中国农业科学 ›› 2019, Vol. 52 ›› Issue (14): 2548-2558.doi: 10.3864/j.issn.0578-1752.2019.14.013
• 研究简报 • 上一篇
卢丹1,赵武奇1(),曾祥媛1,吴妮1,高贵田1,张清安1,张宝善1,雷玉山2
收稿日期:
2019-01-31
接受日期:
2019-05-13
出版日期:
2019-07-16
发布日期:
2019-07-26
通讯作者:
赵武奇
作者简介:
卢丹,Tel:13772436620;E-mail: 597533561@qq.com。
基金资助:
LU Dan1,ZHAO WuQi1(),ZENG XiangYuan1,WU Ni1,GAO GuiTian1,ZHANG QingAn1,ZHANG BaoShan1,LEI YuShan2
Received:
2019-01-31
Accepted:
2019-05-13
Online:
2019-07-16
Published:
2019-07-26
Contact:
WuQi ZHAO
摘要:
【目的】提取‘海沃德’猕猴桃的品质特征,建立其应力松弛特性参数与其品质特征的关系,探索一种利用力学特性快速预测猕猴桃品质特征的方法。【方法】测定不同贮藏时期猕猴桃的应力松弛特性、营养成分、色差和质构等指标;运用因子分析筛选出评价猕猴桃品质的特征指标;确定应力松弛的最佳模型,拟合得出模型中的参数;对应力松弛模型参数和猕猴桃品质指标进行相关性分析,利用岭回归法建立应力松弛参数预测猕猴桃品质特征的数学模型,并进行验证。【结果】猕猴桃品质特征指标为VC、可溶性固形物、ΔE、硬度、黏聚性、弹性;七元件麦克斯韦模型可以较好地描述猕猴桃的应力松弛特性,拟合的决定系数达到0.999;VC、可溶性固形物和ΔE与弹性参数和黏性系数有很强的正相关性(P<0.05),其中VC、ΔE与E0的相关系数分别为0.901和0.813,质构指标硬度、弹性和黏聚性与弹性参数和黏性系数正相关性很高(P<0.05),其中硬度与η1相关系数为0.807,弹性与E0的相关系数为0.951;建立的猕猴桃VC、可溶性固形物、ΔE、硬度、黏聚性和弹性的预测模型对建模集的决定系数分别为0.906、0.717、0.883、0.709、0.708和0.851,且均具有统计学意义(P<0.05);模型对验证集的预测值和实测值的决定系数分别为0.882、0.880、0.869、0.691、0.733和0.814,t检验值均小于2.145,表明预测值与实测值之间没有显著性差异。【结论】‘海沃德’猕猴桃的应力松驰特性参数与猕猴桃品质特征具有很强的相关性,运用岭回归法建立的应力松弛参数与各指标的回归模型可以准确地预测猕猴桃的品质特征,为猕猴桃贮藏期间的品质快速测定提供了理论依据。
卢丹,赵武奇,曾祥媛,吴妮,高贵田,张清安,张宝善,雷玉山. ‘海沃德’猕猴桃应力松弛特性与品质关系[J]. 中国农业科学, 2019, 52(14): 2548-2558.
LU Dan,ZHAO WuQi,ZENG XiangYuan,WU Ni,GAO GuiTian,ZHANG QingAn,ZHANG BaoShan,LEI YuShan. The Correlation Between the Stress Relaxation Characteristics and the Quality of ‘Haiwode’ Kiwifruit[J]. Scientia Agricultura Sinica, 2019, 52(14): 2548-2558.
