中国农业科学 ›› 2020, Vol. 53 ›› Issue (10): 1986-1996.doi: 10.3864/j.issn.0578-1752.2020.10.006
收稿日期:
2019-09-27
接受日期:
2019-11-07
出版日期:
2020-05-16
发布日期:
2020-05-22
通讯作者:
宋阿琳
作者简介:
王恩召,E-mail:enzhaowang@163.com。
基金资助:
WANG EnZhao,FAN FenLiang,LI YanLing,LIU XiongDuo,LU YuQiu,SONG ALin()
Received:
2019-09-27
Accepted:
2019-11-07
Online:
2020-05-16
Published:
2020-05-22
Contact:
ALin SONG
摘要:
【目的】 通过分析水稻根系细菌挥发性有机物(volatile organic compounds,VOCs)组成和对小孢根霉(Rhizopus microsporus)的抑制作用,寻找新的具有潜在抑菌功能的挥发性物质。【方法】 通过对扣熏蒸法测定不同细菌对小孢根霉的抑菌率;采用顶空固相微萃取法收集细菌挥发性有机物,对其进行气相色谱-质谱(GC-MS)检测,测得细菌挥发性有机物质谱,并在NIST/EPA/NIH数据库中进行比对鉴定,根据抑菌效果及各物质在质谱中的峰面积,进行相关性分析,购买与抑菌率具有显著相关性的物质,体外检测这些纯物质对小孢根霉的抑制作用。【结果】 所有菌株均能释放挥发性有机物,并且通过挥发性有机物的非接触性产生不同的抑菌效果,这些菌株共产生14类90种挥发性有机物,分别为酯、烯烃、烷、酮、酸、噻吩、醛、萘、硫化物、酚、醇、吡嗪、吡咯和苯类物质,其中所有菌株都能够释放醇类物质。通过相关性分析,发现有6种物质具有潜在的抑菌活性,分别为2-庚酮、5-甲基-2-己酮、2-壬酮、5-甲基-3-己酮、3-甲基丁酸和甲基异丁基酮,其释放量与抑菌率呈显著正相关,其中3种(2-庚酮、2-壬酮和甲基异丁基酮)是前期研究已经报道过具有抑菌活性的物质,其余3种物质(5-甲基-2-己酮、5-甲基-3-己酮和3-甲基丁酸)暂未被报道具有抑菌活性,通过购买其中2种物质3-甲基丁酸和5-甲基-2-己酮进行体外熏蒸试验验证,发现3-甲基丁酸严重抑制小孢根霉生长,5-甲基-2-己酮对小孢根霉具有致死作用。5-甲基-2-己酮主要由菌株麦克默多生孢八叠球菌、短短芽孢杆菌和阿氏芽孢杆菌释放,5-甲基-3-己酮主要由菌株假单胞菌、阿氏芽孢杆菌和麦克默多生孢八叠球菌释放,3-甲基丁酸主要由菌株神户肠杆菌、假单胞菌和阿氏芽孢杆菌释放。【结论】 水稻根系细菌能释放种类丰富的挥发性有机物,部分挥发性有机物对水稻病原菌小孢根霉具有显著抑制作用。经过相关性分析及体外验证确定了2种新型的具有抑菌活性的物质(5-甲基-2-己酮和3-甲基丁酸)以及1种可能具有抑菌活性的物质(5-甲基-3-己酮),这些菌株和挥发性有机物均具有作为新型药物和抗真菌代谢物生物资源的潜力。
王恩召,范分良,李艳玲,刘雄舵,卢玉秋,宋阿琳. 水稻根系细菌挥发性有机物对小孢根霉的非接触性抑制作用[J]. 中国农业科学, 2020, 53(10): 1986-1996.
WANG EnZhao,FAN FenLiang,LI YanLing,LIU XiongDuo,LU YuQiu,SONG ALin. Noncontact Inhibitory of Volatile Organic Compounds from Rice Root Bacteria on Rhizopus microsporus[J]. Scientia Agricultura Sinica, 2020, 53(10): 1986-1996.
