中国农业科学 ›› 2018, Vol. 51 ›› Issue (18): 3614-3624.doi: 10.3864/j.issn.0578-1752.2018.18.017
• 研究简报 • 上一篇
彭卫福1,2(), 吕伟生3, 黄山1(
), 曾勇军1, 潘晓华1, 石庆华1
收稿日期:
2018-03-08
接受日期:
2018-05-07
出版日期:
2018-09-16
发布日期:
2018-09-16
作者简介:
联系方式:彭卫福,E-mail:
基金资助:
WeiFu PENG1,2(), WeiSheng LÜ3, Shan HUANG1(
), YongJun ZENG1, XiaoHua PAN1, QingHua SHI1
Received:
2018-03-08
Accepted:
2018-05-07
Online:
2018-09-16
Published:
2018-09-16
摘要:
【目的】土壤肥力是红壤性稻田水稻丰产的基础。明确不同肥力对红壤性水稻土作物产量和氮肥利用效率的影响,为红壤性稻田土壤培肥和合理施肥提供科学依据。【方法】选取质地相似的不同肥力水平的红壤性水稻土进行盆栽试验(以土壤有机质的高低代表土壤肥力的高低),利用15N同位素示踪技术研究不同肥力水平(FL、FM和FH分别代表低肥力、中肥力和高肥力,其低、中、高肥力土壤的有机质含量分别为19.9、29.6、38.9 g·kg-1)和氮肥水平(N0、N150和N225分别代表施氮量为0、150和225 kg·hm-2,共9个试验处理,分别为FLN0、FLN150、FLN225、FMN0、FMN150、FMN225、FHN0、FHN150和FHN225)对水稻产量及其构成、氮肥吸收及其去向的影响。【结果】提升土壤肥力和施氮均能显著提高水稻的有效穗数、产量和总吸氮量。与N0相比,FL、FM和FH在N150处理下的增产率分别为63%、40%、17%,而在N225处理下的增产率分别为89%、55%和23%。在中、低肥力土壤上,增施氮肥能显著提高水稻产量,而FHN150和FHN225处理之间产量无显著差异。15N示踪结果表明,相同施氮量条件下,水稻植株对肥料氮素和土壤氮素的吸收量均随土壤肥力的提高而增加。但是,水稻植株总吸氮量中来自土壤氮素的比例随土壤肥力的提高而增加,而来自肥料氮素的比例则随之降低。增施氮肥会增加水稻吸收肥料氮素的比例,降低其吸收土壤氮素的比例。FL、FM和FH土壤水稻的平均氮肥回收率分别为42%、48%和52%,平均氮肥残留率分别为20%、23%和28%,平均氮肥损失率分别为38%、29%和20%。FLN225氮肥回收率显著高于FLN150,FM两个施氮量氮肥回收率无显著差异,而FHN225的氮肥回收率显著低于FHN150。提升土壤肥力能显著提高土壤微生物量氮、铵态氮和固定态铵的含量。【结论】提升土壤肥力能显著提高红壤性水稻土的水稻产量以及化肥氮的回收率和残留率,而降低氮肥损失率。在低肥力土壤上适当增加施氮量有利于增加产量和氮肥回收率;而在高肥力土壤上适当降低施氮量在保证较高水稻产量的同时,能够提高氮肥回收率、降低氮肥损失。
彭卫福, 吕伟生, 黄山, 曾勇军, 潘晓华, 石庆华. 土壤肥力对红壤性水稻土水稻产量和氮肥利用效率的影响[J]. 中国农业科学, 2018, 51(18): 3614-3624.
WeiFu PENG, WeiSheng LÜ, Shan HUANG, YongJun ZENG, XiaoHua PAN, QingHua SHI. Effects of Soil Fertility on Rice Yield and Nitrogen Use Efficiency in a Red Paddy Soil[J]. Scientia Agricultura Sinica, 2018, 51(18): 3614-3624.