表1
猕猴桃品质指标的变异情况"
指标 Indicator | 平均值±标准差 Mean± std | 变幅 Variation | 极差 Range | 变异系数 Coefficient of variation |
---|---|---|---|---|
可滴定酸 Titratable acid (%) | 2.22±0.27 | 1.33—2.69 | 1.36 | 12.28 |
VC (mg·kg-1 FW) | 47.33±15.96 | 23.56—85.10 | 61.54 | 33.71 |
可溶性固形物 Soluble solid (%) | 13.26±1.04 | 10.3—15.30 | 5.00 | 7.83 |
丙二醛 MDA (μmol·g-1) | 2.79±2.22 | 0.74—10.42 | 9.68 | 80.31 |
L* | 34.80±3.97 | 25.97—45.98 | 20.01 | 11.41 |
a* | -3.86±0.90 | -5.50—-1.34 | 4.16 | 23.54 |
b* | 5.69±3.04 | 0.01—11.71 | 11.70 | 53.62 |
ΔE | 35.61±4.19 | 26.12—47.60 | 21.48 | 11.75 |
穿刺硬度Puncture Hardness | 4.75±2.27 | 2.00—10.78 | 8.78 | 48.38 |
硬度Hardness (N) | 463.61±239.58 | 67.70—1067.05 | 1008.35 | 51.68 |
粘附度Adhesiveness (N) | -16.95±10.51 | -47.08—-3.29 | 43.79 | 62.03 |
弹性Springiness (N·s) | 0.91±0.07 | 0.75—1.30 | 0.55 | 7.91 |
黏聚性Cohesiveness | 0.73±0.06 | 0.64—0.92 | 0.28 | 8.04 |
胶黏性Gumminess | 342.26±186.69 | 62.06—775.51 | 713.45 | 55.98 |
咀嚼性Chewiness | 309.36±173.66 | 58.50—757.53 | 699.03 | 56.43 |
回弹性Resilience | 0.31±0.05 | 0.21—0.39 | 0.18 | 16.74 |
表3
猕猴桃品质正态方差最大正交旋转变换后的因子载荷矩阵"
1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|
硬度 Hardness (TPA) | 0.984 | 0.055 | 0.002 | 0.04 | 0.008 |
胶黏性 Gumminess | 0.976 | 0.044 | 0.122 | 0.077 | -0.048 |
咀嚼性 Chewiness | 0.956 | 0.014 | 0.154 | 0.162 | -0.056 |
黏附度 Adhesiveness | -0.547 | 0.159 | -0.364 | 0.205 | -0.341 |
ΔE | -0.087 | 0.943 | 0 | 0.135 | -0.083 |
b* | 0.028 | 0.938 | 0.111 | -0.09 | 0.08 |
L* | -0.111 | 0.905 | -0.021 | 0.165 | -0.097 |
a* | -0.307 | -0.795 | -0.019 | 0.146 | -0.014 |
黏聚性 Cohesiveness | -0.006 | -0.087 | 0.882 | 0.088 | -0.041 |
回弹性 Resilience | 0.481 | 0.219 | 0.658 | 0.306 | -0.118 |
可滴定酸 Titratable acid | -0.328 | -0.171 | -0.553 | 0.2 | 0.14 |
弹性 Springiness | -0.032 | -0.166 | 0.288 | 0.801 | 0.133 |
穿刺硬度 Puncture Hardness | 0.252 | 0.06 | -0.304 | 0.669 | -0.371 |
Vc | 0.104 | 0.42 | -0.04 | 0.552 | -0.07 |
可溶性固形物 Soluble solid | -0.139 | -0.101 | -0.293 | 0.069 | 0.804 |
丙二醛 MDA | 0.084 | 0.041 | 0.037 | -0.092 | 0.705 |
表5
应变模型参数统计结果"
参数 Parameters | 建模组Modeling group | 验证组 Validation group | |||||||
---|---|---|---|---|---|---|---|---|---|
最小值 Min | 最大值 Max | 平均值 Average | 变异系数 CV (%) | 最小值 Min | 最大值 Max | 平均值 Average | 变异系数 CV (%) | ||