表1
微生物挥发性有机化合物的组成"
挥发性有机物名称VOCs name | 2-60 | 34 | 35 | 62 | 146 | 2-18 | 26 | 50 | 3 |
---|---|---|---|---|---|---|---|---|---|
(E)-1-甲基-2-(丙-1-烯-1-基)二硫 (E)-1-Methyl-2-(prop-1-en-1-yl) disulfane | - | - | - | - | - | - | + | - | - |
β-苯基乙基丁酸酯beta-Phenylethyl butyrate | - | - | - | - | - | - | + | - | - |
11-十二烯-2-酮11-Dodecen-2-one | - | - | - | - | - | + | - | - | - |
2-甲基-1-丁醇2-Methyl-1-butanol | - | + | - | - | - | - | - | - | - |
3-甲基-1-丁醇3-Methyl-1-butanol | + | + | + | + | + | - | + | - | - |
1-丁醇,3-甲基-乙酸1-Butanol, 3-methyl-acetate | - | + | + | - | - | - | - | - | - |
2-乙基-1-己醇2-Ethyl-1-hexanol | + | - | + | + | + | + | - | - | + |
1-十八碳烯1-Octadecene | + | - | - | - | - | - | - | - | - |
1-辛醇1-Octanol | + | - | - | - | - | - | - | - | - |
7-甲基-1-辛烯7-Methyl-1-octene | + | - | - | - | - | - | - | - | - |
1-十五碳烯1-Pentadecene | - | - | - | - | - | - | + | - | - |
2-氯丙酸,十六烷基酯2- Chloropropionic acid, hexadecyl ester | - | - | - | - | - | - | + | - | - |
5-庚基二氢-2(3H)-呋喃酮5-Heptyldihydro-2(3H)-furanone | - | - | + | - | + | - | - | - | - |
2,4,6-环庚三烯-1-酮2,4,6-Cycloheptatrien-1-one | + | - | - | - | - | - | - | - | - |
2,4-二硫戊烷2,4-Dithiapentane | - | - | - | - | - | - | - | - | + |
6-甲基-2,4-庚二酮6-Methyl-2,4-heptanedione | - | - | - | - | - | + | - | - | - |
3,7,11-三甲基-2,6,10-十二碳三烯-1-醇 3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol | - | - | - | - | - | - | - | - | + |
2-癸酮2-Decanone | + | + | + | + | - | + | + | - | - |
2-十二烷酮2-Dodecanone | - | - | + | - | - | + | - | - | - |
2-乙基-1-己醇2-Ethyl-1-hexanol | - | - | - | - | - | - | - | + | - |
2-庚酮2-Heptanone | + | + | + | + | - | + | + | - | - |
3-甲基-2-庚酮3-Methyl-2-heptanone | - | - | - | + | - | - | - | - | - |
5-甲基-2-庚酮5-Methyl-2-heptanone | + | - | - | + | - | + | - | - | - |
6-甲基-2-庚酮6-Methyl-2-heptanone | + | - | + | + | - | + | - | - | - |
2-十六烷酮2-Hexadecanone | - | - | - | - | - | + | - | - | - |
2-己酮2-Hexanone | + | - | + | + | - | - | - | - | - |
3,4-二甲基-2-己酮3,4-Dimethyl-2-hexanone | + | - | - | - | - | - | - | - | - |
5-甲基-2-己酮5-Methyl-2-hexanone | + | - | - | + | - | + | - | - | - |
2-壬基酮2-Nonanone | - | + | + | + | - | + | + | - | - |
2-辛酮2-Octanone | - | - | + | + | - | - | - | - | - |
2-十五烷酮2-Pentadecanone | - | + | - | - | - | - | - | - | - |
2-戊酮2-Pentanone | - | + | + | - | - | - | - | - | - |
3-甲基-2-戊酮3-Methyl-2-pentanone | - | - | - | - | - | + | - | - | - |
2-十四烷酮2-Tetradecanone | - | - | + | + | - | + | - | - | - |
2-十三烷酮2-Tridecanone | - | - | - | + | - | - | - | - | - |
