中国农业科学 ›› 2020, Vol. 53 ›› Issue (13): 2614-2624.doi: 10.3864/j.issn.0578-1752.2020.13.010
收稿日期:
2019-08-12
接受日期:
2019-12-25
出版日期:
2020-07-01
发布日期:
2020-07-16
通讯作者:
万里强,李向林
作者简介:
徐梦,Tel:15201029279;E-mail: xumeng@igsnrr.ac.cn。
基金资助:
SHANG LiRong,WAN LiQiang(),LI XiangLin()
Received:
2019-08-12
Accepted:
2019-12-25
Online:
2020-07-01
Published:
2020-07-16
Contact:
LiQiang WAN,XiangLin LI
摘要:
【目的】 以呼伦贝尔天然羊草草原退化打草场为研究对象,揭示不同有机肥处理对土壤养分状况和土壤细菌群落多样性的影响,为羊草草原的改良、恢复及合理利用提供科学依据。【方法】 田间试验采用单因素随机区组设计,共7个处理分别为:对照(ck),蚯蚓粪15 t·hm-2(a1)、30 t·hm-2(a2)、45 t·hm-2(a3),菌渣15 t·hm-2(b1)、30 t·hm-2(b2)、45 t·hm-2(b3)。本研究采用 Miseq高通量测序技术,分析不同有机肥处理对土壤细菌群落多样性的影响机制。同时结合土壤化学性质,探究不同有机肥处理下细菌群落变化的环境驱动因子。【结果】 不同有机肥处理可以改善土壤养分状况并形成明显的细菌群落。a3处理的土壤有效磷含量较对照显著增加37.3%。b3和a3处理土壤有效钾含量较对照显著增加62.99%和40.53%。b3处理下的地上生物量显著高于其他处理(244.11 g·m-2)。此外,施蚯蚓粪和菌渣显著增加了土壤中细菌群落的丰富度。与ck相比,a1和b2处理下丰富度指数显著增加。在门水平上,21个样品共获得31个类群。其中放线菌门(Actinobacteria),变形菌门(Proteobacteria),酸杆菌门(Acidobacteria),疣微菌门(Verrucomicrobia)和绿弯菌门(Chloroflexi)为优势类群,相对丰度共占细菌群落的85%以上。a2处理的放线菌最为丰富(36.79%)。变形菌门(Proteobacteria)在b1和b3处理中含量较高(23.29%,22.32%)。酸杆菌门(Acidobacteria)在a1处理中最高(20.69%)。而LEfSe表明在b3处理下检测到更多的细菌分类群(17个进化枝,1个纲,1个目,4个科和11个属)。另外,土壤有效氮(P=0.001)、有效钾(P=0.005)和有机质(P=0.006)对土壤中的细菌群落组成有极显著的影响(P<0.01),全钾(P=0.014)对土壤细菌群落组成有显著影响(P<0.05)。说明有效氮、有效钾、有机质和全钾是细菌群落的主要驱动因素。【结论】 有机肥在羊草草原的应用改变了土壤细菌群落结构。蚯蚓粪和菌渣在45 t·hm-2施肥量情况下提高了速效养分含量,也提高了羊草草原土壤细菌群落的生物多样性,有利于草地农业生态系统的可持续发展。
商丽荣,万里强,李向林. 有机肥对羊草草原土壤细菌群落多样性的影响[J]. 中国农业科学, 2020, 53(13): 2614-2624.
SHANG LiRong,WAN LiQiang,LI XiangLin. Effects of Organic Fertilizer on Soil Bacterial Community Diversity in Leymus chinensis Steppe[J]. Scientia Agricultura Sinica, 2020, 53(13): 2614-2624.
