneration of Hordeum vulgare L. cv.Supi 4. Jiangsu Journal of Agricultural Science, 2013,29(5):953-956. (in Chinese) | |
[13] |
王兴珍, 林国梁, 赖勇, 杨轲, 孟亚雄, 李葆春, 马小乐, 尚勋武, 王化俊. 西北地区特色大麦品种成熟胚离体培养的初步研究. 麦类作物学报, 2013,33(2):286-289.
doi: 10.7606/j.issn.1009-1041.2013.02.013 |
WANG X Z, LIN G L, LAI Y, YANG K, MENG Y X, LI B C, MA X L, SHANG X W, WANG H J. Preliminary study of tissue culture for mature embryo from local feature barley. Journal of Triticeae Crops, 2013,33(2):286-289. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2013.02.013 |
|
[14] |
黎冬华, 廖玉才, 李和平. 根癌农杆菌介导的大麦茎尖转化研究. 麦类作物学报, 2012,32(1):44-47.
doi: 10.7606/j.issn.1009-1041.2012.01.008 |
LI D H, LIAO Y C, LI H P. Transformation of shoot apical meristems of elit barley cultivars via agribacterium-mediated transformation. Journal of Triticeae Crops, 2012,32(1):44-47. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2012.01.008 |
|
[15] | 高润红, 杜志钊, 郭桂梅, 邹磊, 何婷, 陈志伟, 李梁, 陆瑞菊, 黄剑华. 优良大麦品种花30幼胚遗传转化体系的优化. 植物遗传资源学报, 2012,13(5):901-906. |
GAO R H, DU Z Z, GUO G M, ZOU L, HE T, CHEN Z W, LI L, LU R J, HUANG J H. Optimization of genetic transformation system for immature embryos of improved barley( Hordeum vulgare L.) variety Hua 30. Journal of Plant Genetic Resources, 2012,13(5):901-906. (in Chinese) | |
[16] | 闫永荣, 张正英, 李静雯, 李淑洁. 甘啤4号大麦幼胚愈伤组织诱导及植株再生的研究. 分子植物育种, 2010,8(1):89-93. |
YAN Y R, ZHANG Z Y, LI J W, LI S J. Studies on callus induction and plant regeneration from immature embryos of Ganpi4 hao. Molecular Plant Breeding, 2010,8(1):89-93. (in Chinese) | |
[17] | 李静雯, 张正英. 根癌农杆菌介导的大麦幼胚遗传转化影响因素研究. 大麦与谷类科学, 2010(2):1-6. |
LI J W, ZHANG Z Y. Study on factors influencing the genetic transformation of immature barley embryos mediated byAgrobacterium tumefaciens. Barley and Cereal Science, 2010(2):1-6. (in Chinese) | |
[18] | 郭晓琳, 张红伟, 刘欣洁, 刘亚娟, 张锋, 孙东发, 谭振波. 大麦成熟胚愈伤组织的诱导和植株再生的研究. 植物遗传资源学报, 2005,6(4):418-422. |
GUO X L, ZHANG H W, LIU X J, LIU Y J, ZHANG F, SUN D F, TAN Z B. Study on callus induction and plant regeneration from mature embryos of barley elite cultivars. Journal of Plant Genetic Resources, 2005,6(4):418-422. (in Chinese) | |
[19] |
李会勇, 尹钧, 刘雷, 任江萍, 郭向云, 李志远. Cu2+浓度对啤酒大麦幼胚组织培养与植株再生的影响 . 麦类作物学报, 2003,23(2):27-29.