2-十一烷酮2-Undecanone | - | + | + | - | - | + | + | - | - |
3-十二烷酮3-Dodecanone | - | - | - | + | - | - | - | - | - |
7-苯基-3-庚烯7-Phenyl-3-heptene | - | + | - | - | - | - | - | - | - |
5-甲基-3-己酮5-Methyl-3-hexanone | + | - | + | + | - | - | - | - | - |
3-十五烷酮3-Pentadecanone | - | - | - | + | - | - | - | - | - |
3-戊酮3-Pentanone | - | - | - | + | - | - | - | - | - |
3-十三烷酮3-Tridecanone | + | - | - | - | - | + | - | - | - |
5-甲基-4-己烯-3-酮5-Methyl-4-hexen-3-one | + | - | - | - | - | - | - | - | - |
6,10,14-三甲基-5,9,13-戊三烯-2-酮6,10,14-Trimethyl-5,9,13-pentadecatrien-2-one | - | - | - | - | - | - | - | + | - |
6-甲基-5-庚烯-2-酮6-Methyl-5-hepten-2-one | + | - | - | - | - | - | - | + | - |
6-叔丁基-2,4-二甲基苯酚6-Tert-butyl-2,4-dimethylphenol | - | + | + | - | - | - | - | - | - |
7-甲基辛烷-2,4-二酮,烯醇式7-Methyloctane-2,4-dione, enol form | - | - | - | - | - | + | - | - | - |
乙酸,2-苯乙基酯Acetic acid, 2-phenylethyl ester | - | + | - | - | - | - | - | - | - |
乙酸,氯-十六烷基酯Acetic acid, chloro-hexadecyl ester | - | + | - | - | - | - | - | - | - |
顺式乙酸,非3-烯基酯cis-Acetic acid, non-3-enyl ester | - | - | + | - | - | - | - | - | - |
(2-甲氧基乙基)-苯 (2-Methoxyethyl)-benzene | - | - | - | - | - | - | + | - | - |
(甲氧基甲基)-苯 (Methoxymethyl)-benzene | - | - | - | - | - | - | + | - | - |
苯乙酸,乙酯Benzeneacetic acid, ethyl ester | + | - | - | - | - | - | - | - | - |
苯甲酸,乙酯Benzoic acid, ethyl ester | - | - | - | - | - | - | - | + | - |
苯甲醇Benzyl alcohol | - | - | - | + | + | - | - | - | - |
苄基甲基酮Benzyl methyl ketone | + | - | - | + | + | + | + | - | - |
1-甲氧基-3-甲基丁烷1-Methoxy-3-methyl-butane | - | - | - | - | - | - | + | - | - |
2-甲基-2-(甲硫基)-丁烷2-Methyl-2-(methylthio)-butane | - | - | - | - | - | - | - | + | - |
丁烷磺酸,硫-甲酯Butanethioic acid, S-methyl ester | + | - | - | - | - | - | - | - | - |
丁酸,1-乙烯基己酯Butanoic acid, 1-ethenylhexyl ester | - | - | + | - | - | - | - | - | - |
3-甲基丁酸3-Methyl-butanoic acid | - | + | + | + | - | - | - | - | - |
丁酸,3-甲基-乙酯Butanoic acid, 3-methyl-ethyl ester | + | - | - | + | - | - | - | - | - |
顺式双环[3.3.0]辛-2-烯cis-Bicyclo[3.3.0]oct-2-ene | + | - | - | - | - | - | - | - | - |
环庚烯Cycloheptene | - | - | - | - | - | - | + | - | - |
1-甲基环己烯1-Methyl-cyclohexene | - | - | - | + | - | - | - | - | - |
3-乙烯基-环戊烯3-Ethenyl-cyclopentene | + | - | - | - | - | - | - | - | - |
双环戊二烯Dicyclopentadiene | + | + | + | + | - | + | - | + | - |
三硫化二甲基Dimethyl trisulfide | + | + | + | + | + | - | - | + | + |
二硫化二甲基Dimethyl disulfide | + | + | + | + | + | - | + | + | + |
十二酸,乙酯Dodecanoic acid, ethyl ester | + | - | - | - | - | - | - | - | - |
