中国农业科学 ›› 2020, Vol. 53 ›› Issue (18): 3818-3832.doi: 10.3864/j.issn.0578-1752.2020.18.016
收稿日期:
2019-10-08
接受日期:
2019-12-26
出版日期:
2020-09-16
发布日期:
2020-09-25
通讯作者:
康俊梅
作者简介:
蒋旭,Tel:010-62816357;E-mail: 基金资助:
JIANG Xu(),CUI HuiTing,WANG Zhen,ZHANG TieJun,LONG RuiCai,YANG QingChuan,KANG JunMei(
)
Received:
2019-10-08
Accepted:
2019-12-26
Online:
2020-09-16
Published:
2020-09-25
Contact:
JunMei KANG
摘要:
【目的】木质素和纤维素是植物次生细胞壁的主要组成成分,是影响牧草消化率和品质的主要因素之一。紫花苜蓿作为高蛋白饲草,是奶牛等草食家畜优质饲草的主要来源。因此,苜蓿木质素和纤维素合成机制一直是受到关注的研究热点。模式植物拟南芥NAC家族的NST转录因子(NAC secondary wall thicking promoting factor)调控次生细胞壁的合成,但紫花苜蓿NST的功能与调控机制尚不明确。本研究通过分析紫花苜蓿NST的表达模式,及在拟南芥与苜蓿中过表达揭示其对木质素和纤维素合成的影响。【方法】通过同源克隆获得MsNST CDs序列,并对该基因进行生物信息学分析。利用qRT-PCR检测该基因受赤霉素(GA3),水杨酸(SA)和多效唑(PCB)诱导后的表达模式。通过转基因植株中过表达MsNST,研究其对木质素和纤维素含量及其合成相关基因的影响。【结果】克隆MsNST 的CDs序列,最大开放阅读框为945bp,编码314个氨基酸。生物信息学分析表明,MsNST主要由无规则卷曲组成(60.83 %);三级结构预测显示,MsNST以同源二聚体的形式有效的促进蛋白质间的相互作用。进化树分析表明,单子叶和双子叶分为两个分枝,暗示存在一定程度的进化,而MsNST与蒺藜苜蓿和大豆的NST属于双子叶植物分枝中的亚分枝,表明豆科植物间亲缘关系较近。MsNST与拟南芥NST1-3的氨基酸序列相似性较高(49%—55.9%),并含有NAC转录因子的5个保守结构域。qRT-PCR分析表明,MsNST受GA3、SA和PCB的诱导表达,相对表达水平(12h)分别是对照的2.19、3.67和3.65倍。过表达MsNST导致拟南芥下胚轴缩短,转基因拟南芥半矮化,花序茎束间细胞壁纤维增厚,细胞壁结晶纤维素(13%)、总糖(7%)和木质素(11.7%)含量增加。通过分析木质素和纤维素合成相关基因表达水平发现,拟南芥和苜蓿中过表达MsNST均能激活木质素合成关键基因(PAL,4CL等)及纤维素合酶复合体亚基CesA家族基因的表达。【结论】MsNST受外源激素GA3、SA和PCB诱导表达。转基因植物中过表达MsNST可激活次生壁木质素和纤维素合成相关基因的表达,同时茎束间纤维细胞壁增厚,细胞壁结晶纤维素、总糖和木质素含量增加,暗示MsNST对次生细胞壁木质素和纤维素的合成有重要的调节作用。
蒋旭,崔会婷,王珍,张铁军,龙瑞才,杨青川,康俊梅. 紫花苜蓿MsNST的克隆及对木质素与纤维素合成的功能分析[J]. 中国农业科学, 2020, 53(18): 3818-3832.
JIANG Xu,CUI HuiTing,WANG Zhen,ZHANG TieJun,LONG RuiCai,YANG QingChuan,KANG JunMei. Cloning and Function Analysis of MsNST in Lignin and Cellulose Biosynthesis Pathway from Alfalfa[J]. Scientia Agricultura Sinica, 2020, 53(18): 3818-3832.
