中国农业科学 ›› 2019, Vol. 52 ›› Issue (1): 34-44.doi: 10.3864/j.issn.0578-1752.2019.01.004
张馨月(),王寅(),陈健,陈安吉,王莉颖,郭晓颖,牛雅郦,张星宇,陈利东,高强
收稿日期:
2018-08-20
接受日期:
2018-11-28
出版日期:
2019-01-01
发布日期:
2019-01-12
通讯作者:
王寅
基金资助:
ZHANG XinYue(),WANG Yin(),CHEN Jian,CHEN AnJi,WANG LiYing,GUO XiaoYing,NIU YaLi,ZHANG XingYu,CHEN LiDong,GAO Qiang
Received:
2018-08-20
Accepted:
2018-11-28
Online:
2019-01-01
Published:
2019-01-12
Contact:
Yin WANG
摘要:
【目的】 东北地区春旱频发严重影响玉米出苗与苗期生长,明确水分、氮素对玉米苗期生长和根系发育的影响及其耦合效应,可为东北春玉米水、氮调控措施的优化提供依据。【方法】 2016—2017连续2年设置水分、氮素两因素盆栽试验,土壤相对含水量设4个水平,分别为重度干旱(W0,30%)、适度干旱(W1,50%)、水分适宜(W2,70%)和水分过量(W3,90%);施氮量设3个水平,分别为不施氮(N0,0)、低氮(N1,0.12 g N·kg -1土)和高氮(N2,0.24 g N·kg -1土)。【结果】 水分、氮素均显著影响玉米苗期的植株生长、根系发育、氮素吸收与利用,且两因素对植株干重、根系形态、吸氮量和氮肥利用率交互作用显著。土壤水分亏缺或过量均抑制了植株生长、干物质累积、根系发育和氮素吸收。W0处理的负面影响最为严重,其地上部干重、根系干重和植株吸氮量与W2处理相比分别降低55.5%、60.1%和47.4%,氮肥利用率下降6.4个百分点,根长和根表面积分别减少58.2%和59.5%。施氮显著促进玉米苗期植株生长与氮素吸收,降低根冠比,且不同水分条件下氮肥效应及对根系发育的影响存在明显差异。水分适宜条件下施氮促进根系生长,显著增加根长、根表面积和根体积,植株干重和吸氮量增幅最高。干旱胁迫条件下施氮抑制了根系发育,显著降低根长和根表面积,氮肥效应偏低。水分过量条件下施氮改善根系生长,但施氮效应仍低于W2处理。各水分条件下,N1处理的根长和根表面积均高于N2处理,而体积接近或更小,说明低氮增加了细根的比例。水分、氮素不仅显著影响根系形态,也导致根系空间分布出现明显差异。干旱胁迫促进根系下扎,增加深层土壤的根长分布,W0和W1处理0—12 cm土层根长比例相比W2处理分别下降11.0和8.3个百分点,而24—36 cm土层分别提高9.5和6.9个百分点。与干旱胁迫相反,水分过量趋向于增加根系在表层土壤的聚集。施氮显著促进表层土壤的根系分布,N1和N2处理0—12 cm土层根长比例相比N0处理分别增加16.3和13.7个百分点,而24—36 cm土层分别下降11.5和12.5个百分点。所有水-氮处理中,W1N1处理根系的空间分布最为均衡。【结论】 水分、氮素对玉米苗期生长和根系发育有显著的耦合效应,适宜的水、氮措施可优化根系形态与空间分布,增加植株干重和氮素吸收利用。春玉米生产中建议降低氮肥基施用量以发挥水氮耦合效应,促进根系下扎和细根增殖,提高植株耐旱性和氮肥利用率。
张馨月,王寅,陈健,陈安吉,王莉颖,郭晓颖,牛雅郦,张星宇,陈利东,高强. 水分和氮素对玉米苗期生长、根系形态及分布的影响[J]. 中国农业科学, 2019, 52(1): 34-44.