1-(2-氨基苯基)-乙酮1-(2-Aminophenyl)-ethanone | - | + | - | - | - | - | + | - | - |
13-甲基十四烷酸乙酯Ethyl 13-methyl-tetradecanoate | + | - | - | - | - | - | - | - | - |
3-(甲硫基)-(E)-2-丙酸乙酯Ethyl 3-(methylthio)-(E)-2-propenoate | - | - | - | - | - | - | - | + | - |
3-(甲硫基)-(Z)-2-丙酸乙酯Ethyl 3-(methylthio)-(Z)-2-propenoate | - | - | - | - | - | - | - | + | - |
十三烷酸乙酯Ethyl tridecanoate | + | - | - | - | - | - | - | - | - |
甲基异丁基酮Methyl isobutyl ketone | + | - | + | + | - | - | - | - | - |
异戊酸甲酯Methyl isovalerate | - | - | + | - | - | - | - | - | - |
硫羟乙酸甲酯Methyl thiolacetate | - | - | - | - | - | - | - | - | + |
十氢萘Decahydro-naphthalene | - | + | + | - | - | - | - | - | - |
十八烷Octadecanal | - | - | + | - | - | - | - | - | - |
苯乙醇Phenylethyl alcohol | - | + | + | + | - | - | + | - | - |
丙酸,2-苯乙基酯Propanoic acid, 2-phenylethyl ester | - | + | - | - | - | - | - | - | - |
2-乙基-5-甲基吡嗪2-Ethyl-5-methyl-pyrazine | - | - | + | - | - | - | - | - | - |
三甲基吡嗪Trimethyl-pyrazine | - | - | + | - | - | - | - | - | - |
吡咯Pyrrole | - | - | - | + | - | - | - | - | - |
3-甲基丁硫醇甲酯S-Methyl 3-methylbutanethioate | + | - | + | + | + | - | - | - | + |
丙酮三氧化物TATP | - | - | - | - | + | - | - | - | - |
十四烷酸,乙酯Tetradecanoic acid, ethyl ester | + | - | - | - | - | - | - | - | - |
2-甲氧基-5-甲基-噻吩2-Methoxy-5-methyl-thiophene | - | - | - | - | + | - | - | - | - |
十一酸,乙酯Undecanoic acid, ethyl ester | + | - | - | - | - | - | - | - | - |
表2
细菌挥发性有机化合物质谱上的峰面积与相应菌株抑菌率的相关性系数"
挥发性有机物名称 VOCs name | 相关性系数 Correlation coefficient | 挥发性有机物名称 VOCs name | 相关性系数 Correlation coefficient |
---|---|---|---|
3-甲基-1-丁醇3-Methyl-1-butanol (+) | 0.093 | 2-十一烷酮2-Undecanone (+) | 0.485 |
2-乙基-1-己醇2-Ethyl-1-hexanol | -0.396 | 5-甲基-3-己酮5-Methyl-3-hexanone (++) | 0.863** |
2-癸酮2-Decanone | 0.074 | 苄基甲基酮Benzyl methyl ketone | -0.169 |
2-庚酮2-Heptanone (+) | 0.544** | 3-甲基丁酸3-Methyl-butanoic acid (++) | 0.691* |
5-甲基-2-庚酮5-Methyl-2-heptanone | -0.705* | 双环戊二烯Dicyclopentadiene | 0.025 |
6-甲基-2-庚酮6-Methyl-2-heptanone | 0.146 | 三硫化二甲基Dimethyl trisulfide (+) | -0.494* |
2-己酮2-Hexanone | -0.251 | 二硫化二甲基Dimethyl disulfide (+) | -0.074 |
5-甲基-2-己酮5-Methyl-2-hexanone (++) | 0.710** | 甲基异丁基酮Methyl isobutyl ketone (+) | 0.781** |
2-壬酮2-Nonanone (+) | 0.514* | 苯乙醇Phenylethyl alcohol | -0.576* |
2-十四烷酮2-Tetradecanone | -0.882** | 3-甲基丁硫醇甲酯S-Methyl 3-methylbutanethioate | 0.346 |
[1] |
GOLDFORD J E, LU N, BAJIĆ D, ESTRELA S, TIKHONOV M, SANCHEZ-GOROSTIAGA A, SEGRÈ1 D, MEHTA1 P, SANCHEZ A . Emergent simplicity in microbial community assembly. Science, 2018,361(6401):469-474.