表1
不同肥力红壤性水稻土的基本理化性质"
土壤肥力 Soil fertility | pH | 有机质 Organic matter (g·kg-1) | 总氮 Total N (g·kg-1) | 碱解氮 Alkaline N (mg·kg-1) | 速效钾 Available K (mg·kg-1) | 速效磷 Olsen P (mg·kg-1) | 砂粒 Sand (2-0.02 mm, %) | 粉粒 Silt (0.02-0.002 mm, %) | 黏粒 Clay (<0.002 mm, %) |
---|---|---|---|---|---|---|---|---|---|
低肥力Low fertility | 5.48 | 19.9 | 1.2 | 137.2 | 174.7 | 17.9 | 22 | 56 | 22 |
中肥力Medium fertility | 5.39 | 29.6 | 1.8 | 191.5 | 170.5 | 21.2 | 23 | 55 | 22 |
高肥力High fertility | 5.31 | 38.9 | 2.3 | 241.4 | 239.6 | 22.4 | 22 | 54 | 24 |
表2
土壤肥力(F)和施氮量(N)对水稻产量及其构成的影响"
处理 Treatments | 产量 Grain yield (g/pot) | 有效穗数 Effective panicles/pot | 每穗实粒数 Spikelets per panicle | 结实率 Filled grain percentage (%) | 千粒重 1000-grain weight (g) |
---|---|---|---|---|---|
FLN0 | 23.6f | 9.3f | 108.6ab | 89.4bc | 26.5d |
FLN150 | 38.5e | 15.3de | 101.9b | 88.7bc | 26.3d |
FLN225 | 44.5d | 17.0d | 109.0ab | 89.0bc | 26.4d |
FMN0 | 40.0e | 14.7e | 116.5a | 88.9bc | 26.7bcd |
FMN150 | 55.9c | 19.3c | 114.5ab | 88.3c | 26.6cd |
FMN225 | 62.1b | 22.0ab | 113.6ab | 88.3c | 26.5d |
FHN0 | 55.3c | 21.7b | 115.5ab | 89.6b | 27.1a |
FHN150 | 65.0ab | 22.3ab | 114.5ab | 91.5a | 27.0ab |
FHN225 | 68.0a | 24.0a | 117.4a | 91.1a | 26.9abc |
ANOVA(P) | |||||
肥力(F) | 0.0001 | 0.0001 | 0.0525 | 0.0001 | 0.0001 |
施氮量(N) | 0.0001 | 0.0001 | 0.6595 | 0.8117 | 0.3175 |
肥力×施氮量(F×N) | 0.0010 | 0.0033 | 0.9165 | 0.0366 | 0.9305 |
表3
土壤肥力(F)和施氮量(N)对水稻吸氮量及其来源的影响"
处理 Treatments | 总吸氮量 N uptake (mg/pot) | 肥料氮吸收量 Fertilizer N uptake (mg/pot) | 来自肥料氮的比例 Ndff (%) | 土壤氮吸收量 Soil N uptake (mg/pot) | 来自土壤氮的比例 Ndfs (%) |
---|---|---|---|---|---|
FLN0 | 443.0g | - | - | - | - |
FLN150 | 723.5f | 163.5f | 22.6b | 560.0e | 77.4e |
FLN225 | 854.1e | 260.9c | 30.5a | 593.2d | 69.5f |
FMN0 | 904.9e | - | - | - | - |
FMN150 | 1165.8d | 192.7e | 16.8e | 973.1c | 83.2b |
FMN225 | 1352.3c | 291.0b | 21.5c | 1061.3b | 78.5d |
FHN0 | 1184.5d | - | - | - | - |
FHN150 | 1440.4b | 217.4d | 14.9f | 1223.1a | 85.1a |
FHN225 | 1546.1a | 302.1a | 19.5d | 1244.0a | 80.5c |
ANOVA(P) | |||||
肥力(F) | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
施氮量(N) | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
肥力×施氮量(F×N) | 0.2961 | 0.0404 | 0.0001 | 0.0101 | 0.0001 |
[1] |
鲁艳红, 廖育林, 聂军, 周兴, 谢坚, 杨曾平. 长期施肥红壤性水稻土磷素演变特征及对磷盈亏的响应. 土壤学报, 2017, 54(6): 1471-1485.
doi: 10.11766/trxb201703210020 |
LU Y H, LIAO Y L, NIE J, ZHOU X, XIE J, YANG Z P.Evolution of soil phosphorus in reddish paddy soil under long-term fertilization varying in formulation and its response to P balance. Acta Pedologica Sinica, 2017, 54(6): 1471-1485. (in Chinese)
doi: 10.11766/trxb201703210020 |
|
[2] |
XU R K, ZHAO A Z, LI Q M, KONG X L, JI G L.Acidity regime of the red soils in a subtropical region of southern China under field conditions. Geoderma, 2003, 115(1): 75-84.
