[1] |
XING Y Z, ZHANG Q F . Genetic and molecular bases of rice yield. Annual Review of Plant Biology, 2010,61(1):421-442.
|
[2] |
HUANG R Y, JIANG L R, ZHENG J S, WANG T S, WANG H C, HUANG Y M, HONG Z L . Genetic bases of rice grain shape: So many genes, so little known. Trends in Plant Science, 2013,18(4):218-226.
|
[3] |
FAN C C, XING Y Z, MAO H L, LU T T, HAN B, XU C G, LI X H, ZHANG Q F . GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics, 2006,112(6):1164-1171.
|
[4] |
WANG Y X, XIONG G S, HU J, JIANG L, YU H, XU J, FANG Y X, ZENG L J, XU E B, XU J, YE W J, MENG X B, LIU R F, CHEN H Q, JING Y H, WANG Y H, ZHU X D, LI J Y, QIAN Q . Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nature Genetics, 2015,47:944.
|
[5] |
QI P, LIN Y S, SONG X J, SHEN J B, HUANG W, SHAN J X, ZHU M Z, JIANG L W, GAO J P, LIN H X . The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Research, 2012,22:1666.
|
[6] |
SONG X J, HUANG W, SHI M, ZHU M Z, LIN H X . A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007,39:623.
|
[7] |
LIU J F, CHEN J, ZHENG X M, WU F Q, LIN Q B, HENG Y Q, TIAN P, CHENG Z J, YU X W, ZHOU K N, ZHANG X, GUO X P, WANG J L, WANG H Y, WAN J M . GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nature Plants, 2017,3:17043.
|
[8] |
XU C J, LIU Y, LI Y B, XU X D, XU C G, LI X H, XIAO J H, ZHANG Q F . Differential expression of GS5 regulates grain size in rice. Journal of Experimental Botany, 2015,66(9):2611-2623.
|
[9] |
SHI C, REN Y L, LIU L L, WANG F, ZHANG H, TIAN P, PAN T, WANG Y F, JING R N, LIU T Z, WU F Q, LIN Q B, LEI C L, ZHANG X, ZHU S S, GUO X P, WANG J L, ZHAO Z C, WANG J, ZHAI H Q, CHENG Z J, WAN J M . Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice. Plant Physiology, 2019: 180(1):381-391.
|
[10] |
SHE K, KUSANO H, KOIZUMI K, YAMAKAWA H, HAKATA M, IMAMURA T, FUKUDA M, NAITO N, TSURUMAKI Y, YAESHIMA M, TSUGE T, MATSUMOTO K, KUDOH M, ITOH E, KIKUCHI S, KISHIMOTO N, YAZAKI J, ANDO T, YANO M, AOYAMA T, SASAKI T, SATOH H, SHIMADA H . A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. The Plant Cell, 2010,22(10):3280-3294.
|
[11] |
XU F, FANG J, OU S J, GAO S P, ZHANG F X, DU L, XIAO Y H, WANG H R, SUN X H, CHU J F, WANG G D, CHU C C . Variations in CYP78A13 coding region influence grain size and yield in rice. Plant, Cell & Environment, 2015,38(4):800-811.
|
[12] |
CHEN J, GAO H, ZHENG X M, JIN M N, WENG J F, MA J, REN Y L, ZHOU K N, WANG Q, WANG J, WANG J L, ZHANG X, CHENG Z J, WU C Y, WANG H Y, WAN J M . An evolutionarily conserved gene, FUWA, plays a role in determining panicle architecture, grain shape and grain weight in rice. The Plant Journal, 2015,83(3):427-438.
|
[13] |
HUANG K, WANG D K, DUAN P G, ZHANG B L, XU R, LI N, LI Y H . WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. The Plant Journal, 2017,91(5):849-860.
|
[14] |
SONG X J, KUROHA T, AYANO M, FURUTA T, NAGAI K, KOMEDA N, SEGAMI S, MIURA K, OGAWA D, KAMURA T, SUZUKI T, HIGASHIYAMA T, YAMASAKI M, MORI H, INUKAI Y, WU J, KITANO H, SAKAKIBARA H, JACOBSEN S E, ASHIKARI M . Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proceedings of the National Academy of Sciences of the USA, 2015,112(1):76-81.
|
[15] |
ISHIMARU K, HIROTSU N, MADOKA Y, MURAKAMI N, HARA N, ONODERA H, KASHIWAGI T, UJIIE K, SHIMIZU B, ONISHI A, MIYAGAWA H, KATOH E . Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genetics, 2013,45:707.