弹性参数 Elastic component | E0 (N?mm-1) | 0.524 | 47.239 | 2.543 | 385.477 | 0.913 | 2.434 | 1.451 | 36.695 |
E1 (N?mm-1) | 0.206 | 15.768 | 1.422 | 187.43 | 0.386 | 9.287 | 2.449 | 134.776 | |
E2 (N?mm-1) | 0.151 | 12.966 | 2.001 | 150.036 | 0.294 | 24.122 | 4.061 | 186.875 | |
E3 (N?mm-1) | 0.252 | 195.190 | 8.895 | 342.308 | 0.276 | 8.096 | 2.597 | 113.66 | |
松弛时间 Relaxation time | T1 (s) | 0.201 | 23.696 | 4.716 | 151.317 | 0.1956 | 6.787 | 2.205 | 81.613 |
T2 (s) | 0.188 | 25.060 | 14.009 | 70.921 | 0.145 | 22.688 | 12.670 | 82.392 | |
T3 (s) | 0.152 | 23.918 | 4.986 | 173.686 | 0.197 | 23.373 | 8.969 | 117.727 | |
黏性系数 Viscous component | η1 (N?s?mm-1) | 0.512 | 34.286 | 3.184 | 187.159 | 0.816 | 46.070 | 5.648 | 251.558 |
η2 (N?s?mm-1) | 0.294 | 273.466 | 13.301 | 322.597 | 0.849 | 13.459 | 5.841 | 73.9552 | |
η3 (N?s?mm-1) | 0.422 | 39.963 | 3.692 | 180.578 | 0.912 | 12.300 | 3.995 | 100.241 |
表6
应变模型参数相关性分析"
参数 Parameters | E0 | E1 | E2 | E3 | T1 | T2 | T3 | η1 | η2 | η3 |
---|---|---|---|---|---|---|---|---|---|---|
E0 | 1 | |||||||||
E1 | 0.728** | 1 | ||||||||
E2 | 0.355* | 0.131 | 1 | |||||||
E3 | 0.993** | 0.689** | 0.303* | 1 | ||||||
T1 | -0.29 | -0.179 | 0.093 | -0.049 | 1 | |||||
T2 | 0.107 | 0.084 | -0.510** | 0.179 | -0.494** | 1 | ||||
T3 | -0.095 | 0.063 | 0.520** | -0.166 | -0.168 | -0.753** | 1 | |||
η1 | 0.541** | 0.581** | 0.180 | 0.523** | 0.356* | -0.226 | 0.058 | 1 | ||
η2 | 0.983** | 0.707** | 0.310* | 0.985** | -0.094 | 0.211 | -0.165 | 0.501** | 1 | |
η3 | 0.998** | 0.730** | 0.353* | 0.991** | -0.044 | 0.109 | -0.091 | 0.545** | 0.983** | 1 |
表7
应力松弛参数与各项指标的相关性分析"
指标Index | E0 | E1 | E2 | E3 | T1 | T2 | T3 | η1 | η2 | η3 |
---|---|---|---|---|---|---|---|---|---|---|
Vc Vitamin C | 0.901** | 0.349* | 0.464** | 0.581** | 0.09 | 0.192 | -0.323* | 0.617** | 0.425** | 0.518** |
可溶性固形物 Soluble solid | 0.757** | 0.422** | 0.333* | 0.504** | 0.148 | 0.24 | -0.291* | 0.607** | 0.326* | 0.47** |
ΔE | 0.813** | 0.313* | 0.321* | 0.446** | 0.048 | 0.154 | -0.216 | 0.512** | 0.32* | 0.351* |
硬度 Hardness | 0.543** | 0.189 | 0.407** | 0.401** | 0.439** | -0.032 | -0.248 | 0.807** | 0.101 | 0.564** |
黏聚性 Cohesiveness | 0.512** | 0.159 | 0.577** | 0.065 | 0.187 | -0.089 | 0.216 | 0.479** | -0.065 | 0.199 |
弹性 Springiness | 0.951** | 0.244 | 0.466** | 0.75** | 0.269 | 0.234 | -0.468** | 0.683** | 0.42** | 0.589** |