表1
不同有机肥处理的土壤化学性质和地上部生物量"
处理 Treatment | pH | 全氮 TN (g·kg-1) | 全磷 TP (g·kg-1) | 全钾 TK (g·kg-1) | 有效氮 AN (mg·kg-1) | 有效磷 AP (mg·kg-1) | 有效钾 AK (mg·kg-1) | 有机质 SOM (g·kg-1) | 生物量 DM (g·m-2) |
---|---|---|---|---|---|---|---|---|---|
ck | 6.28±0.10b | 2.51±0.25a | 0.66±0.12a | 31.85±0.61a | 172.84±10.24a | 7.43±0.94b | 179.42±31.01c | 55.48±0.90a | 172.8±10.68c |
a1 | 6.31±0.02b | 2.52±0.30a | 0.68±0.10a | 32.64±1.44a | 175.90±11.67a | 8.89±1.39b | 209.19±55.79bc | 52.15±6.19a | 198.38±14.94bc |
a2 | 6.51±0.11b | 2.26±0.12a | 0.69±0.21a | 31.96±0.84a | 167.76±3.12a | 8.34±1.29b | 195.03±32.10bc | 50.32±5.18a | 180.91±2.90bc |
a3 | 7.02±0.54a | 2.47±0.08a | 0.73±0.20a | 33.12±0.71a | 184.54±15.22a | 10.20±0.15a | 252.14±4.68ab | 55.40±5.49a | 214.27±5.26bc |
b1 | 6.21±0.08b | 2.56±0.28a | 0.74±0.26a | 32.18±0.51a | 183.70±3.66a | 9.06±1.87b | 250.67±12.13ab | 55.75±1.76a | 191.49±1.99ab |
b2 | 6.14±0.12b | 2.10±0.07a | 0.58±0.04a | 31.84±0.56a | 169.34±6.80a | 8.18±0.48b | 220.20±23.32bc | 48.31±5.60a | 219.78±10.73ab |
b3 | 6.17±0.20b | 2.40±0.26a | 0.55±0.01a | 32.59±0.88a | 187.96±5.60a | 8.84±0.31b | 292.44±20.67a | 55.78±4.43a | 244.11±13.59a |
表2
不同有机肥处理下土壤细菌测序及群落α多样性指数"
处理 Treatment | 序列数 Reads | 操作分类单元 Observed OTU | 香农指数 Shannon index | Ace指数 Ace index | 覆盖度 Coverage |
---|---|---|---|---|---|
ck | 35708 | 2272.67±52.80b | 6.43±0.06a | 2703.45±53.03b | 0.9849±0.0002a |
a1 | 35708 | 2411.00±15.80ab | 6.53±0.01a | 2894.58±19.41a | 0.9837±0.0002a |
a2 | 35708 | 2396.00±39.38ab | 6.47±0.03a | 2848.59±58.42ab | 0.9841±0.0009a |
a3 | 35708 | 2301.67±18.31ab | 6.39±0.02a | 2755.35±23.34ab | 0.9843±0.0003a |
b1 | 35708 | 2303.67±72.76ab | 6.38±0.07a | 2791.93±88.16ab | 0.9838±0.0009a |
b2 | 35708 | 2436.00±1.70a | 6.51±0.02a | 2898.92±18.63a | 0.9838±0.0004a |
b3 | 35708 | 2372.00±54.95ab | 6.45±0.06a | 2839.53±76.17ab | 0.9839±0.0011a |
[1] | 乌云, 娜仁高娃, 田瑞芳. 呼伦贝尔草原生态保护与畜牧业可持续发展. 内蒙古农业大学学报(社会科学版), 2014,16(2):18-21. |
WU Y, NAN REN G W, TIAN R F. Hulunbeier grassland ecological protection and sustainable development of animal husbandry. Journal of Inner Mongolia Agricultural University (Social Science Edition), 2014,16(2):18-21. (in Chinese) | |
[2] | 卡着才让, 德科加, 徐成体. 不同施肥时间及施氮水平对高寒草甸生物量和土壤养分的影响. 草地学报, 2015,23(4):726-732. |
KA ZHUO C R, DE K J, XU C T. The effects of different fertilization time and nitrogen application levels on biomass and soil nutrients in Alpine meadow. Acta Agrestia Sinica, 2015,23(4):726-732. (in Chinese) | |
[3] | CLARK F E, PAUL E A. The microflora of grassland. Advances in Agronomy, 1970,22:375-435. |
[4] | HE N, YU Q, WANG R, ZHANG Y H, GAO Y, YU G R. Enhancement of carbon sequestration in soil in the temperature grasslands of northern China by addition of nitrogen and phosphorus. PLoS ONE, 2013,8:e77241. |