|
[16] |
YING J Z, MA M, BAI C, HUANG X H, LIU J L, FAN Y Y, SONG X J . TGW3, a major QTL that negatively modulates grain length and weight in rice. Molecular Plant, 2018,11(5):750-753.
|
[17] |
LIAN J, SUN X J, LI Y C . GS6, a member of the GRAS gene family, negatively regulates grain size in rice. Journal of Integrative Plant Biology, 2013,55(10):938-949.
|
[18] |
彭强, 李佳丽, 张大双, 姜雪, 邓茹月, 吴健强, 朱速松 . 不同环境基于高密度遗传图谱的稻米外观品质QTL定位. 作物学报, 2018,44(08):1248-1255.
|
|
PENG Q, LI J L, ZHANG D S, JIANG X, DENG R Y, WU J Q, ZHU S S . QTL mapping for rice appearance quality traits based on a high-density genetic map in different environments. Acta Agronomica Sinica, 2018,44(8):1248-1255. (in Chinese)
|
[19] |
董骥驰, 杨靖, 郭涛, 陈立凯, 陈志强, 王慧 . 基于高密度Bin图谱的水稻抽穗期QTL定位. 作物学报, 2018,44(6):938-946.
|
|
DONG J C, YANG J, GUO T, CHEN L K, CHEN Z Q, WANG H . QTL Mapping for heading date in rice using high-density Bin map. Acta Agronomica Sinica, 2018,44(6):938-946. (in Chinese)
|
[20] |
秦伟伟, 李永祥, 李春辉, 陈林, 吴迅, 白娜, 石云素, 宋燕春, 张登峰, 王天宇, 黎裕 . 基于高密度遗传图谱的玉米籽粒性状QTL定位. 作物学报, 2015,41(10):1510-1518.
|
|
QIN W W, LI Y X, LI C H, CHEN L, WU X, BAI N, SHI Y S, SONG Y C, ZHANG D F, WANG T Y, LI Y . QTL Mapping for kernel related traits based on a high-density genetic map. Acta Agronomica Sinica, 2015,41(10):1510-1518. (in Chinese)
|
[21] |
TANABATA T, SHIBAYA T, HORI K, EBANA K, YANO M . SmartGrain: High-Throughput phenotyping software for measuring seed shape through image analysis. Plant Physiology, 2012,160(4):1871-1880.
|
[22] |
CHEN L K, GAO W W, GUO T, HUANG C H, HUANG M, WANG J F, XIAO W M, YANG G L, LIU Y Z, WANG H, CHEN Z Q . A genotyping platform assembled with high-throughput DNA extraction, codominant functional markers, and automated CE system to accelerate marker-assisted improvement of rice. Molecular Breeding, 2016,36(9):123.
|
[23] |
MCCOUCH S R . Gene nomenclature system for rice. Rice, 2008,1(1):72-84.
|
[24] |
WANG L, XIE W B, CHEN Y, TANG W J, YANG J Y, YE R J, LIU L, LIN Y J, XU C G, XIAO J H, ZHANG Q F . A dynamic gene expression atlas covering the entire life cycle of rice. The Plant Journal, 2010,61(5):752-766.
|
[25] |
SATO Y, TAKEHISA H, KAMATSUKI K, MINAMI H, NAMIKI N, IKAWA H, OHYANAGI H, SUGIMOTO K, ANTONIO B A, NAGAMURA Y . RiceXPro Version 3.0: Expanding the informatics resource for rice transcriptome. Nucleic Acids Research, 2012,41(D1):D1206-D1213.
|
[26] |
郭咏梅, 穆平, 刘家富, 李自超, 卢义宣 . 水、旱栽培条件下稻谷粒型和粒重的相关分析及其QTL定位. 作物学报, 2007(1):50-56.
|
|
GUO Y M, MU P, LIU J F, LI Z C, LU Y X . Correlation Analysis and QTL mapping of grain shape and grain weight in rice under upland and lowland environments. Acta Agronomica Sinica, 2007(1):50-56. (in Chinese)
|
[27] |
张颖慧, 谢永楚, 董少玲, 张亚东, 陈涛, 赵庆勇, 朱镇, 周丽慧, 姚姝, 赵凌, 王才林 . 利用水稻籼粳重组自交系群体研究粒型性状与千粒重的相关性. 江苏农业学报, 2012,28(2):231-235.