ZHANG XinYue,WANG Yin,CHEN Jian,CHEN AnJi,WANG LiYing,GUO XiaoYing,NIU YaLi,ZHANG XingYu,CHEN LiDong,GAO Qiang. Effects of Soil Water and Nitrogen on Plant Growth, Root Morphology and Spatial Distribution of Maize at the Seedling Stage[J]. Scientia Agricultura Sinica, 2019, 52(1): 34-44.
表1
水分、氮素对春玉米苗期植株生长的影响"
土壤水分 Soil water condition | 施氮量 N rate | 2016年 | 2017年 | ||||
---|---|---|---|---|---|---|---|
株高 Plant height (cm) | 茎粗 Stem diameter (cm) | SPAD | 株高 Plant height (cm) | 茎粗 Stem diameter (cm) | SPAD | ||
W0 | N0 | 60.4bB | 19.7bB | 28.8bA | 73.4bC | 25.3bB | 32.0bC |
N1 | 79.7aB | 23.7aB | 44.3aA | 80.5aC | 28.6aC | 42.9aB | |
N2 | 82.5aB | 23.9aB | 45.7aA | 83.1aC | 30.9aC | 44.9aB | |
W1 | N0 | 71.7bA | 31.8bA | 32.9bA | 82.5bBC | 32.6bA | 35.2bB |
N1 | 88.7aB | 39.2aA | 43.0aA | 96.4aB | 37.2aB | 44.1aB | |
N2 | 91.3aB | 40.4aA | 45.4aA | 101.5aB | 38.9aB | 47.0aB | |
W2 | N0 | 79.8bA | 32.9bA | 29.9bA | 93.0bAB | 34.4bA | 36.7bAB |
N1 | 117.4aA | 42.0aA | 45.7aA | 124.6aA | 40.2aA | 45.0aB | |
N2 | 112.3aA | 41.8aA | 44.5aA | 130.3aA | 42.6aA | 47.2aB | |
W3 | N0 | 80.3bA | 32.1bA | 30.1bA | 96.7bA | 33.8bA | 38.7bA |
N1 | 111.2aA | 40.4aA | 46.6aA | 120.8aA | 39.1aAB | 48.0aA | |
N2 | 115.3aA | 41.8aA | 45.5aA | 125.1aA | 38.0aB | 50.1aA | |
方差分析 ANOVA | |||||||
水分 W | <0.001 *** | <0.001 *** | 0.893 ns | <0.001 *** | <0.001 *** | <0.001 *** | |
氮素 N | 0.0016 ** | <0.001 *** | <0.001 *** | <0.001 *** | 0.032 * | <0.001 *** | |
水分×氮素 W×N | 0.126 ns | 0.551 ns | 0.694 ns | 0.083 ns | 0.332 ns | 0.879 ns |
表2
水分、氮素对玉米苗期地上部干物质量、根系干重和根冠比的影响"
土壤水分 Soil water condition | 施氮量 N rate | 2016 | 2017 | ||||
---|---|---|---|---|---|---|---|
地上部干重 Shoot dry matter (g) | 根系干重 Root dry matter (g) | 根冠比 R/S ratio | 地上部干重 Shoot dry matter (g) | 根系干重 Root dry matter (g) | 根冠比 R/S ratio | ||
W0 | N0 | 26.0bB | 4.8aB | 0.19aA | 22.9bC | 5.8aC | 0.25aAB |
N1 | 34.9aD | 5.3aD | 0.15bB | 29.7aC | 6.0aD | 0.20bB | |
N2 | 36.5aD | 4.9aD | 0.13bB | 29.4aC | 5.5aC | 0.19bA | |
W1 | N0 | 39.6bA | 8.3bA | 0.21aA | 32.3bB | 8.8bB | 0.27aA |
N1 | 63.3aC | 12.4aC | 0.20aA | 43.4aB | 10.9aC | 0.25abA | |
N2 | 65.7aC | 11.2aC | 0.17bA | 48.4aB | 10.7aB | 0.22bA | |