doi: 10.1016/S0016-7061(03)00077-6 |
[3] | 王姗娜. 长期施肥下我国典型红壤性水稻土肥力演变特征与持续利用[D]. 北京: 中国农业科学院, 2012. |
WANG S N.Evolution characteristics of reddish paddy soil fertility under long-term fertilization and its sustainable utilization in southern China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese) | |
[4] |
LIU S L, HUANG D Y, CHEN A L, WEI W X, BROOKES P C, LI Y, WU J S.Differential responses of crop yields and soil organic carbon stock to fertilization and rice straw incorporation in three cropping systems in the subtropics. Agriculture, Ecosystems & Environment, 2014, 184: 51-58.
doi: 10.1016/j.agee.2013.11.019 |
[5] |
ZHOU P, SHENG H, LI Y, TONG C L, GE T D, WU J S.Lower C sequestration and N use efficiency by straw incorporation than manure amendment on paddy soils. Agriculture Ecosystems and Environment, 2016, 219: 93-100.
doi: 10.1016/j.agee.2015.12.012 |
[6] |
ZHAO J, NI T, LI J, LU Q, FANG Z Y, HUANG Q W, ZHANG R F, LI R, SHEN B, SHEN Q R.Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice-wheat cropping system. Applied Soil Ecology, 2016, 99(18): 1-12.
doi: 10.1016/j.apsoil.2015.11.006 |
[7] |
ZHAO X, WANG S Q, XING G X.Maintaining rice yield and reducing N pollution by substituting winter legume for wheat in a heavily-fertilized rice-based cropping system of southeast China. Agriculture Ecosystems and Environment, 2015, 202: 79-89.
doi: 10.1016/j.agee.2015.01.002 |
[8] | PENG S B, HUANG J L, ZHONG X H, YANG J C, WANG G H, ZOU Y B, ZHANG F S, ZHU Q S, BURESH R, WITT C.Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Journal of Integrative Agriculture, 2002, 1(7): 776-785. |
[9] |
YAN X Y, TI C P, VITOUSEK P, CHEN D L, LEIP A, CAI Z C, ZHU Z L.Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen. Environmental Research Letters, 2014, 9: 095002.
doi: 10.1088/1748-9326/9/9/095002 |
[10] |
CAO Y S, TIAN Y H, YIN B, ZHU Z L.Assessment of ammonia volatilization from paddy fields under crop management practices aimed to increase grain yield and N efficiency. Field Crops Research, 2013, 147: 23-31.
doi: 10.1016/j.fcr.2013.03.015 |
[11] |
XU H G, ZHONG G R, LIN J J, DING Y F, LI G H, WANG S H, LIU Z H, TANG S, DING C Q.Effect of nitrogen management during the panicle stage in rice on the nitrogen utilization of rice and succeeding wheat crops. European Journal of Agronomy, 2015, 70: 41-47.
doi: 10.1016/j.eja.2015.06.008 |
[12] |
BANDAOGO A, BIDJOKAZO F, YOUL S, SAFO E, ABAIDOO R, ANDREWS O.Effect of fertilizer deep placement with urea supergranule on nitrogen use efficiency of irrigated rice in Sourou Valley (Burkina Faso). Nutrient Cycling in Agroecosystems, 2015, 102(1): 79-89.
doi: 10.1007/s10705-014-9653-6 |
[13] |
YE Y S, LIANG X Q, CHEN Y X, LIU J, GU J T, GUO R, LI L.Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Research, 2013, 144: 212-224.
doi: 10.1016/j.fcr.2012.12.003 |
[14] |
XUE Y G, DUAN H, LIU L J, WANG Z Q, YANG J C, ZHANG J H.An improved crop management increases grain yield and nitrogen and water use efficiency in rice. Crop Science, 2013, 53(1): 271-284.
doi: 10.2135/cropsci2012.06.0360 |
[15] |
LIU X W, WANG H Y, ZHOU J M, HU F Q, ZHU D J, CHEN Z M, LIU Y Z.Effect of N fertilization pattern on rice yield, N use efficiency and fertilizer-N fate in the Yangtze River Basin, China. Plos One, 2016, 11(11): e0166002.