|
|
ZHANG Y H, XIE Y C, DONG S L, ZHANG Y D, CHEN T, ZHAO Q Y, ZHU Z, ZHOU L H, YAO S, ZHAO L, WANG C L . Correlations between grain shape traits and 1000-grain weight using Indica/Japonica rice recombinant inbred lines. Jiangsu Agricultural Sciences, 2012,28(2):231-235. (in Chinese)
|
[28] |
KONG W Y, YU X W, CHEN H Y, LIU L L, XIAO Y J, WANG Y L, WANG C L, LIN Y, YU Y, WANG C M, JIANG L, ZHAI H Q, ZHAO Z G, WAN J M . The catalytic subunit of magnesium- protoporphyrin IX monomethyl ester cyclase forms a chloroplast complex to regulate chlorophyll biosynthesis in rice. Plant Molecular Biology, 2016,92(1):177-191.
|
[29] |
刘进, 姚晓云, 王棋, 李慧, 王嘉宇, 黎毛毛 . 不同生态环境下籽粒大小相关性状QTL定位. 华北农学报, 2018,33(2):133-138.
|
|
LIU J, YAO X Y, WANG Q, LI H, WANG J Y, LI M M . QTL mapping of seed size traits under different environment in rice. Acta Agriculturae Boreali Sinica, 2018,33(2):133-138. (in Chinese)
|
[30] |
逯腊虎, 杨斌, 张婷, 张伟, 袁凯, 史晓芳, 彭惠茹, 倪中福, 孙其信 . 冬小麦旗叶大小及籽粒相关性状的QTL分析. 华北农学报, 2018,33(5):1-8.
|
|
LU L H, YANG B, ZHANG T, ZHANG W, YUAN K, SHI X F, PENG H R, NI Z F, SUN Q X . Quantitative trait loci analysis of flag leaf size and grain relative traits in winter wheat. Acta Agriculturae Boreali Sinica, 2018,33(5):1-8. (in Chinese)
|
[31] |
WAN X Y, WAN J M, WENG J F, JIANG L, BI J C, WANG C M, ZHAI H Q . Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theoretical and Applied Genetics, 2005,110(7):1334-1346.
|
[32] |
刘喜, 牟昌铃, 周春雷, 程治军, 江玲, 万建民 . 水稻粒型基因克隆和调控机制研究进展. 中国水稻科学, 2018,32(1):1-11.
|
|
LIU X, MOU C L, ZHOU C L, CHENG Z J, JIANG L, WAN J M . Research progress on cloning and regulation mechanism of rice grain shape genes. Chinese Journal of Rice Science, 2018,32(1):1-11. (in Chinese)
|
[33] |
李志永 . 水稻种子特异表达基因SCP46的克隆及功能鉴定[D]. 杭州: 中国农业科学院, 2017.
|
|
LI Z Y . Cloning and functional identification of A seed-specific gene SCP46 in rice[D]. Hangzhou: Chinese Academy of Agricultural Sciences, 2017.(in Chinese)
|
[34] |
ZHANG B W, WANG X L, ZHAO Z Y, WANG R J, HUANG X H, ZHU Y L, YUAN L, WANG Y C, XU X D, BURLINGAME A L, GAO Y J, SUN Y, TANG W Q . OsBRI1 activates BR signaling by preventing binding between the TPR and kinase domains of OsBSK3 via phosphorylation. Plant Physiology, 2016,170(2):1149-1161.
|
[35] |
ZHAO J M, ZHAI Z W, LI Y N, GENG S F, SONG G Y, GUAN J T, JIA M L, WANG F, SUN G L, FENG N, KONG X C, CHEN L, MAO L, LI A L . Genome-wide identification and expression profiling of the TCP family genes in spike and grain development of wheat (Triticum aestivum L.). Frontiers in Plant Science, 2018,9:1282.
|
[36] |
CHI Q, GUO L J, MA M, ZHANG L J, MAO H D, WU B W, LIU X L RAMIREZ-GONZALEZ R H, UAUY C, APPELS R, ZHAO H X, . Global transcriptome analysis uncovers the gene co-expression regulation network and key genes involved in grain development of wheat (Triticum aestivum L.). Functional & Integrative Genomics, 2019,19:853-866.
|
[37] |
ZHANG M, ZHANG B C, QIAN Q, YU Y C, LI R, ZHANG J W, LIU X L, ZENG D L, LI J Y, ZHOU Y H . Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice. The Plant Journal, 2010,63(2):312-328.
|
[38] |
KITAGAWA K, OKI K, KURINAMI S, ABE Y, IWASAKI Y, KONO I, ANDO T, YANO M, KITANO H . A novel kinesin 13 protein regulating rice seed length. Plant and Cell Physiology, 2010,51(8):1315-1329.
|