表8
应力松弛参数与各品质特征的岭回归分析"
指标Index | 决定系数R2 | 显著性Sig | 预测模型 Predictive equation |
---|---|---|---|
VC Vitamin C | 0.906 | <0.001 | Y=-5.853+12.105E0+1.393E1+0.464E2+0.381E3+1.707T1+1.365T2+1.176T3-0.364η2-0.0642η3 |
可溶性固形物 Soluble solid | 0.717 | 0.0243 | Y=10.966+0.306E0+0.191E1+0.00463E2+0.0871E3+0.114T1+0.0475T2+0.0496T3-0.0464η1-0.00332η2 |
ΔE | 0.883 | 0.0108 | Y=19.349+1.101E0+0.269E1-0.0894E3+0.830T1+0.670T2+0.552T3-0.296η1-0.0728η2 |
硬度Hardness | 0.709 | <0.001 | Y=-195.311-1.959E0-2.901E2+36.299T1+23.201T2+23.754T3+11.510η1+1.635η2 |
黏聚性Cohesiveness | 0.708 | <0.001 | Y=0.565+0.0205E0+0.00358E1+0.00725T1+0.00455T2+0.00613T3-0.000599η1+0.000924η2-0.000108η3 |
弹性Springiness | 0.851 | <0.001 | Y=0.882+0.0202E0-0.00332E1+0.000151E2-0.000479T3+0.000437η1+0.000362η2-0.0000633η3 |
表9
猕猴桃各品质特征预测模型的检验结果"
预测值-实测值 Predicted value-measured value | 组间差异 Paired differences | t检验值 t-test | 自由度 df | ||
---|---|---|---|---|---|
平均值Average | 标准差Std. deviation | 标准误Std. error mean | |||
Vc Vitamin C | 5.011 | 6.579 | 1.367 | 1.950 | 14 |
可溶性固形物Soluble solid | 0.194 | 0.399 | 0.103 | 1.887 | 14 |
ΔE | 0.298 | 1.904 | 0.492 | 0.606 | 14 |
硬度Hardness | 77.377 | 75.813 | 19.575 | 1.953 | 14 |
黏聚性Cohesiveness | 0.00933 | 0.0494 | 0.127 | 0.733 | 14 |
弹性Springiness | 0.0287 | 0.0708 | 0.0183 | 1.568 | 14 |
[1] | 杨天歌, 邓红, 李涵, 孟永宏, 雷佳蕾, 马婧, 郭玉蓉 . 超高压杀菌处理冷破碎猕猴桃果浆的条件优化及其贮藏期杀菌效果. 中国农业科学, 2018,51(7):1368-1377. |
YANG T G, DENG H, LI H, MENG Y H, LEI J L, MA J, GUO Y R . Optimization of ultra-high pressure sterilization conditions on the kiwi fruit pulp produced by cold crushing method and its sterilization effect during storage period. Scientia Agricultura Sinica, 2018,51(7):1368-1377. (in Chinese) | |
[2] |
赵金梅, 高贵田, 薛敏, 耿鹏飞, 孙翔宇, 谷留杰, 雷玉山 . 不同品种猕猴桃果实的品质及抗氧化活性. 食品科学, 2014,35(9):118-122.
doi: 10.7506/spkx1002-6630-201409024 |
ZHAO J M, GAO G T, XUE M, GENG P F, SUN X Y, GU L J, LEI Y S . Quality and antioxidant activity of different kiwi fruit varieties. Scientia Agricultura Sinica, 2014,35(9):118-122. (in Chinese)
doi: 10.7506/spkx1002-6630-201409024 |
|
[3] |
RYSZARD M, MAREK M, TOMASZ D, PIOTR Z, PIOTR S . Non-linear stress relaxation model as a tool for evaluating the viscoelastic properties of meat products. Journal of Food Engineering, 2015,146:107-115.