W2 | N0 | 40.5bA | 8.4cA | 0.21aA | 41.7bA | 10.8bA | 0.26aAB |
N1 | 92.8aA | 16.6aA | 0.18bA | 72.1aA | 15.8aA | 0.22bAB | |
N2 | 87.3aA | 14.8bA | 0.17bA | 68.9aA | 14.7aA | 0.21bA | |
W3 | N0 | 37.2bA | 7.5bA | 0.20aA | 41.8bA | 10.1bAB | 0.24aB |
N1 | 76.1aB | 14.1aB | 0.19abA | 66.1aA | 13.6aB | 0.21bB | |
N2 | 78.6aB | 13.2aB | 0.17bA | 72.6aA | 15.2aA | 0.21bA | |
方差分析 ANOVA | |||||||
水分 W | <0.001 *** | <0.001 *** | 0.003 ** | <0.001 *** | <0.001 *** | 0.031 * | |
氮素 N | <0.001 *** | <0.001 *** | 0.022 * | <0.001 *** | <0.001 *** | 0.001 ** | |
水分×氮素 W×N | <0.001 *** | <0.001 *** | 0.846 ns | <0.001 *** | 0.002 ** | 0.749 ns |
表3
水分、氮素对玉米苗期根系形态的影响"
土壤水分 Soil water condition | 施氮量 N rate | 根长 Root length (m) | 根表面积 Root surface area (m2) | 根体积 Root volume (cm3) |
---|---|---|---|---|
W0 | N0 | 122.1aB | 0.75aB | 38.5aC |
N1 | 83.8bD | 0.60bD | 42.4aD | |
N2 | 75.3bC | 0.57bD | 39.1aD | |
W1 | N0 | 164.8aA | 1.08aA | 66.4cA |
N1 | 148.5aC | 1.12aC | 105.5aB | |
N2 | 119.2bB | 0.99aC | 89.2bC | |
W2 | N0 | 192.4cA | 1.21bA | 62.9cAB |
N1 | 259.7aA | 1.81aA | 116.8bA | |
N2 | 221.0bA | 1.73aA | 164.6aA | |
W3 | N0 | 174.3bA | 1.09cA | 57.5cB |
N1 | 221.4aB | 1.59aB | 93.5bC | |
N2 | 208.9aA | 1.43bB | 110.3aB | |
方差分析 ANOVA | ||||
水分 W | < 0.001 *** | < 0.001 *** | < 0.001 *** | |
氮素 N | < 0.001 *** | 0.002 ** | < 0.001 *** | |
水分×氮素 W×N | < 0.001 *** | < 0.001 *** | < 0.001 *** |
[1] | 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2017. |
National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook. Beijing: China Statistics Press, 2017. ( in Chinese) | |
[2] | 王崇桃, 李少昆 . 玉米生产限制因素评估与技术优先序. 中国农业科学, 2010,43(6):1136-1146. |
WANG C T, LI S K . Assessment of limiting factors and techniques prioritization for maize production in China. Scientia Agricultura Sinica, 2010,43(6):1136-1146. (in Chinese) | |
[3] |
YIN X, OLESEN J E, WANG M, KERSEBAUM K C, CHEN H, MOHAN S , ÖZTÜRK I, CHEN F. Adapting maize production to drought in the Northeast Farming Region of China. European Journal of Agronomy, 2016,77:47-58.
doi: 10.1016/j.eja.2016.03.004 |
[4] |
张淑杰, 张玉书, 孙龙彧, 纪瑞鹏, 蔡福, 武晋雯, 李广霞 . 东北地区玉米生育期干旱分布特征及其成因分析. 中国农业气象, 2013,34(3):350-357.