doi: 10.1126/science.aat1168 |
[2] | EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, LURIE E, PODISHETTY N K, BHATNAGAR S, EISEN J A, SUNDARESAN V . Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(8):E911-E920. |
[3] |
ZHALNINA K, LOUIE K B, HAO Z, MANSOORI N, DA ROCHA U N, SHI S, CHO H, KARAOZ U, LOQUÉ D, BOWEN B P, FIRESTONE M K, NORTHEN T R, BRODIE E L . Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nature Microbiology, 2018,3:470-480.
doi: 10.1038/s41564-018-0129-3 |
[4] |
ZHANG J, LIU Y X, ZHANG N, HU B, JIN T, XU H, QIN Y, YAN P, ZHANG X, GUO X, HUI J, CAO S, WANG X, WANG C, WANG H, QU B, FAN G, YUAN L, GARRIDO-OTER R, CHU C, BAI Y . NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 2019,37:676-684.
doi: 10.1038/s41587-019-0104-4 |
[5] |
CARRIÓN V J, CORDOVEZ V, TYC O, ETALO D W, DE BRUIJN I, DE JAGER V C L, MEDEMA M H, EBERL L, RAAIJMAKERS J M . Involvement of Burkholderiaceae and sulfurous volatiles in diseasesuppressive soils. The ISME Journal, 2018,12:2307-2321.
doi: 10.1038/s41396-018-0186-x |
[6] |
AUDRAIN B, FARAG M A, RYU C M, GHIGO J M . Role of bacterial volatile compounds in bacterial biology. FEMS Microbiology Reviews, 2015,39(2):222-233.
doi: 10.1093/femsre/fuu013 |
[7] | 张清华, 黄丽丽, 连鑫坤, 詹振亮, 冯丽贞 . 微生物源挥发性物质及其生物防治作用研究进展. 生态学杂志, 2017,36(7):2036-2044. |
ZHANG Q H, HUANG L L, LIAN X K, ZHAN Z L, FENG L Z . Research advances in microbial volatiles and their biocontrol potential. Chinese Journal of Ecology, 2017,36(7):2036-2044. (in Chinese) | |
[8] |
MORATH S U, HUNG R, BENNETT J W . Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biology Reviews, 2012,26(2/3):73-83.
doi: 10.1016/j.fbr.2012.07.001 |
[9] |
LEMFACK M C, NICKEL J, DUNKEL M, PREISSNER R, PIECHULLA B . mVOC: A database of microbial volatiles. Nucleic Acids Research, 2014,42(Database issue):D744-D748.
doi: 10.1093/nar/gkt1250 |
[10] |
ASARI S, MATZEN S, PETERSEN M A, BEJAI S, MEIJER J . Multiple effects of Bacillus amyloliquefaciens volatile compounds: Plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiology Ecology, 2016, 92(6): fiw070.
doi: 10.1093/femsec/fiw070 |
[11] |
WANG Y, LI Y, YANG J, RUAN J, SUN C . Microbial volatile organic compounds and their application in microorganism identification in foodstuff. Trends in Analytical Chemistry, 2016,78:1-16.
doi: 10.1016/j.trac.2015.08.010 |
[12] |
KANCHISWAMY C N, MALNOY M, MAFFEI M E . Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends in Plant Science, 2015,20(4):206-211.
doi: 10.1016/j.tplants.2015.01.004 |
[13] |
LIU H, BRETTELL L E . Plant defense by VOC-induced microbial priming. Trends in Plant Science, 2019,24(3):187-189.
doi: 10.1016/j.tplants.2019.01.008 |
[14] |
VAN AGTMAAL M, STRAATHOF A L, TERMORSHUIZEN A, LIEVENS B, HOFFLAND E, DE BOER W . Volatile-mediated suppression of plant pathogens is related to soil properties and microbial community composition. Soil Biology and Biochemistry, 2018,117:164-174.
doi: 10.1016/j.soilbio.2017.11.015 |
[15] |
LEE S, YAP M, BEHRINGER G, HUNG R, BENNETT J W . Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biology and Biotechnology, 2016,3:7.
doi: 10.1186/s40694-016-0025-7 |
[16] | CHOUDOIR M, ROSSABI S, GEBERT M, HELMIG D, FIERERA N . A phylogenetic and functional perspective on volatile organic compound production by Actinobacteria. mSystems, 2019,4(2):e00295-18. |
[17] |
XU C, MO M, ZHANG L, ZHANG K . Soil volatile fungistasis and volatile fungistatic compounds. Soil Biology and Biochemistry, 2004,36(12):1997-2004.