[5] | SHEN J P, ZHANG L M, GUO J F, RAY J L, HE J Z. Impact of long-term fertilization practices on the abundance and composition of soil bacterial communities in Northeast China. Applied Soil Ecology, 2010,46:119-124. |
[6] | VOURLITIS G L, ZORBA G, PASQUINII S C, ROBERT M. Chronic nitrogen deposition enhances nitrogen mineralization potential of semiarid shrubland soils. Soil Science Society of America Journal, 2007,123(1):836-842. |
[7] | ZEGLIN L H, STURSOVA M, SINSABAUGH R L, COLLINS S L. Microbial responses to nitrogen addition in three contrasting grassland ecosystems. Oecologia, 2007,154(2):349-359. |
[8] | ROEM W J, BERENDSE F. Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities. Biological Conservation, 2000,92(2):151-161. |
[9] | GUSEWELL S. N:P ratios in terrestrial plants: variation and functional significance: Tansley review. New Phytologist, 2004,164(2):243-266. |
[10] | HATI K M, MANDAL K G, MISRA A K, GHOSH P K, BANDYOPADHYAY K K. Effect of inorganic fertilizer and farmyard manure on soil physical properties, root distribution, and water-use efficiency of soybean in Vertisols of central India.. Bioresource Technology, 2006(97):2182-2188. |
[11] | BHATTACHARYYA R, CHANDRA S, SINGH R D, KUNDU S, SRIVASTVA A K, GUPTA H S. Long-term farmyard manure application effects on properties of a silty clay loam soil under irrigated wheat-soybean rotation. Soil & Tillage Research, 2007,94:386-396. |
[12] | SUN R, ZHANG X, GUO X, WANG D, CHU H. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology and Biochemistry, 2015,88:9-18. |
[13] | GE G, LI Z, FAN F, CHU G, HOU Z, LIANG Y. Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers. Plant and Soil, 2010,326:31-44. |
[14] | ABBOTT L K, MURPHY D V. Soil Biological Fertility. Netherlands: Kluwer Academic Publishers, 2003. |
[15] | BERTHRONG T, BUCKLEY D H, DRINKWATER L E. Agricultural management and labile carbon additions affect soil microbial community structure and interact with carbon and nitrogen cycling. Microbial Ecology, 2013,66(1):158-170. |
[16] | WEI D, YANG Q, ZHANG J Z, WANG S, CHEN X, ZHANG X, LI W Q. Bacterial communities structure and diversity in a black soil as affected by long-term fertilization. Pedosphere, 2008,18(5):582-592. |
[17] | RAJKUMAR M, SANDHYA S, PRASAD M N V, FREITAS H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances, 2012,30(6):1562-1574. |
[18] | SOLOMON S. IPCC(2007): Climate change the physical science basis. American Geophysical Union, 2007,9(1):123-124. |
[19] | WU M N, QIN H L, CHEN Z, WU J S, WEI W X. Effect of long-term fertilization on bacterial composition in rice paddy soil. Biology and Fertility of Soils, 2011,47(4):397-405. |