doi: 10.3969/j.issn.1000-6362.2013.03.016 |
ZHANG S J, ZHANG Y S, SUN L Y, JI R P, CAI F, WU J W, LI G X . Analysis of distributional characteristics and primary causes of maize drought in Northeast China. Chinese Journal of Agrometeorology, 2013,34(3):350-357. (in Chinese)
doi: 10.3969/j.issn.1000-6362.2013.03.016 |
|
[5] | LIU Z, HUBBARD K G, LIN X, YANG X . Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Global Change Biology, 2013,19:3481-3492. |
[6] |
冯冬蕾, 程志刚, 吴琼, 朱津辉, 曲骅倩, 李吉 . 基于MCI指数的东北地区1961-2014年气象干旱特征分析. 干旱区资源与环境, 2017,31(10):118-124.
doi: 10.13448/j.cnki.jalre.2017.323 |
FENG D L, CHENG Z G, WU Q, ZHU J H, QU H Q, LI J , Meteorological drought characteristics in Northeast China from 1961 to 2014 based on the comprehensive monitoring index analysis. Journal of Arid Land Resources and Environment, 2017,31(10):118-124. (in Chinese)
doi: 10.13448/j.cnki.jalre.2017.323 |
|
[7] |
张仁和, 薛吉全, 浦军, 赵兵, 张兴华, 郑友军, 卜令铎 . 干旱胁迫对玉米苗期植株生长和光合特性的影响. 作物学报, 2011,37(3):521-528.
doi: 10.3724/SP.J.1006.2011.00521 |
ZHANG R H, XUE J Q, PU J, ZHAO B, ZHANG X H, ZHENG Y J, BU L D . Influence of drought stress on plant growth and photosynthetic traits in maize seedlings. Acta Agronomica Sinica, 2011,37(3):521-528. (in Chinese)
doi: 10.3724/SP.J.1006.2011.00521 |
|
[8] |
FLEXAS J, BOTA J, CIFRE, J, MARIANO ESCALONA J, GALMES J, GULIAS J, LEFI E , MARTINEZ-CANELLAS S, MORENO M, RIBAS-CARBO M, RIERA D, SAMPOL B, MEDRANO H. Understanding down-regulation of photosynthesis under water stress: Future prospects and searching for physiological tools for irrigation management. Annals of Applied Biology, 2004,144(3):273-283.
doi: 10.1111/j.1744-7348.2004.tb00343.x |
[9] | 马树庆, 王琪, 张铁林, 于海, 徐丽萍, 纪玲玲 . 吉林省中部玉米出苗率和产量对播种-出苗期水分胁迫的反应及其气象评估. 应用生态学报, 2014,25(2):451-457. |
MA S Q, WANG Q, ZHANG T L, YU H, XU L P, JI L L . Response of maize emergence rate and yield to soil water stress in period of seeding emergence and its meteorological assessment in central area of Jilin province. Chinese Journal of Applied Ecology, 2014,25(2):451-457. (in Chinese) | |
[10] |
SHARP R E, POROYKO V, HEJLEK L G, SPOLLEN W G, SPRINGER G K, BPHNERT H J, NGUYEN H . Root growth maintenance during water deficits: Physiology to functional genomics. Journal of Experimental Botany, 2004,55(407):2343-2351.
doi: 10.1093/jxb/erh276 pmid: 15448181 |
[11] |
梁爱华, 马富裕, 梁宗锁, 慕自新 . 旱后复水激发玉米根系功能补偿效应的生理学机制研究. 西北农林科技大学学报(自然科学版), 2008,36(4):58-64.