doi: 10.1016/j.jfoodeng.2014.09.006 |
[4] |
SILVINA C A, NOEMÍ E Z, ALICIA N C . Stress relaxation characteristics of low-fat chicken sausages made in Argentina. Meat Science, 2008,79:589-594.
doi: 10.1016/j.meatsci.2007.12.013 |
[5] | 聂毓琴, 马洪顺, 韩志武 . 薇菜压缩应力松弛与蠕变力学特性研究. 农业机械学报, 2005(4):89-91. |
NIE Y Q, MA H S, HAN Z W . Research on stress relaxation and creep mechanics behaviors ofOsmunda cinnamomea. Transaction of the Chinese Society for Agricultural Machinery, 2005(4):89-91. (in Chinese) | |
[6] | ZHAO W Q, FANG Y, ZHANG Q A, GUO Y R, GAO G T, YI X . Correlation analysis between chemical or texture attributes and stress relaxation properties of ‘Fuji’ apple. Postharvest Biology and Technology, 2017,129. |
[7] | 王海鸥, 胡志超, 谢焕雄, 姜松 . 猕猴桃压缩—应力松弛的试验. 农机化研究, 2006(5):144-146. |
WANG H O, HU Z C, XIE H X, JIANG S . Experimental study on kiwi fruit’s stress-relaxation property.Journal of Agricultural Mechanization Research, 2006(5):144-146. (in Chinese) | |
[8] | 计宏伟, 邵文全, 孟宪文 . 猕猴桃压缩力学行为及蠕变特性的试验研究. 安徽农业科学, 2010,38(3):1107-1109, 1121. |
JI H W, SHAO W Q, MENG X W . Experimental research on compression mechanical behaviors and creep property of kiwi fruit. Journal of Anhui Agricultural Sciences, 2010,38(3):1107-1109, 1121. (in Chinese) | |
[9] | 李里特 . 食品物性学. 北京: 中国农业出版社, 2003: 235-241. |
LI L T. Physical Properties of Foods. Beijing: China Agriculture Press, 2003: 235-241. (in Chinese) | |
[10] | 吕健, 刘璇, 毕金峰, 周林燕, 吴昕烨 . 桃变温压差膨化脆片品质评价研究. 中国农业科学, 2016,49(4):802-812. |
LÜ J, LIU X, BI J F, ZHOU L Y, WU X Y . Research on the quality evaluation for peach and nectarine chips by explosion puffing drying. Scientia Agricultura Sinica, 2016,49(4):802-812. (in Chinese) | |
[11] | 张唐伟, 贺继峰, 余耀斌, 次顿 . 岗巴羊羊肉营养品质及其因子分析. 食品工业科技, 2018,39(8):279-284. |
ZHANG T W, HE J F, YU Y B, CI D . Mutton quality and its factor analysis of Gangba sheep. Science and Technology of Food Industry, 2018,39(8):279-284. (in Chinese) | |
[12] | 杨梅, 肖静, 蔡辉 . 多元分析中的多重共线性及其处理方法. 中国卫生统计, 2012,29(4):620-624. |
YANG M, XIAO J, CAI H . Multicollinearity in multivariate analysis and its processing methods. Chinese Journal of Health Statistics, 2012,29(4):620-624. (in Chinese) | |
[13] | 王锐 . 岭回归分析在解决经济数据共线性问题中的应用. 经济研究导刊, 2018(22):144-147. |
WANG R . The Application of ridge regression in solving the problem of collinearity of economic data.Economic Research Guide, 2018(22):144-147.(in Chinese) | |
[14] | 马庆华, 李永红, 梁丽松, 李琴, 王海, 许元峰, 孙玉波, 王贵禧 . 冬枣优良单株果实品质的因子分析与综合评价. 中国农业科学, 2010,43(12):2491-2499. |