表1
研究所用的引物序列"
引物 Primer | 核酸序列(5′-3′) Nucleotide sequence (5′-3′) | 功能 Function | 文献Reference |
---|---|---|---|
MsNST-f | TCAACTTTTTGGGTCCCTTGTG | MsNST克隆 Cloning of MsNST | |
MsNST-r | TCACCACATGCTATCACCATTG | ||
actin-2s | CAAAAGATGGCAGATGCTGAGGAT | 内参基因 Reference gene Actin | |
actin-2a | CATGACACCAGTATGACGAGGTCG | ||
qNST-f | TCATCTCAAAACCCTAGACAGCCC | 实时定量PCR qRT-PCR | |
qNST-r | GTAATTTGCTTCATAATTCTCTTCCTTG | ||
Ntest-f | GCACAATCCCACTATCCTTCG | 转基因拟南芥阳性鉴定Identification of transgenic lines | |
Ntest-r | AGTTTTTTGATTTCACGGGTTGGGG | ||
W-NST-F | CATTTGGAGAGAACACGGGGGACTCTAGAATGCCTGATAACATGAGTATAT | Pbi121-MsNST超表达载体构建 Construction of Pbi121-MsNST overexpression vector | |
W-NST-R | AACATAAGGGACTGACCACCCGGGGATCCTCACCACATGCTTATCAC CATT | ||
Atact-f | GCAACATACGACGAAATCAAGAA | qRT-PCR内参基因 Actin gene for qRT-PCR | [18] [19] [20] [21] |
Atact-r | CGACACGAGAACTGTAACCCC | ||
AtPAL1-f | ATGGAGATTAACGGGGCACAC | 木质素与纤维素合成相关基因的表达分析 Expression analysis of lignin and cellulose biosynthesis related to genes | |
AtPAL1-r | GTACCGCCGAGAACACCGCC | ||
At4CL1-f | GATTTGAGCTCGATAAGAGTGGTG | ||
At4CL1-r | ATTTGCTAGTTTTGCCCTCA | ||
AtCESA4-f | ATTCTGGGTGATTGGCGG | ||
AtCESA4-r | AATAATGAGAGTTGTCGGAGGG | ||
AtCESA7-f | TTCTTGCCTACTGTATCCTTCC | ||
AtCESA7-r | GCTAACTCCGCTCCATCTCA | ||
AtCESA8-f | CATCCCAACGCTATCAAACCTA | ||
AtCESA8-r | CTGAGACACCTCCAATAACCCA | ||
MsCESA3-f | TCGATGGGCTTTAGGTTCAG | ||
MsCESA3-r | TGAGAAGAGGAATGGAAGTG | ||
MsCESA6-f | CCCTCTTCATATCCATCGCAG | ||
MsCESA6-r | CACCTCCAATCACCCAAAAC | ||
MsCESA7-f | GATGAAGCAAGACAACCACTG | ||
MsCESA7-r | CTGGGTTCATAAGTCTGTATCGG | ||
MsPAL-f | ATGAGGTGAAGCGTATGGTG | ||
MsPAL-r | CATCCCTAGCAGATTCAGACAG | ||
Ms4CL-f | TTCACGTCCTTGCCTCATCA | ||
Ms4CL-r | CCAAGTTTGTTGAGACCGGAGG | ||
MsCOMT-f | AAAGTGATTGTGGCAGAATGCA | ||
MsCOMT-r | TTTTGTGGCCAGGCTTGAA |
[1] | PEI Y, LI Y, ZHANG Y, YU C, FU T, ZOU J, TU Y, PENG L, CHEN P. G-lignin and hemicellulosic monosaccharides distinctively affect biomass digestibility in rapeseed. Bioresour Technology, 2016,203:325-333. |
[2] | XIONG W, WU Z, LIU Y, LI Y, SU K, BAI Z, GUO S, HU Z, ZHANG Z, BAO Y, SUN J, YANG G, FU C. Mutation of 4-coumarate: coenzyme A ligase 1 gene affects lignin biosynthesis and increases the cell wall digestibility in maize brown midrib5 mutants. Biotechnology for Biofuel, 2019,12. |
[3] |
MITSUDA N, OHME-TAKAGI M. NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity. The Plant Journal, 2008,56:768-778.