doi: 10.3321/j.issn:1671-9387.2008.04.011 |
LIANG A H, MA F Y, LIANG Z S, MU Z X . Studies on the physiological mechanism of functional compensation effect in maize root system induced by re-watering after draught stress. Journal of Northwest A& F University (Natural Science Edition), 2008,36(4):58-64. (in Chinese)
doi: 10.3321/j.issn:1671-9387.2008.04.011 |
|
[12] |
刘吉利, 赵长星, 吴娜, 王月福, 王铭伦 . 苗期干旱及复水对花生光合特性及水分利用效率的影响. 中国农业科学, 2011,44(3):469-476.
doi: 10.3864/j.ssn.0578-1752.2011.03.005 |
LIU J L, ZHAO C X, WU N, WANG Y F, WANG M L . Effects of drought and rewatering at seedling stage on photosynthetic characteristics and water use efficiency of peanut. Scientia Agricultura Sinica, 2011,44(3):469-476. (in Chinese)
doi: 10.3864/j.ssn.0578-1752.2011.03.005 |
|
[13] |
KANG S Z, SHI W J, ZHANG J H . An improved water-use efficiency for maize grown under regulated deficit irrigation. Field Crops Research, 2000,67(3):207-214.
doi: 10.1016/S0378-4290(00)00095-2 |
[14] |
郭相平, 康绍忠, 索丽生 . 苗期调亏处理对玉米根系生长影响的试验研究. 灌溉排水学报, 2001,20(1):25-27.
doi: 10.3969/j.issn.1672-3317.2001.01.006 |
GUO X P, KANG S Z, SUO L S . Effects of regulated deficit irrigation on root growth in maize. Irrigation and Drainage, 2001,20(1):25-27. (in Chinese)
doi: 10.3969/j.issn.1672-3317.2001.01.006 |
|
[15] |
HU T T, KANG S Z, LI, F S, ZHANG J H . Effects of partial root-zone irrigation on the nitrogen absorption and utilization of maize. Agricultural Water Management, 2009,96(2):208-214.
doi: 10.1016/j.agwat.2008.07.011 |
[16] |
KANG S Z, HAO X M, DU T S, TONG L, SU X L, LU H N, LI X L, HUO Z L, LI S E, DING R S . Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agricultural Water Management, 2017,179:5-17.
doi: 10.1016/j.agwat.2016.05.007 |
[17] |
ADU M, YAWSON D, ARMAH F, ASARE P, FRIMPONG K . Meta-analysis of crop yields of full, deficit, and partial root-zone drying irrigation. Agricultural Water Management, 2018,197:79-90.
doi: 10.1016/j.agwat.2017.11.019 |
[18] |
GAO Q, LI C L, FENG G Z, WANG J F, CUI Z L, CHEN X P, ZHANG F S . Understanding yield response to nitrogen to achieve high yield and high nitrogen use efficiency in rainfed corn. Agronomy Journal, 2012,104(1):165-168.
doi: 10.2134/agronj2011.0215 |
[19] |
PENG Y, LI X, LI C . Temporal and spatial profiling of root growth revealed novel response of maize roots under various nitrogen supplies in the field. PLoS ONE, 2012,7(5):e37726.
doi: 10.1371/journal.pone.0037726 pmid: 3356300 |
[20] |
WANG G L, CHEN X P, CUI Z L, ZHANG F S . Estimated reactive nitrogen losses for intensive maize production in China. Agriculture Ecosystems & Environment, 2014,197:293-300.
doi: 10.1016/j.agee.2014.07.014 |
[21] |
YIN G H, GU J, ZHANG F S, LIU Z X . Maize yield response to water supply and fertilizer input in a semi-arid environment of Northeast China. PLoS ONE, 2014,9(1):e86099.
doi: 10.1371/journal.pone.0086099 pmid: 24465896 |
[22] | 李生秀, 李世清, 高亚军, 王喜庆, 贺海军 . 施用氮肥对提高旱地作物利用土壤水分的作用机理和效果. 干旱地区农业研究, 1994,12(1):38-46. |
LI S X, LI S Q, GAO Y J, WANG X Q, HE H J . The mechanism and effects of N fertilization in increasing water use efficiency. Agricultural Research in the Arid Areas, 1994,12(1):38-46. (in Chinese) | |
[23] |
张艳, 张洋, 陈冲, 李东, 翟丙年 . 水分胁迫条件下施氮对不同水氮效率基因型冬小麦苗期生长发育的影响. 麦类作物学报, 2009,29(5):844-848.