doi: 10.1371/journal.pone.0166002 pmid: 27861491 |
[16] | PENG W F, ZENG Y J, SHI Q H, HUANG S.Responses of rice yield and the fate of fertilizer nitrogen to soil organic carbon. Plant Soil & Environment, 2017, 63(9): 416-421. |
[17] |
NORMAN R, ROBERTS T, SLATON N, FULFORD A.Nitrogen uptake efficiency of a hybrid compared with a conventional, pure-line rice cultivar. Soil Science Society of America Journal, 2013, 77(4): 1235-1240.
doi: 10.2136/sssaj2013.01.0015 |
[18] |
王秀斌, 徐新朋, 孙刚, 孙静文, 梁国庆, 刘光荣, 周卫. 氮肥用量对双季稻产量和氮肥利用率的影响. 植物营养与肥料学报, 2013, 19(6): 1279-1286.
doi: 10.11674/zwyf.2015.0324 |
WANG X B, XU X P, SUN G, SUN J W, LIANG G Q, LIU G R, ZHOU W.Effects of nitrogen fertilization on grain yield and nitrogen use efficiency of double cropping rice. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1279-1286. (in Chinese)
doi: 10.11674/zwyf.2015.0324 |
|
[19] | 范立慧, 徐珊珊, 侯朋福, 薛利红, 李刚华, 丁艳锋, 杨林章. 不同地力下基蘖肥运筹比例对水稻产量及氮肥吸收利用的影响. 中国农业科学, 2016, 49(10): 1872-1884. |
FAN L H, XU S S, HOU P F, XUE L H, LI G H, DING Y F, YANG L Z.Effect of different ratios of basal to tiller nitrogen on rice yield and nitrogen utilization under different soil fertility. Scientia Agricultura Sinica, 2016, 49(10): 1872-1884. (in Chinese) | |
[20] |
LIANG B, YANG X Y, MURPHY D V, HE X H, ZHOU J B.Fate of 15N-labeled fertilizer in soils under dryland agriculture after 19 years of different fertilizations. Biology and Fertility of Soils, 2013, 49(8): 977-986.
doi: 10.1007/s00374-013-0789-3 |
[21] | 杨馨逸, 刘小虎, 韩晓日. 施氮量对不同肥力土壤氮素转化及其利用率的影响. 中国农业科学, 2016, 49(13): 2561-2571. |
YANG X Y, LIU X H, HAN X R.Effect of nitrogen application rates in different fertility soils on soil N transformations and N use efficiency under different fertilization managements. Scientia Agricultura Sinica, 2016, 49(13): 2561-2571. (in Chinese) | |
[22] | 巨晓棠. 氮肥有效率的概念及意义——兼论对传统氮肥利用率的理解误区. 土壤学报, 2014, 51(5): 921-933. |
JU X T.The concept and meanings of nitrogen fertilizer availability ratio―Discussing misunderstanding of traditional nitrogen use efficiency. Acta Pedologica Sinica, 2014, 51(5): 921-933. (in Chinese) | |
[23] |
WITT C, GAUNT J L, GALICIA C C, JCG O, NEUE H U.A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biology & Fertility of Soils, 2000, 30(5/6): 510-519.
doi: 10.1007/s003740050030 |
[24] |
SILVA J A, BREMNER J M.Determination and isotope-ratio analysis of different forms of nitrogen in soils: 5. fixed ammonium. Soil Science Society of America Journal, 1966, 30(5): 587-594.
doi: 10.2136/sssaj1966.03615995003000050017x |
[25] |
HAUCK R D, BREMNER J M.Use of tracers for soil and fertilizer nitrogen research. Advances in Agronomy, 1976, 28(23): 219-266.
doi: 10.1016/S0065-2113(08)60556-8 |
[26] |
廖育林, 鲁艳红, 聂军, 谢坚, 周兴, 杨曾平. 长期施肥稻田土壤基础地力和养分利用效率变化特征. 植物营养与肥料学报, 2016, 22(5): 1249-1258.
doi: 10.11674/zwyf.15325 |
LIAO Y L, LU Y H, NIE J, XIE J, ZHOU X, YANG Z P.Effects of long-term fertilization on basic soil productivity and nutrient use efficiency in paddy soils. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1249-1258. (in Chinese)
doi: 10.11674/zwyf.15325 |
|
[27] |
鲁艳红, 廖育林, 聂军, 周兴, 谢坚, 杨曾平. 连续施肥对不同肥力稻田土壤基础地力和土壤养分变化的影响. 中国农业科学, 2016, 49(21): 4169-4178.