MANG Q H, LI Y H, LIANG L S, LI Q, WANG H, XU Y F, SUN Y B, WANG G X . Factors analysis and synthetical evaluation of the fruit quality of Dongzao (Ziziphus jujuba Mill. Dongzao) advanced selections. Scientia Agricultura Sinica, 2010,43(12):2491-2499. (in Chinese) | |
[15] | 曾凡杰, 孟莉, 吕远平 . 不同前处理和冻结方式对猕猴桃片干制品品质的影响. 食品科技, 2017,42(8):63-68. |
ZENG F J, MENG L, LÜ Y P . Effect of different pre-processing and freezing methods on the dry products quality of kiwi fruit slices. Food technology, 2017,42(8):63-68. (in Chinese) | |
[16] | 吴旻丹, 陈瑜, 金邦荃 . 储藏期猕猴桃质构变化的研究及人工咀嚼的建立. 食品工业科技, 2010,31(12):146-148, 152. |
WU M D, CHEN Y, JIN B Q . Detection of texture properties of kiwi fruit by texture profile analysis and simulation of manual chewing. Science and Technology of Food Industry, 2010,31(12):146-148,152. (in Chinese) | |
[17] |
宋小青, 任亚梅, 张艳宜 . 电子鼻对低温贮藏猕猴桃品质的预测. 食品科学, 2014,35(20):230-235.
doi: 10.7506/spkx1002-6630-201420046 |
SONG X Q, REN Y M, ZHANG Y Y . Prediction of kiwi fruit quality during cold storage by electronic nose. Food Science, 2014,35(20):230-235. (in Chinese)
doi: 10.7506/spkx1002-6630-201420046 |
|
[18] | 许永亮, 熊善柏, 赵思明 . 蒸煮工艺和化学成分对米饭应力松弛特性的影响. 农业工程学报, 2007(10):235-240. |
XU Y L, XIONG S B, ZHAO S M . Effect of cooking technology and chemical components on stress-relaxation property of cooked rice. Transactions of the CSAE, 2007, 23(10):235-240. ( in Chinese) | |
[19] |
HASSAN B H, ALHAMDAN A M, ELANSARI A M . Stress relaxation of dates at khalal. Journal of Food Engineering, 2005,66(4):439-445.
doi: 10.1016/j.jfoodeng.2004.04.014 |
[20] | BARGALE P C, IRUDAYARAJ J M, MARQUIS B . Some mechanical- properties and stress-relaxation characteristics of lentils. Canadian Agricultural Engineering, 1994,36(4):247-254. |
[21] | 方媛 . 苹果的应力松弛和蠕变特性与其品质相关性分析[D]. 杨凌:陕西师范大学, 2016. |
FANG Y . Correlation analysis between the stress-relaxation or creep properties and quality attributes of apple[D]. Yangling: Shaanxi Normal University, 2016. ( in Chinese) | |
[22] | 侯成杰, 齐沙沙, 张长峰 . TiO2光催化除乙烯及在猕猴桃保鲜中的应用研究. 食品工业, 2018,39(4):134-137. |
HOU C J, QI S S, ZHANG C F . Study on applications of TiO2 photocatalysis to ethylene removal and preservation on kiwi fruit. The Food Industry, 2018,39(4):134-137. (in Chinese) | |
[23] | 陆秋君, 王俊, 何喜玲 . 常温贮藏中番茄应力松弛特性试验. 农业机械学报, 2005(7):77-80, 88. |
LU Q J, WANG J, HE X L . Experimental study on intact tomato's stress-relaxation during storing at normal temperature.Transactions of the Chinese Society for Agricultural, 2005(7):77-80, 88. (in Chinese) | |
[24] |
KAUR L, SINGH N, SINGH S, NAVDEEP, SINGH G, HARDEEP . Some properties of potatoes and their starches I. Cooking, textural and rheological properties of potatoes. Food Chemistry, 2002,79(2):177-181.