doi: 10.1111/j.1365-313X.2008.03633.x pmid: 18657234 |
[4] |
ZHONG R, RICHARDSON E A, YE Z H. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta, 2007,225:1603-1611.
doi: 10.1007/s00425-007-0498-y |
[5] |
MITSUDA N, IWASE A, YAMAMOTO H, YOSHIDA M, SEKI M, SHINOZAKI K, OHME-TAKAGI M. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. The Plant Cell Online, 2007,19:270-280.
doi: 10.1105/tpc.106.047043 |
[6] | MITSUDA N, SEKI M, SHINOZAKI K, OHME-TAKAGI M. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. The Plant Cell Online , 2005,17:2993-3006. |
[7] |
ZHONG R, YE Z H. The Arabidopsis NAC transcription factor NST2 functions together with SND1 and NST1 to regulate secondary wall biosynthesis in fibers of inflorescence stems. Plant Signaling and Behavior, 2015,10:e989746.
doi: 10.4161/15592324.2014.989746 pmid: 25751728 |
[8] |
ZHONG R, LEE C, YE Z H. Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Molecular Plant, 2010,3:1087-1103.
doi: 10.1093/mp/ssq062 pmid: 20935069 |
[9] |
XIAO W, YANG Y, YU J. ZmNST3 and ZmNST4 are master switches for secondary wall deposition in maize ( Zea mays L.). Plant Science, 2018,266:83-94.
doi: 10.1016/j.plantsci.2017.03.012 pmid: 29241570 |
[10] | 陈光辉, 高艳, 陈秀娟, 谢丽琼. 植物激素在植物细胞壁扩展中的作用. 生命的化学, 2012,32:464-470. |
CHEN G H, GAO Y, CHEN X J, XIE L Q. The role of phytohormones in plant cell wall expansion. Chemistry of Life, 2012,32:464-470. (in Chinese) | |
[11] |
FALCIONI R, MORIWAKI T DE OLIVEIRA D M, ANDREOTTI G C, DE SOUZA L A, DOS SANTOS W D, BONATO C M, ANTUNES W C. Increased gibberellins and light levels promotes cell wall thickness and enhance lignin deposition in xylem fibers. Frontiers in Plant Science, 2018,9:1391.
doi: 10.3389/fpls.2018.01391 pmid: 30294339 |
[12] |
ITO T, OKADA K, FUKAZAWA J, TAKAHASHI Y. DELLA- dependent and -independent gibberellin signaling. Plant Signaling & Behavior, 2018,13:e1445933.
doi: 10.1080/15592324.2018.1445933 pmid: 29485381 |
[13] |
HUANG D, WANG S, ZHANG B, SHANG-GUAN K, SHI Y, ZHANG D, LIU X, WU K, XU Z, FU X, ZHOU Y. A gibberellin- mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. The Plant Cell, 2015,27:1681-1696.
doi: 10.1105/tpc.15.00015 pmid: 26002868 |
[14] |
YE Y, LIU B, ZHAO M, WU K, CHENG W, CHEN X, LIU Q, LIU Z, FU X, WU Y. CEF1/OsMYB103L is involved in GA-mediated regulation of secondary wall biosynthesis in rice. Plant Molecular Biology, 2015,89:385-401.