[20] | NGOSONG C, JAROSCH M, RAUPP J, NEUMANN E, RUESS L. The impact of farming practice on soil microorganisms and arbuscular mycorrhizal fungi: Crop type versus long-term mineral and organic fertilization. Applied Soil Ecology, 2010,46:134-142. |
[21] | YAN Y C, YAN R R, CHEN J Q, XIN X P, ELDRIDGE D J, SHAO C L, WANG X, LV S J, JIN D Y, CHEN J Q, GUO Z J, CHEN B R, XU L J. Grazing modulates soil temperature and moisture in a Eurasian steppe. Agricultural and Forest Meteorology, 2018,262:157-165. |
[22] | 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 1981. |
BAO S D. Soil and Agricultural Chemistry Analysis. Beijing: China Agricultural Press, 1981. (in Chinese) | |
[23] | KUO S. Phosphorus// SPARKS D L, PAGE A L, HELMKE P A, LOEPPERT R H, SOLTANPOUR P N, TABATABAI M A, JOHNSTON C T, SUMNER M E. Methods of Soil Analysis, Part 3, Chemical Methods. SSSA and ASA, Madison, 869-920. |
[24] | 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. |
LU R K. Soil Agricultural Chemical Analysis Method. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese) | |
[25] | CHU H Y, FU J T, MORIMOTO S, LIN X G, YANG K, HU J L, ZHANG J B. Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil. Applied and Environmental Microbiology, 2007,73:485-491. |
[26] | WU M, QIN H, CHEN Z, WU J, WEI W. Effect of long-term fertilization on bacterial composition in rice paddy soil. Biology and Fertility of Soils, 2011,47:397-405. |
[27] | DAQUIADO A R, KUPPUSAMY S, KIM S Y, KIM J H, YOON Y E, KIM P J, OH S H, KWAK Y S, LEE Y B. Pyrosequencing analysis of bacterial community diversity in long-term fertilized paddy field soil. Applied Soil Ecology, 2016,108:84-91. |
[28] | ZHONG W H, GU T, WANG W, ZHANG B, LIN X G, HUANG Q R, SHEN W S. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant and Soil, 2010,326:511-522. |
[29] | CHEN Y, ZHANG X D, HE H B, XIE H T, YAN Y, ZHU P, REN J, WANG L C. Carbon and nitrogen pools in different aggregates of a Chinese Mollisol as influenced by long-term fertilization. Journal of Soils and Sediments, 2010,10:1018-1026. |
[30] | MARIE ŠTÝBNAROVÁ, PAVLÍNA MIČOVÁ, KAREL FIALA, HANA KARABCOVÁ, OLDŘICH LÁTAL, JAN POZDÍŠEK. Effect of organic fertilizers on botanical composition of grassland, herbage yield and quality. Agriculture, 2014,60(3):87-97. |
[31] | CHEN D, YUAN L, LIU Y R, JI J H, HOU H Q. Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties. European Journal of Agronomy, 2017,90:34-42. |
[32] | ZHAO J, ZHANG R F, XUE C, XUN W B, SUN L, XU Y C, SHEN Q R. Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China. Microbial Ecology, 2014,67:443-453. |
[33] | MARTIN H, BEAT F, JOCHEN M, PAUL M, FRANCO W. Distinct soil microbial diversity under long-term organic and conventional farming. The ISME Journal, 2015,9:1177-1194. |