doi: 10.1016/S0308-8146(02)00129-2 |
[1] | 相玉婷, 王晓龙, 胡新中, 任长忠, 郭来春, 李璐. 燕麦品种间脂肪酶活性差异及低脂肪酶优质品种的预测[J]. 中国农业科学, 2022, 55(21): 4104-4117. |
[2] | 刘丰,蒋佳丽,周琴,蔡剑,王笑,黄梅,仲迎鑫,戴廷波,曹卫星,姜东. 美国软麦籽粒品质变化趋势及对我国弱筋小麦标准达标度分析[J]. 中国农业科学, 2022, 55(19): 3723-3737. |
[3] | 郝静,李秀坤,崔顺立,邓洪涛,侯名语,刘盈茹,杨鑫雷,穆国俊,刘立峰. 花生每荚种子数相关性状QTL的定位[J]. 中国农业科学, 2022, 55(13): 2500-2508. |
[4] | 李文丽, 袁剑龙, 段惠敏, 蒋彤晖, 刘玲玲, 张峰. 马铃薯块茎质地品质的综合评价[J]. 中国农业科学, 2022, 55(12): 2278-2293. |
[5] | 冯俊杰,赵文达,张新全,刘英杰,袁帅,董志晓,熊毅,熊艳丽,凌瑶,马啸. 引种日本多花黑麦草标准品种DUS性状变异分析及应用[J]. 中国农业科学, 2022, 55(12): 2447-2460. |
[6] | 张宁波,韩照清,金太花,庄桂玉,李炯奎,郑全胜,李永洙. 琅琊鸡及其配套系蛋壳质量、钙代谢生化指标和钙结合蛋白CaBP-D28k mRNA表达的比较[J]. 中国农业科学, 2021, 54(9): 2017-2026. |
[7] | 张婷,王根平,罗焱杰,李琳,高翔,程汝宏,师志刚,董立,张喜瑞,杨伟红,许立闪. 色差分析在优质小米选育中的应用[J]. 中国农业科学, 2021, 54(5): 901-908. |
[8] | 李凯峰,尹玉和,王琼,林团荣,郭华春. 不同马铃薯品种挥发性风味成分及代谢产物相关性分析[J]. 中国农业科学, 2021, 54(4): 792-803. |
[9] | 庄昕波,陈银基,周光宏. 改性甘蔗膳食纤维对猪肉肌原纤维蛋白凝胶特性的影响[J]. 中国农业科学, 2021, 54(15): 3320-3330. |
[10] | 张斌斌,蔡志翔,沈志军,严娟,马瑞娟,俞明亮. 观赏桃种质资源表型性状多样性评价[J]. 中国农业科学, 2021, 54(11): 2406-2418. |
[11] | 尹思佳,李慧,徐志强,裴久渤,戴继光,刘雨薇,李艾蒙,于雅茜,刘维,汪景宽. 东北典型黑土区旱地耕层土壤肥力指标的纬度变化特征及其关系[J]. 中国农业科学, 2021, 54(10): 2132-2141. |
[12] | 沈升法,项超,吴列洪,李兵,罗志高. 甘薯块根可溶性糖组分特征及其与食味的关联分析[J]. 中国农业科学, 2021, 54(1): 34-45. |
[13] | 李泽民,张晨,张崇玉,张桂国. 不同品种苜蓿中营养成分相互关系及生物产量[J]. 中国农业科学, 2020, 53(6): 1269-1277. |
[14] | 李会霞,田岗,王玉文,刘鑫,刘红. 谷子杂交种与亲本性状的遗传相关性[J]. 中国农业科学, 2020, 53(2): 239-246. |
[15] | 李玲,徐舒,曹如霞,陈玲玲,崔鹏,吕尊富,陆国权. 基于PCA-Entropy TOPSIS的甘薯品种块根质构品质评价[J]. 中国农业科学, 2020, 53(11): 2161-2170. |
|