doi: 10.7606/j.issn.1009-1041.2009.05.019 |
ZHANG Y, ZHANG Y, CHEN C, LI D, ZHAI B N . Effect of water stress and nitrogen application on growth and development of winter wheat genotypes with different water and nitrogen use efficiency at seedling stage. Journal of Triticeae Crops, 2009,29(5):844-848. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2009.05.019 |
|
[24] |
王秀波, 上官周平 . 干旱胁迫下氮素对不同基因型小麦根系活力和生长的调控. 麦类作物学报, 2017,37(6):820-827.
doi: 10.7606/j.issn.1009-1041.2017.06.014 |
WANG X B, SHANGGUAN Z P . Effect of nitrogen on root vigor and growth in different genotypes of wheat under drought stress. Journal of Triticeae Crops, 2017,37(6):820-827. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2017.06.014 |
|
[25] |
CLAY D E, ENGEL R E, LONG D, LIU Z . Nitrogen and water stress interact to influence carbon-13 discrimination in wheat. Soil Science Society of America Journal, 2001,65(6):1823-1828.
doi: 10.2136/sssaj2001.1823 |
[26] |
宋海星, 李生秀 . 水、氮供应和土壤空间所引起的根系生理特性变化. 植物营养与肥料学报, 2004,10(1):6-11.
doi: 10.3321/j.issn:1008-505X.2004.01.002 |
SONG H X, LI S X . Changes of root physiological characteristics resulting from supply of water, nitrogen and root-growing space in soil. Plant Nutrition and Fertilizer Science, 2004,10(1):6-11. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2004.01.002 |
|
[27] |
HOKAM E, EI-HENDAWY S, SCHMIDHALTER U . Drip irrigation frequency: The effects and their interaction with nitrogen fertilization on maize growth and nitrogen use efficiency under arid conditions. Journal of Agronomy and Crop Science, 2011,197(3):186-201.
doi: 10.1111/j.1439-037X.2010.00460.x |
[28] |
ANDERSON E L . Tillage and N fertilization effects on maize root growth and root﹕shoot ratio. Plant & Soil, 1988,108(2):245-251.
doi: 10.1007/BF02375655 |
[29] |
BENJAMIN J G, NIELSEN D C, VOGIL M F, CALDERON F . Water deficit stress effects on corn (Zea mays, L.) root﹕shoot ratio. Open Journal of Soil Science, 2014,4(4):151-160.
doi: 10.4236/ojss.2014.44018 |
[30] |
GHEYSARI M, MIRLATIFI S M, BANNAYAN M, HOOGENBOOM G . Interaction of water and nitrogen on maize grown for silage. Agricultural Water Management, 2009,96(5):809-821.
doi: 10.1016/j.agwat.2008.11.003 |
[31] |
LYNCH J P . Root architecture and plant productivity. Plant Physiology, 1995,109(1):7-13.
doi: 10.1104/pp.109.1.7 |
[32] |
LUNCH J P . Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 2013,112(2):347-357.
doi: 10.1093/aob/mcs293 |
[33] |
MI G H, CHEN F J, WU Q P, ZHANG F S . Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems. Science China Life Sciences, 2010,53(12):1369-1373.
doi: 10.1007/s11427-010-4097-y pmid: 21181338 |
[34] |
YU P, WHITE P J, HOCHHOLDINGRT F, LI C J . Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. Planta, 2014,240(4):667-678.