doi: 10.3864/j.issn.0578-1752.2016.21.011 |
LU Y H, LIAO Y L, NIE J, ZHOU X, XIE J, YANG Z P.Effect of successive fertilization on dynamics of basic soil productivity and soil nutrients in double cropping paddy soils with different fertilities. Scientia Agricultura Sinica, 2016, 49(21): 4169-4178. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.21.011 |
|
[28] | 鲁艳红, 廖育林, 周兴, 聂军, 谢坚, 杨曾平. 长期不同施肥对红壤性水稻土产量及基础地力的影响. 土壤学报, 2015, 52(3): 597-606. |
LU Y H, LIAO Y L, ZHOU X, NIE J, XIE J, YANG Z P.Effect of long-term fertilization on rice yield and basic soil productivity in red paddy soil under double-rice system. Acta Pedologica Sinica, 2015, 52(3): 597-606. (in Chinese) | |
[29] |
曾祥明, 韩宝吉, 徐芳森, 黄见良, 蔡红梅, 石磊. 不同基础地力土壤优化施肥对水稻产量和氮肥利用率的影响. 中国农业科学, 2012, 45(14): 2886-2894.
doi: 10.3864/j.issn.0578-1752.2012.14.011 |
ZENG X M, HAN B J, XU F S, HUANG J L, CAI H M, SHI L.Effect of optimized fertilization on grain yield of rice and nitrogen use efficiency in paddy fields with different basic soil fertilities. Scientia Agricultura Sinica, 2012, 45(14): 2886-2894. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.14.011 |
|
[30] |
ESPE M B, KIRK E, VAN KESSEL C, HORWATH W H, LINQUIST B A.Indigenous nitrogen supply of rice is predicted by soil organic carbon. Soil Science Society of America Journal, 2015, 79(2): 569-576.
doi: 10.2136/sssaj2014.08.0328 |
[31] |
ZHANG Q W, YANG Z L, ZHANG H, YI J.Recovery efficiency and loss of 15N-labelled urea in a rice-soil system in the upper reaches of the Yellow River basin. Agriculture Ecosystems and Environment, 2012, 158: 118-126.
doi: 10.1016/j.agee.2012.06.003 |
[32] |
王敬国, 林杉, 李保国. 氮循环与中国农业氮管理. 中国农业科学, 2016, 49(3): 503-517.
doi: 10.3864/j.issn.0578-1752.2016.03.009 |
WANG J G, LIN S, LI B G.Nitrogen cycling and management strategies in Chinese agriculture. Scientia Agricultura Sinica, 2016, 49(3): 503-517. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.03.009 |
|
[33] |
GILLABEL J, CEBRIAN-LOPEZ B, SIX J, MERCKX R.Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition. Global Change Biology, 2010, 16(10): 2789-2798.
doi: 10.1111/j.1365-2486.2009.02132.x pmid: 14462567 |
[34] |
XU X P, HE P, ZHAO S C, QIU S J, JOHNSTON A M, ZHOU W.Quantification of yield gap and nutrient use efficiency of irrigated rice in China. Field Crops Research, 2016, 186: 58-65.
doi: 10.1016/j.fcr.2015.11.011 |
[35] | 王楠, 王帅, 高强, 赵兰坡, 田特, 张晋京. 施氮水平对不同肥力土壤微生物学特性的影响. 水土保持学报, 2014, 28(4): 148-152. |
WANG N, WANG S, GAO Q, ZHAO L P, TIAN T, ZHANG J J.Effect of nitrogen application levels on microbiological characteristics of soils with different fertility basics. Journal of Soil and Water Conservation, 2014, 28(4): 148-152. (in Chinese) | |
[36] |
LIANG B, ZHAO W, YANG X Y, ZHOU J B.Fate of nitrogen-15 as influenced by soil and nutrient management history in a 19-year wheat-maize experiment. Field Crops Research, 2013, 144: 126-134.
doi: 10.1016/j.fcr.2012.12.007 |
[37] |
梁天锋, 徐世宏, 刘开强, 王殿君, 梁和, 董登峰, 韦善清, 周佳民, 胡钧铭, 江立庚. 栽培方式对水稻氮素吸收利用与分配特性影响的研究. 植物营养与肥料学报, 2010, 16(1): 20-26.