doi: 10.1016/j.soilbio.2004.07.020 |
[18] | CORDOVEZ V, CARRION V J, ETALO D W, MUMM R, ZHU H, VAN WEZEL G P, RAAIJMAKERS J M . Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Frontiers in Microbiology, 2015, 6: Article 1081. |
[19] |
EFFAH E, HOLOPAINEN J K, MCCORMICK A C . Potential roles of volatile organic compounds in plant competition. Perspectives in Plant Ecology, Evolution and Systematics, 2019,38:58-63.
doi: 10.1016/j.ppees.2019.04.003 |
[20] | GUEVARA-AVENDANO E, BEJARANO-BOLIVAR A A, KIEL-MARTINEZ A L, RAMIREZ-VAZQUEZ M, MENDEZ-BRAVO A, VON WOBESER E A, SANCHEZ-RANGEL D, GUERRERO-ANALCO J A, ESKALEN A, REVERCHON F . Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides. Microbiology Research, 2019,219:74-83. |
[21] |
MACKIE A E, WHEATLEY R E . Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biology and Biochemistry, 1999,31:375-385.
doi: 10.1016/S0038-0717(98)00140-0 |
[22] |
PARLAPANI F F, MALLOUCHOS A, HAROUTOUNIAN S A, BOZIARIS I S . Volatile organic compounds of microbial and non-microbial origin produced on model fish substrate un-inoculated and inoculated with gilt-head sea bream spoilage bacteria. LWT-Food Science and Technology, 2017,78:54-62.
doi: 10.1016/j.lwt.2016.12.020 |
[23] |
RAZA W, WANG J, WU Y, LING N, WEI Z, HUANG Q, SHEN Q . Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum. Applied Microbiology and Biotechnology, 2016,100(17):7639-7650.
doi: 10.1007/s00253-016-7584-7 |
[24] |
王静, 曹建敏, 陈德鑫, 邱军, 王晓强, 冯超, 王文静 . 短小芽孢杆菌AR03挥发性有机物的抑菌活性及其组分分析. 中国农业科学, 2018,51(10):1908-1919.
doi: 10.3864/j.issn.0578-1752.2018.10.010 |
WANG J, CAO J M, CHEN D X, QIU J, WANG X Q, FENG C, WANG W J . Antimicrobial effect and components analysis of volatile organic compounds from Bacillus pumilus AR03. Scientia Agricultura Sinica, 2018,51(10):1908-1919. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.10.010 |
|
[25] |
LI X Y, MAO Z C, WU Y X, HO H H, HE Y Q . Comprehensive volatile organic compounds profiling of Bacillus species with biocontrol properties by head space solid phase microextraction with gas chromatography-mass spectrometry. Biocontrol Science and Technology, 2015,25(2):132-143.
doi: 10.1080/09583157.2014.960809 |
[26] | POPOVA A A, KOKSHAROVA O A, LIPASOVA V A, ZAITSEVA J V, KATKOVA-ZHUKOTSKAYA O A, EREMINA S, MIRONOV A S, CHERNIN L S, KHMEL I A, . Inhibitory and toxic effects of volatiles emitted by strains of Pseudomonas and Serratia on growth and survival of selected microorganisms, Caenorhabditis elegans, and Drosophila melanogaster. Biomed Research International, 2014,2014:125704. |
[27] |
EZRA D, STROBEL G A . Effect of substrate on the bioactivity of volatile antimicrobials produced by Muscodor albus. Plant Science, 2003,165(6):1229-1238.
doi: 10.1016/S0168-9452(03)00330-3 |
[28] |
YANG M, LU L, PANG J, HU Y, GUO Q, LI Z, WU S, LIU H, WANG C . Biocontrol activity of volatile organic compounds from Streptomyces alboflavus TD-1 against Aspergillus flavus growth and aflatoxin production. Journal of Microbiology, 2019,57(5):396-404.
doi: 10.1007/s12275-019-8517-9 |
[29] |
WANG C, WANG Z, QIAO X, LI Z, LI F, CHEN M, WANG Y, HUANG Y, CUI H . Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. FEMS Microbiology Letters, 2013,341(1):45-51.