doi: 10.7606/j.issn.1009-1041.2003.02.047 |
LI H Y, YIN J, LIU L, REN J P, GUO X Y, LI Z Y. Effect of Cu2+concentration on tissue culture and plant regeneration of beer barley . Journal of Triticeae Crops, 2003,23(2):27-29. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2003.02.047 |
|
[20] | 严华军, 王君晖. 大麦成熟胚胚性愈伤组织的高频诱导和植株再生. 作物学报, 1996,22(1):58-65. |
YAN H J, WANG J H. Efficeient induction of embryogenic callus and regeneration from barley mature embryos. Acta Agronomoca Sinica, 1996,22(1):58-65. (in Chinese) | |
[21] | REN J, LIU L, YIN J, WANG X, LI L. Optimization of transgenic system of barley and transformation of TrxS gene by means of particle bombardment. Acta Botanica Boreali-Occidentalia Sinica, 2004,24(9):1662-1668. |
[22] | 孔维威. TrxS的表达及其对啤酒大麦发芽种子水解酶和贮藏物质降解的影响[D]. 郑州: 河南农业大学, 2006. |
KONG W W. The expression and the effects of TrxS gene on hydrolytic enzyme and degration of storage substances during malting barley seed germination[D]. Zhengzhou: Henan Agricultural University, 2006. (in Chinese) | |
[23] | 吕维涛, 刘芳, 崔德才, 赵檀方. 农杆菌介导法获得转反义磷脂酶Dγ基因大麦. 生物技术, 2005,15(5):11-13. |
LÜ W T, LIU F, CUI D C, LIU T F. Production of transgenic barley with Anti -PLDγ gene via Agrobacterium tumefaciens. Biotechnology, 2005,15(5):11-13. (in Chinese) | |
[24] |
李静雯, 张正英, 令利军, 李淑洁. 利用RNAi抑制B-hordein合成降低大麦籽粒蛋白质含量. 中国农业科学, 2014,47(19):3746-3756.
doi: 10.3864/j.issn.0578-1752.2014.19.003 |
LI J W, ZHANG Z Y, LING L J, LI S J. Creating low grain protein content barley by suppressing b-hordein synthesis through RNA interference. Scientia Agricultura Sinica, 2014,47(19):3746-3756. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.19.003 |
|
[25] | 叶兴国, 陈明, 杜丽璞, 徐惠君. 小麦转基因方法及其评述. 遗传, 2011,33(5):422-430. |
YE X G, CHEN M, DU L P, XU H J. Description and evaluation of transformation approaches used in wheat. Hereditas, 2011,33(5):422-430. (in Chinese) | |
[26] |
WANG K, LIU H, DU L, YE X G. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co- transformation strategy in commercial Chinese wheat varieties. Plant Biotechnology Journal, 2016,15(5):614-623.
doi: 10.1111/pbi.12660 pmid: 27862820 |
[27] |
MCCORMAC A C, FOWLER M R, CHEN D F, ELLIOTT M C. Efficient Co-transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Transgenic Research, 2001,10(2):143-155.
doi: 10.1023/A:1008909203852 |
[28] | XING A, ZHANG Z, SATO S, STASWICK P, CLEMENTE T. The use of the two T-DNA binary system to derive marker-free transgenic soybeans. Vitro Cellular & Developmental Biology Plant, 2000,36(6):456-463. |
[29] |
MILLER M, TAGLIANI L, WANG N, BERKA B, BIDNEY D, ZHAO Z Y. High efficiency transgene segregation in Co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Research, 2002,11(4):381-396.
doi: 10.1023/A:1016390621482 |
[30] | LU L, WU X, YIN X, MORRAND J, CHEN X, FOLK W R, ZHANG Z J. evelopment of marker-free transgenic sorghum [Sorghum bicolor (L.) Moench] using standard binary vectors with bar as a selectable marker. Plant Cell Tissue & Organ Culture, 2009,99(1):97-108. |
[31] |
MANGU V R R, CHIDAMBARAM P, RAJASEKARAN S, KARUPPANNAN V. Transgene stacking and marker elimination in transgenic rice by sequential Agrobacterium-mediated co-transformation with the same selectable marker gene. Plant Cell Reports, 2011,30(7):1241-1252.
doi: 10.1007/s00299-011-1033-y |
[32] | ISHIDA Y, TSUNASHIMA M, HIEI Y, KOMARI T. Wheat (Triticum aestivum L.). Methods in Molecular Biology, Agrobacterium Protocols, 3rd edn. New York: Springer, 2014: 189-198. |
[33] |
MATTHEWS P R, WANG M B, WATERHOUSE P M, THORNTON S, FIEG S J, GUBLER F, JACOBSEN J V. Marker gene elimination from transgenic barley, using co-transformation with adjacent `twin T-DNAs' on a standard Agrobacterium transformation vector. Molecular Breeding, 2001,7(3):195-202.