doi: 10.11674/zwyf.2010.0104 |
LIANG T F, XU S H, LIU K Q, WANG D J, LIANG H, DONG D F, WEI S Q, ZHOU J M, HU J M, JIANG L G.Studies on influence of cultivation patterns on characteristics of nitrogen utilization and distribution in rice. Plant Nutrition and Fertilizer Science, 2010, 16(1): 20-26. (in Chinese)
doi: 10.11674/zwyf.2010.0104 |
[1] | 李佳燕,孙良杰,马南,王丰,汪景宽. 不同肥力棕壤玉米根茬和茎叶残体碳氮的固定特征[J]. 中国农业科学, 2022, 55(23): 4664-4677. |
[2] | 马超,王玉宝,邬刚,王泓,汪建飞,朱林,李佳佳,马晓静,柴如山. 近十年安徽省秸秆直接还田研究进展[J]. 中国农业科学, 2022, 55(18): 3584-3599. |
[3] | 夏芊蔚,陈浩,姚宇阗,笪达,陈健,石志琦. “优标”水稻体系对稻田土壤环境的影响[J]. 中国农业科学, 2022, 55(17): 3343-3354. |
[4] | 郭迎新,陈永亮,苗琪,范志勇,孙军伟,崔振岭,李军营. 洱海流域植烟土壤养分时空变异特征及肥力评价[J]. 中国农业科学, 2022, 55(10): 1987-1999. |
[5] | 尹思佳,李慧,徐志强,裴久渤,戴继光,刘雨薇,李艾蒙,于雅茜,刘维,汪景宽. 东北典型黑土区旱地耕层土壤肥力指标的纬度变化特征及其关系[J]. 中国农业科学, 2021, 54(10): 2132-2141. |
[6] | 李小磊,张玉军,申凤敏,姜桂英,刘芳,柳开楼,刘世亮. 长期施肥对红壤性水稻土不同土层活性有机质及碳库管理指数的影响[J]. 中国农业科学, 2020, 53(6): 1189-1201. |
[7] | 郑福丽,刘苹,李国生,张柏松,李燕,魏建林,谭德水. 有机-无机肥协同调控小麦-玉米两熟作物产量及土壤培肥效应[J]. 中国农业科学, 2020, 53(21): 4355-4364. |
[8] | 高英波,张慧,刘开昌,张华斌,李源方,付希强,薛艳芳,钱欣,代红翠,李宗新. 优化氮素与品种匹配可协同提高盐碱地夏玉米产量和氮肥利用率[J]. 中国农业科学, 2020, 53(21): 4388-4398. |
[9] | 张露,张水清,任科宇,李俊杰,段英华,徐明岗. 不同肥力潮土的酶活计量比特征及其与微生物量的关系[J]. 中国农业科学, 2020, 53(20): 4226-4236. |
[10] | 张维理,KOLBEH,张认连. 土壤有机碳作用及转化机制研究进展[J]. 中国农业科学, 2020, 53(2): 317-331. |
[11] | 王劲松,董二伟,武爱莲,白文斌,王媛,焦晓燕. 不同肥力条件下施肥对粒用高粱产量、品质及养分吸收利用的影响[J]. 中国农业科学, 2019, 52(22): 4166-4176. |
[12] | 吕真真,刘秀梅,仲金凤,蓝贤瑾,侯红乾,冀建华,冯兆滨,刘益仁. 长期施肥对红壤性水稻土有机碳矿化的影响[J]. 中国农业科学, 2019, 52(15): 2636-2645. |
[13] | 李文广,杨晓晓,黄春国,薛乃雯,夏清,刘小丽,张晓琪,杨思,杨珍平,高志强. 饲料油菜作绿肥对后茬麦田土壤肥力及细菌群落的影响[J]. 中国农业科学, 2019, 52(15): 2664-2677. |
[14] | 冯小杰,战秀梅,王雪鑫,陈坤,彭靖,韩晓日. 包膜尿素不同配比减施对土壤无机氮含量及玉米氮素吸收的影响[J]. 中国农业科学, 2019, 52(10): 1733-1745. |
[15] | 周丽平,杨俐苹,白由路,卢艳丽,王磊. 夏玉米施用不同缓释化处理氮肥的效果及氮肥去向[J]. 中国农业科学, 2018, 51(8): 1527-1536. |
|