doi: 10.1111/1574-6968.12088 |
[30] |
FERNANDO W G D, RAMARATHNAM R, KRISHNAMOORTHY A S, SAVCHUK S C . Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology and Biochemistry, 2005,37(5):955-964.
doi: 10.1016/j.soilbio.2004.10.021 |
[1] | 邹温馨, 苏卫华, 陈远学, 陈新平, 郎明. 长期施氮对酸性紫色土氨氧化微生物群落及其硝化作用的影响[J]. 中国农业科学, 2022, 55(3): 529-542. |
[2] | 车大璐,赵俐辰,程素彩,刘爱瑜,李晓宇,赵寿培,王健诚,王媛,高玉红,孙新胜. 垫料床对育肥羔羊生长性能和臭气排放的影响[J]. 中国农业科学, 2022, 55(24): 4943-4956. |
[3] | 李依镁,王娇,王萍,师恺. 番茄糖转运蛋白SlSTP2在防御细菌性叶斑病中的功能[J]. 中国农业科学, 2022, 55(16): 3144-3154. |
[4] | 张学林,何堂庆,张晨曦,田明慧,李晓立,吴梅,周亚男,郝晓峰. 丛枝菌根真菌对玉米生育期土壤N2O排放的影响[J]. 中国农业科学, 2022, 55(10): 2000-2012. |
[5] | 李建鑫,王文平,胡璋健,师恺. 模拟酸雨对番茄光合作用和病害发生的影响及油菜素内酯对其缓解效应[J]. 中国农业科学, 2021, 54(8): 1728-1738. |
[6] | 刘强,刘纪伟,田恬,严薇,刘兵,赵思琪,胡秋辉,丁超. 高温胁迫下糙米短期储藏气味指纹图谱变化规律的动态分析[J]. 中国农业科学, 2021, 54(2): 379-391. |
[7] | 黄子粤,刘文君,覃仁柳,庞师婵,肖健,杨尚东. 不同品种南瓜内生细菌多样性及PICRUSt基因功能预测分析[J]. 中国农业科学, 2021, 54(18): 4018-4032. |
[8] | 孔亚丽,朱春权,曹小闯,朱练峰,金千瑜,洪小智,张均华. 土壤微生物介导植物抗盐性机理的研究进展[J]. 中国农业科学, 2021, 54(10): 2073-2083. |
[9] | 赵卫松,郭庆港,李社增,王培培,鹿秀云,苏振贺,张晓云,马平. 花铃期棉花黄萎病抗病与感病品种对 土壤细菌群落结构的影响[J]. 中国农业科学, 2020, 53(5): 942-954. |
[10] | 陈柳,倪征,余斌,华炯钢,叶伟成,云涛,刘可姝,朱寅初,张存. 重组鸭瘟病毒载体中筛选高效表达鸭坦布苏病毒E蛋白启动子[J]. 中国农业科学, 2020, 53(24): 5125-5134. |
[11] | 陈敬师,黄玉洋,向杰,郭清华,李世贵,顾金刚. 非洲哈茨木霉产抑菌挥发性有机物碳源代谢机制[J]. 中国农业科学, 2020, 53(22): 4601-4612. |
[12] | 付兵,王美,刘建阳,林伟,张成省,赵栋霖. 海洋来源杂色曲霉次级代谢产物及其抗植物病原细菌活性[J]. 中国农业科学, 2020, 53(19): 3964-3974. |
[13] | 商丽荣,万里强,李向林. 有机肥对羊草草原土壤细菌群落多样性的影响[J]. 中国农业科学, 2020, 53(13): 2614-2624. |
[14] | 赵卫松,郭庆港,李社增,王亚娇,鹿秀云,王培培,苏振贺,张晓云,马平. 西兰花残体还田对棉花黄萎病防治效果及其对不同生育时期土壤细菌群落的影响[J]. 中国农业科学, 2019, 52(24): 4505-4517. |
[15] | 杨文建,浦浩亮,王柳清,胡秋辉,裴斐. 脱水胡萝卜不同水分活度下的品质变化与细菌菌群演替规律[J]. 中国农业科学, 2019, 52(20): 3661-3671. |
|