doi: 10.1007/s11103-015-0376-0 pmid: 26350403 |
[15] | 王媛, 杨红玉, 程在全. SA诱导拟南芥对灰霉病的抗性与木质素含量的关系. 植物保护, 2007 : 50-54. |
WANG Y, YANG H Y, CHENG Z Q. Relationship between SA-induced resistance to grey mold in Arabidopsis and the lignin contents. Plant Protection, 2007: 50-54. (in Chinese) | |
[16] | 袁剑平, 刘华山, 彭文博, 王德勤, 曹章林. 多效唑对小麦形态和某些生理特性影响的研究. 河南农业大学学报, 1993: 16-20. |
YUAN J P, LIU H S, PENG W B, WANG D Q, CAO Z L. Effect of PP333 on morPhological and some physiological characteristics of wheat. Journal of Henan Agricultural University, 1993: 16-20. (in Chinese) | |
[17] | 陈晓光, 石玉华, 王成雨, 尹燕枰, 宁堂原, 史春余, 李勇, 王振林. 氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系. 中国农业科学, 44:3529-3536. |
CHEN X G, SHI Y H, WANG C Y, YIN Y P, NING T Y, SHI C Y, LI Y, WANG Z L. Effects of nitrogen and PP333 application on the lignin synthesis of stem in relation to lodging resistance of wheat. Scientia Agricultura Sinica, 2011,44:3529-3536. (in Chinese) | |
[18] |
HU H Z, ZHANG R, FENG S Q, WANG Y M, WANG Y T, FAN C F, LI Y, LIU Z Y, SCHNEIDER R, XIA T, DING S Y, PERSSON S, PENG L C. Three AtCesA6-like members enhance biomass production by distinctively promoting cell growth in Arabidopsis. Plant Biotechnology Journal, 2018,16(5):976-988.
doi: 10.1111/pbi.12842 pmid: 28944540 |
[19] |
RAES J, ROHDE A, CHRISTENSEN J H, VAN DE PEER Y, BOERJAN W. Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiology, 2003,133:1051-1071.
doi: 10.1104/pp.103.026484 pmid: 14612585 |
[20] |
GUERRIERO G, LEGAY S, HAUSMAN J F. Alfalfa Cellulose synthase gene expression under abiotic stress: a Hitchhiker's guide to RT-qPCR normalization. PLoS One, 2014,9:e103808.
doi: 10.1371/journal.pone.0103808 pmid: 25084115 |
[21] |
GALLEGO-GIRALDO L, JIKUMARU Y, KAMIYA Y, TANG Y, DIXON R A. Selective lignin down regulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.). New Phytologist, 2011,190:627-639.
doi: 10.1111/j.1469-8137.2010.03621.x pmid: 21251001 |
[22] |
WANG K. Preface Agrobacterium protocols. Methods in Molecular Biology, 2015, 1224: vii-viii.
doi: 10.1007/978-1-4939-1658-0 pmid: 25568905 |
[23] | FOSTER C E, MARTIN T M, PAULY M. Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part I: lignin. Journal of Visualized Experiments, 2010(37):e1745. |
[24] |
OOKA H, SATOH K, NAGATA T, OTOMO Y, MURAKAMI K, MATSUBARA K, OSATO N, KAWAI J, CARNINCI P. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research, 2003, 10: 239.
doi: 10.1093/dnares/10.6.239 pmid: 15029955 |
[25] |
TAKATA N, AWANO T, NAKATA M T, SANO Y, SAKAMOTO S, MITSUDA N, TANIGUCHI T. Populus NST/SND orthologs are key regulators of secondary cell wall formation in wood fibers, phloem fibers and xylem ray parenchyma cells. Tree Physiology, 2019,39:514-525.
doi: 10.1093/treephys/tpz004 pmid: 30806711 |
[26] |
OLSEN A N, ERNST H A, LEGGIO L L, SKRIVER K. DNA-binding specificity and molecular functions of NAC transcription factors. Plant Science, 2005,169:785-797.
doi: 10.1016/j.plantsci.2005.05.035 |
[27] |
BIEMELT S, TSCHIERSCH H, SONNEWALD U. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiology, 2004,135:254-265.
doi: 10.1104/pp.103.036988 pmid: 15122040 |
[28] |
RAGNI L, NIEMINEN K, PACHECO-VILLALOBOS D, SIBOUT R, SCHWECHHEIMER C, HARDTKE C S. Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell, 2011,23:1322-1336.
doi: 10.1105/tpc.111.084020 |
[29] |
GUO H, WANG Y, LIU H, HU P, JIA Y, ZHANG C, WANG Y, GU S, YANG C, WANG C.. Exogenous GA(3) application enhances xylem development and induces the expression of secondary wall biosynthesis related genes in Betula platyphylla. International Journal of Molecular Sciences, 2015,16:22960-22975.