doi: 10.1023/A:1011333321893 |
[34] |
YAO Q, CONG L, CHANG J L, LI K X, YANG G X, HE G Y. Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. Journal of Experimental Botany, 2006,57(14):3737-3746.
doi: 10.1093/jxb/erl145 pmid: 17032730 |
[35] |
YAO Q, CONG L, HE G, CHANG J, LI K, YANG G. Optimization of wheat co-transformation procedure with gene cassettes resulted in an improvement in transformation frequency. Molecular Biology Reports, 2007,34(1):61-67.
doi: 10.1007/s11033-006-9016-8 |
[1] | 赵海霞,肖欣,董玘鑫,吴花拉,李成磊,吴琦. 苦荞愈伤遗传转化体系的优化及用于FtCHS1的过表达分析[J]. 中国农业科学, 2022, 55(9): 1723-1734. |
[2] | 肖璐婷,李秀红,刘栗君,叶发银,赵国华. 淀粉粒径对大麦淀粉物化特性的影响[J]. 中国农业科学, 2022, 55(5): 1010-1024. |
[3] | 丁茜,赵凯茜,王跃进. 中国野生毛葡萄芪合酶基因表达及对葡萄抗白粉病的影响[J]. 中国农业科学, 2021, 54(2): 310-323. |
[4] | 陈琳,蔺瑞明,王凤涛,庞云星,李雪,赵爱平,张艳霞,张金玲,李文兴,何苏琴,冯晶,李赟,文才艺,徐世昌. 禾生指葡孢霉的遗传多样性及对苗期青稞的致病性[J]. 中国农业科学, 2020, 53(1): 213-224. |
[5] | 张涵,王学敏,刘希强,马琳,温红雨,王赞. 紫花苜蓿MsGAI的克隆、表达及遗传转化[J]. 中国农业科学, 2019, 52(2): 201-214. |
[6] | 刘梦琦,吴凤颖,王跃进. 中国野生毛葡萄芪合成酶基因表达与抗白粉病分析[J]. 中国农业科学, 2019, 52(14): 2436-2449. |
[7] | 杨菲,张爱红,孟凡思,霍良占,李希望,邸垫平,苗洪芹. 大麦黄条点花叶病毒的分布及其分离物的遗传多样性[J]. 中国农业科学, 2018, 51(2): 279-289. |
[8] | 叶明旺,张春芝,黄三文. 二倍体栽培马铃薯高效遗传转化体系的建立[J]. 中国农业科学, 2018, 51(17): 3249-3257. |
[9] | 何俊,田昕竹,王学东,刘彬,李宁,郑涵,孟楠,陈世宝. 基于根微形态测定土壤Zn对大麦的毒性阈值及其预测模型[J]. 中国农业科学, 2017, 50(7): 1263-1270. |
[10] | 杨晓梦,杜娟,曾亚文,普晓英,杨树明,杨涛,汪禄祥,杨加珍. 大麦籽粒蛋白质及其相关功能成分含量的QTL分析[J]. 中国农业科学, 2017, 50(2): 205-215. |
[11] | 杜欢,马彤彤,郭帅,张颖,白志英,李存东. 大麦近等基因系苗期根系形态及叶片渗透调节物质对PEG胁迫的响应[J]. 中国农业科学, 2017, 50(13): 2423-2432. |
[12] | 胡 敏,向永生,鲁剑巍. 石灰用量对酸性土壤酸度及大麦幼苗生长的影响[J]. 中国农业科学, 2016, 49(20): 3896-3903. |
[13] | 李 芳,邓子牛,赵 亚,李大志,戴素明. 柑橘衰退病毒基因p23 RNAi载体的构建及转化[J]. 中国农业科学, 2016, 49(20): 3927-3933. |
[14] | 张婷,王振宇,李铮,林祖松,李祥,田建文,张德权. 饲喂大麦对大河乌猪干腌火腿理化特性及脂肪酸组成的影响[J]. 中国农业科学, 2016, 49(2): 331-338. |
[15] | 曾亚文,汪禄祥,杨晓梦,杨加珍,杜 娟,普晓英,杜丽娟,杨树明,肖 亚,杨 涛. 大麦RIL群体内不同类型苗粉和籽粒元素的差异[J]. 中国农业科学, 2016, 49(15): 2857-2866. |
|