[34] | XU J, LIU S J, SONG S R, GUO S L, TANG J J, JEAN W H Y, MA Y D, CHEN X. Arbuscular mycorrhizal fungi influence decomposition and the associated soil microbial community under different soil phosphorus availability. Soil Biology and Biochemistry, 2018,20:181-190. |
[35] | KOPECKY J, KYSELKOVA M, OMELKA M, CERMAK L, NOVOTNA J, GRUNDMANN G L, YVAN M L, MARKETA S M. Actinobacterial community dominated by a distinct clade in acidic soil of a waterlogged deciduous forest. FEMS Microbiology Ecology, 2011,78:386-394. |
[36] | SUN J, ZHANG Q, ZHOU J, WEI Q. Pyrosequencing technology reveals the impact of different manure doses on the bacterial community in apple rhizosphere soil. Applied Soil Ecology, 2014,78:28-36. |
[37] | WANG Q F, JIANG X, GUAN D W, WEI D, ZHAO, B S, MA M C, CHEN S F, LI L, CAO F M, LI J. Long-term fertilization changes bacterial diversity and bacterial communities in the maize rhizosphere of Chinese Mollisols. Applied Soil Ecology, 2017,125:88-96. |
[38] | CHEN X, JIANG N, CHEN Z H, TIAN J H. Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials. Applied Soil Ecology, 2017,119:197-204. |
[39] | LI M, JAIN S, DICK G J. Genomic and transcriptomic resolution of organic matter utilization among deep-Sea bacteria in Guaymas basin hydrothermal plumes. Frontiers in Microbiology, 2016,7:1125. |
[40] | LINO T, MORI K, UCHINO Y, NAKAGAWA T, HARAYAMA S, SUZUKI K. Ignavibacterium album gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring and proposal of Ignavibacteria classis nov., for a novel lineage at the periphery of green sulfur bacteria. International Journal of Systematic and Evolutionary Microbiology, 2010,60:1376-1382. |
[41] | PODOSOKORSKAYA O, KADNIKOV V, GAVRILOV S N, MARDANOV A V, MERKEL A Y, KARNACHUK O V, RAVIN N V, BONCH E A, KUBLANOV I V. Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae. Environmental Microbiology, 2013,15:1759-1771. |
[42] | BURNS R G, DEFOREST J L, MARXSEN J, SINSABAUGH R L, STROMBERGER M E, WALLENSTEIN M D, WEINTRAUB M N, ZOPPINI A. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 2013,58:216-234. |
[43] | LIU W X, WANG Q L, WANG B Z, WANG X B, FRANKS A E, TENG Y, LI Z G, LUO Y M. Changes in the abundance and structure of bacterial communities under long-term fertilization treatments in a peanut monocropping system. Plant and Soil, 2015,395:415-427. |
[44] | YOON J H, CHOI J H, KANG S J, CHOI N S, LEE J S, SONG J J. Jeongeupia naejangsanensis gen. nov., sp. nov., a cellulose-degrading bacterium isolated from forest soil from Naejang Mountain in Korea. International Journal of Systematic and Evolutionary Microbiology, 2010,60:615-619. |