doi: 10.3390/ijms160922960 pmid: 26404260 |
[30] |
KAMRAN M, CUI W W, AHMAD I, MENG X P, ZHANG X D, SU W N, CHEN J Z, AHMAD S, FAHAD S, HAN Q F, LIU T N. Effect of paclobutrazol, a potential growth regulator on stalk mechanical strength, lignin accumulation and its relation with lodging resistance of maize, Plant Growth Regulation, 2018,84:317-332.
doi: 10.1007/s10725-017-0342-8 |
[31] |
KAMRAN M, CUI W W, AHMAD I, WU X R, LIU T N, DING R X, HAN Q F. Application of paclobutrazol: a strategy for inducing lodging resistance of wheat through mediation of plant height, stem physical strength, and lignin biosynthesis. Environmental Science and Pollution Research, 2018,25:29366-29378.
doi: 10.1007/s11356-018-2965-3 pmid: 30121770 |
[32] |
JACOBSEN S E, OLSZEWSKI N E. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell, 1993,5:887-896.
doi: 10.1105/tpc.5.8.887 pmid: 8400871 |
[33] | LEON J, SHULAEV V, YALPANI N, LAWTON M A, RASKIN I. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis. Proceedings of the National Academy of Sciences, 1995,92:10413-10417. |
[34] |
NAPOLEAO T A, SOARES G, VITAL C E, BASTOS C, CASTRO R, LOUREIRO M E, GIORDANO A. Methyl jasmonate and salicylic acid are able to modify cell wall but only salicylic acid alters biomass digestibility in the model grass Brachypodium distachyon. Plant Science, 2017,263:46-54.
doi: 10.1016/j.plantsci.2017.06.014 pmid: 28818383 |
[35] | 陈年来, 胡敏, 乔昌萍, 乃小英, 王锐. BTH、SA和SiO2处理对甜瓜幼苗白粉病抗性及叶片HRGP和木质素含量的影响. 中国农业科学, 2010,43:535-541. |
CHEN N L, HU M, QIAO C P, NAI X Y, WANG R. Effects of BTH, SA, and SiO2 treatment on disease resistance and leaf HRGP and lignin contents of melon seedlings. Scientia Agricultura Sinica, 2010,43:535-541.(in Chinese) | |
[36] |
ZHANG Q, XIE Z, ZHANG R, XU P, LIU H, YANG H, DOBLIN M S, BACIC A, LI L. Blue light regulates secondary cell Wall thickening via MYC2/MYC4 activation of the NST1-Directed transcriptional network in Arabidopsis. Plant Cell, 2018,30:2512-2528.
doi: 10.1105/tpc.18.00315 pmid: 30242037 |
[37] |
ZHAO Q, GALLEGO-GIRALDO L, WANG H, ZENG Y, DING S Y, CHEN F, DIXON R A. An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula. The Plant Journal, 2010,63:100-114.
doi: 10.1111/j.1365-313X.2010.04223.x pmid: 20408998 |
[38] |
WILLIAMSON R E, BURN J E, HOCART C H. Towards the mechanism of cellulose synthesis. Trends in Plant Science, 2002,7:461-467.
doi: 10.1016/s1360-1385(02)02335-x pmid: 12399182 |
[39] |
DOBLIN M S, KUREK I, JACOB-WILK D, DELMER D P. Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiology, 2002,43:1407-1420.
doi: 10.1093/pcp/pcf164 pmid: 12514238 |
[40] |
TAYLOR N G, SCHEIBLE W R, CUTLER S, SOMERVILLE C R, TURNER S R. The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell, 1999,11:769-780.
doi: 10.1105/tpc.11.5.769 pmid: 10330464 |
[41] |
TURNER S R, SOMERVILLE C R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell, 1997,9:689-701.
doi: 10.1105/tpc.9.5.689 pmid: 9165747 |
[42] |
ZHONG R Q, YE Z H. MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant Cell Physiology, 2012,53:368-380.