doi: 10.1007/s00425-014-2150-y |
[35] |
SHARP R E, HSIAO T C, SILK W K . Growth of the maize primary root at low water potentials: II. Role of growth and deposition of hexose and potassium in osmotic adjustment. Plant physiology, 1990,93(4):1337-1346.
doi: 10.1104/pp.93.4.1337 pmid: 16667622 |
[36] |
TRACHSEL S, KAEPPLER S M, BROWM K M, LYNCH J P . Maize root growth angles become steeper under low N conditions. Field Crops Research, 2013,140:18-31.
doi: 10.1016/j.fcr.2012.09.010 |
[37] |
MU X, CHEN F, WU Q, MI G H . Genetic improvement of root growth increases maize yield via enhanced post-silking nitrogen uptake. European Journal of Agronomy, 2015,63:55-61.
doi: 10.1016/j.eja.2014.11.009 |
[1] | 肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 水培条件下根际氧环境对水稻幼苗磷吸收的影响及其生理机制[J]. 中国农业科学, 2023, 56(2): 236-248. |
[2] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[3] | 柴海燕,贾娇,白雪,孟玲敏,张伟,金嵘,吴宏斌,苏前富. 吉林省玉米穗腐病致病镰孢菌的鉴定与部分菌株对杀菌剂的敏感性[J]. 中国农业科学, 2023, 56(1): 64-78. |
[4] | 赵政鑫,王晓云,田雅洁,王锐,彭青,蔡焕杰. 未来气候条件下秸秆还田和氮肥种类对夏玉米产量及土壤氨挥发的影响[J]. 中国农业科学, 2023, 56(1): 104-117. |
[5] | 李周帅,董远,李婷,冯志前,段迎新,杨明羡,徐淑兔,张兴华,薛吉全. 基于杂交种群体的玉米产量及其配合力的全基因组关联分析[J]. 中国农业科学, 2022, 55(9): 1695-1709. |
[6] | 熊伟仡,徐开未,刘明鹏,肖华,裴丽珍,彭丹丹,陈远学. 不同氮用量对四川春玉米光合特性、氮利用效率及产量的影响[J]. 中国农业科学, 2022, 55(9): 1735-1748. |
[7] | 李易玲,彭西红,陈平,杜青,任俊波,杨雪丽,雷鹿,雍太文,杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响[J]. 中国农业科学, 2022, 55(9): 1749-1762. |
[8] | 侯将将,王金洲,孙平,朱文琰,徐靖,卢昌艾. 中国草地地上生产力氮素敏感性的时空变化[J]. 中国农业科学, 2022, 55(9): 1811-1821. |
[9] | 桂润飞,王在满,潘圣刚,张明华,唐湘如,莫钊文. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529-1545. |
[10] | 廖萍,孟轶,翁文安,黄山,曾勇军,张洪程. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546-1556. |
[11] | 马小艳,杨瑜,黄冬琳,王朝辉,高亚军,李永刚,吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析[J]. 中国农业科学, 2022, 55(8): 1589-1603. |
[12] | 李前,秦裕波,尹彩侠,孔丽丽,王蒙,侯云鹏,孙博,赵胤凯,徐晨,刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616. |
[13] | 张家桦,杨恒山,张玉芹,李从锋,张瑞富,邰继承,周阳晨. 不同滴灌模式对东北春播玉米籽粒淀粉积累及淀粉相关酶活性的影响[J]. 中国农业科学, 2022, 55(7): 1332-1345. |
[14] | 谭先明,张佳伟,王仲林,谌俊旭,杨峰,杨文钰. 基于PLS的不同水氮条件下带状套作玉米产量预测[J]. 中国农业科学, 2022, 55(6): 1127-1138. |
[15] | 巢成生,王玉乾,沈欣杰,代晶,顾炽明,李银水,谢立华,胡小加,秦璐,廖星. 甘蓝型油菜苗期氮高效吸收转运特征研究[J]. 中国农业科学, 2022, 55(6): 1172-1188. |
|