[45] | VERASTEGUI Y, CHENG J, ENGEL K, KOLCZYNSKI D, MORTIMER S, LAVIGNE J, MONTALLBET J, ROMANTSOV T, HALL M, MCCONKEY B J, ROSE D R, TOMASHEK J J, SCOTT B R, CHARLES T C, NEUFELD J D. Multisubstrate isotope labeling and metagenomic analysis of active soil bacterial communities. MBio, 2014,5:e1157-14. |
[46] | ZHANG Q, ZHANG W. Microbial flora analysis for the degradation of beta-cypermethrin. Environmental Science and Pollution Research. 2017,24:6554-6562. |
[47] | SHEN Z Z, WANG D S, RUAN Y Z, XUE C, ZHANG J, LI R, SHEN Q R. Deep 16S rRNA pyrosequencing reveals a bacterial community associated with banana Fusarium wilt disease suppression induced by bioorganic fertilizer application. PLoS ONE, 2014,9(5):e98420. |
[48] | XUN W B, HUANG T, ZHAO J, RAN W, WANG B, SHEN Q R, ZHANG R F. Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities. Soil Biology and Biochemistry, 2015,90:10-18. |
[49] | WEI M, HU G Q, WANG H, BAI E, LOU Y H, ZHANG A J, ZHU GE Y P. 35 years of manure and chemical fertilizer application alters soil microbial community composition in a fluvo-aquic soil in Northern China. European Journal of Soil Biology, 2017,82:27-34. |
[50] | WANG Q F, JIANG X, GUAN D W, WEI D, ZHAO B S, MA M C, CHEN S F, LI L, CAO F M, LI J. Long-term fertilization changes bacterial diversity and bacterial communities in the maize rhizosphere of Chinese Mollisols. Applied Soil Ecology, 2017,125:88-96. |
[1] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[2] | 王树会,陶雯,梁硕,张旭博,孙楠,徐明岗. 长期施用有机肥情景下华北平原旱地土壤固碳及N2O排放的空间格局[J]. 中国农业科学, 2022, 55(6): 1159-1171. |
[3] | 李晓立,何堂庆,张晨曦,田明慧,吴梅,李潮海,杨青华,张学林. 等氮量条件下有机肥替代化肥对玉米农田温室气体排放的影响[J]. 中国农业科学, 2022, 55(5): 948-961. |
[4] | 伊英杰,韩坤,赵斌,刘国利,林佃旭,陈国强,任昊,张吉旺,任佰朝,刘鹏. 长期不同施肥措施冬小麦-夏玉米轮作体系周年氨挥发损失的差异[J]. 中国农业科学, 2022, 55(23): 4600-4613. |
[5] | 朱长伟,孟威威,石柯,牛润芝,姜桂英,申凤敏,刘芳,刘世亮. 不同轮耕模式下小麦各生育时期土壤养分及酶活性变化特征[J]. 中国农业科学, 2022, 55(21): 4237-4251. |
[6] | 万连杰,何满,李俊杰,田洋,张绩,郑永强,吕强,谢让金,马岩岩,邓烈,易时来. 有机肥替代部分化肥对椪柑生长、品质及土壤特性的影响[J]. 中国农业科学, 2022, 55(15): 2988-3001. |
[7] | 王宁,冯克云,南宏宇,张铜会. 不同水分条件下有机无机肥配施对棉花根系特征及产量的影响[J]. 中国农业科学, 2022, 55(11): 2187-2201. |
[8] | 郭迎新,陈永亮,苗琪,范志勇,孙军伟,崔振岭,李军营. 洱海流域植烟土壤养分时空变异特征及肥力评价[J]. 中国农业科学, 2022, 55(10): 1987-1999. |
[9] | 靳玉婷,刘运峰,胡宏祥,穆静,高梦瑶,李先藩,薛中俊,龚静静. 持续性秸秆还田配施化肥对油菜-水稻轮作周年氮磷径流损失的影响[J]. 中国农业科学, 2021, 54(9): 1937-1951. |
[10] | 刘彦伶,李渝,张艳,张雅蓉,黄兴成,张萌,张文安,蒋太明. 长期施用磷肥和有机肥黄壤微生物量磷特征[J]. 中国农业科学, 2021, 54(6): 1188-1198. |
[11] | 赵卫松,郭庆港,苏振贺,王培培,董丽红,胡卿,鹿秀云,张晓云,李社增,马平. 马铃薯健株与黄萎病株根际土壤真菌群落结构及其对碳源利用特征[J]. 中国农业科学, 2021, 54(2): 296-309. |
[12] | 赵鹏,刘明,靳容,陈晓光,张爱君,唐忠厚,魏猛. 长期施用有机肥对潮土区甘薯碳氮积累与分配的影响[J]. 中国农业科学, 2021, 54(10): 2142-2153. |
[13] | 任涛,郭丽璇,张丽梅,杨旭坤,廖世鹏,张洋洋,李小坤,丛日环,鲁剑巍. 我国冬油菜典型种植区域土壤养分现状分析[J]. 中国农业科学, 2020, 53(8): 1606-1616. |
[14] | 郑凤君,王雪,李景,王碧胜,宋霄君,张孟妮,武雪萍,刘爽,席吉龙,张建诚,李永山. 免耕条件下施用有机肥对冬小麦土壤酶及活性有机碳的影响[J]. 中国农业科学, 2020, 53(6): 1202-1213. |
[15] | 李永华,武雪萍,何刚,王朝辉. 我国麦田有机肥替代化学氮肥的产量及经济环境效应[J]. 中国农业科学, 2020, 53(23): 4879-4890. |
|