doi: 10.1093/pcp/pcr185 pmid: 22197883 |
[1] | 耿文杰,李宾,任佰朝,赵斌,刘鹏,张吉旺. 种植密度和喷施乙烯利对夏玉米木质素代谢和抗倒伏性能的调控[J]. 中国农业科学, 2022, 55(2): 307-319. |
[2] | 苏倩,杜文宣,马琳,夏亚迎,李雪,祁智,庞永珍. 紫花苜蓿MsCIPK2的克隆及功能分析[J]. 中国农业科学, 2022, 55(19): 3697-3709. |
[3] | 张云秀,蒋旭,尉春雪,蒋学乾,卢栋宇,龙瑞才,杨青川,王珍,康俊梅. 紫花苜蓿高迁移率族蛋白基因MsHMG-Y调控花期的功能分析[J]. 中国农业科学, 2022, 55(16): 3082-3092. |
[4] | 王立健,罗程,潘雪峰,陈霞,陈银基. 纤维素替代淀粉对肌原纤维蛋白凝胶特性的影响[J]. 中国农业科学, 2022, 55(11): 2227-2238. |
[5] | 刘恋,唐志鹏,李菲菲,熊江,吕壁纹,马小川,唐超兰,李泽航,周铁,盛玲,卢晓鹏. ‘融安金柑’‘滑皮金柑’及‘脆蜜金柑’贮藏期品质、贮藏特性及果皮转录组分析[J]. 中国农业科学, 2021, 54(20): 4421-4433. |
[6] | 马琳,温红雨,王学敏,高洪文,庞永珍. 紫花苜蓿MsMAX2的克隆及功能研究[J]. 中国农业科学, 2021, 54(19): 4061-4069. |
[7] | 李昕芫, 娄金秀, 刘清源, 胡健, 张英俊. 中国东北和华北地区紫花苜蓿根瘤菌遗传多样性研究[J]. 中国农业科学, 2021, 54(16): 3393-3405. |
[8] | 高凤芹,景媛媛,德英,万其号,刘鹰昊,塔娜. 稀硫酸预处理对杂交狼尾草木质纤维素化学组分和表征结构的影响[J]. 中国农业科学, 2020, 53(21): 4516-4526. |
[9] | 董荷荷, 骆永丽, 李文倩, 王元元, 张秋霞, 陈金, 金敏, 李勇, 王振林. 不同春季追氮模式对小麦茎秆抗倒性能及木质素积累的影响[J]. 中国农业科学, 2020, 53(21): 4399-4414. |
[10] | 康俊梅,张俏燕,蒋旭,王珍,张铁军,龙瑞才,崔会婷,杨青川. 紫花苜蓿MsSQE1的克隆及对皂甙合成的功能分析[J]. 中国农业科学, 2020, 53(2): 247-260. |
[11] | 崔苗苗,马琳,张锦锦,王筱,庞永珍,王学敏. 紫花苜蓿MsDWF4的表达特性及耐盐性效应[J]. 中国农业科学, 2020, 53(18): 3650-3664. |
[12] | 刘佼佼,王学敏,马琳,崔苗苗,曹晓宇,赵威. 紫花苜蓿MsWRKY42的分离、鉴定及其对非生物胁迫的响应[J]. 中国农业科学, 2020, 53(17): 3455-3466. |
[13] | 李强, 黄迎新, 钟荣珍, 孙海霞, 周道玮. 豆-禾混播草地中紫花苜蓿比例对其固氮效率的影响及潜在生理机制[J]. 中国农业科学, 2020, 53(13): 2647-2656. |
[14] | 巩皓,杨柳,李丹丹,刘国富,肖知新,吴清莹,崔国文. 寒地黑土农区紫花苜蓿生产与品质对施肥和刈割频次的响应及效益分析[J]. 中国农业科学, 2020, 53(13): 2657-2667. |
[15] | 肖知新,王洋,刘国富,巩皓,李丹丹,巩林,白珍建,崔国文. 寒地黑土区春季施肥期对紫花苜蓿生产性能及营养品质的影响[J]. 中国农业科学, 2020, 53(13): 2668-2677. |
|