中国农业科学 ›› 2018, Vol. 51 ›› Issue (24): 4690-4699.doi: 10.3864/j.issn.0578-1752.2018.24.009
收稿日期:
2018-06-22
接受日期:
2018-07-16
出版日期:
2018-12-16
发布日期:
2018-12-16
基金资助:
XU HaiFeng(),YANG GuanXian,WANG YiCheng,JIANG ShengHui,WANG Nan,CHEN XueSen(
)
Received:
2018-06-22
Accepted:
2018-07-16
Online:
2018-12-16
Published:
2018-12-16
摘要:
目的 研究苹果MYB转录因子家族MdMYB32的生物学信息、表达水平及其在花青苷合成中的功能,旨在为进一步完善花青苷合成代谢机理提供参考。方法 以新疆红肉苹果杂种一代优系为试材,克隆MdMYB32,分析其进化树和蛋白序列;测定其在不同果实及在不同胁迫处理下的表达水平,通过转基因验证其在花青苷合成中的功能,并通过酵母单杂交分析其互作关系。结果 qRT-PCR分析表明MdMYB32在花青苷含量高的‘红脆9号’苹果中表达水平较低,而在花青苷含量低的‘红脆6号’苹果中表达水平较高,与花青苷含量呈负相关;且盐胁迫和冷胁迫均能抑制MdMYB32的表达;在进化上,MdMYB32与AtMYB32,MdMYB16和AtMYB4在同一个进化枝上,且MdMYB32蛋白序列在C端含有一个EAR抑制序列;在红肉愈伤中过表达MdMYB32能够抑制ANS的表达水平,降低花青苷含量,而过表达切除EAR抑制序列后的LESMdMYB32后,不能明显改变ANS的表达水平和花青苷含量;酵母单杂交和Chip-PCR分析表明MdMYB32和LESMdMYB32均能够结合ANS的启动子。结论 MdMYB32能够结合ANS启动子,并通过自身EAR抑制序列抑制花青苷的生物合成。
许海峰,杨官显,王意程,姜生辉,王楠,陈学森. 苹果MdMYB32通过自身EAR抑制序列抑制花青苷的生物合成[J]. 中国农业科学, 2018, 51(24): 4690-4699.
XU HaiFeng,YANG GuanXian,WANG YiCheng,JIANG ShengHui,WANG Nan,CHEN XueSen. Apple MdMYB32 Inhibits the Anthocyanin Biosynthesis by Its Own EAR Inhibitory Sequence[J]. Scientia Agricultura Sinica, 2018, 51(24): 4690-4699.
[1] | 张学英, 张上隆, 骆军, 叶正文, 李世诚 . 果实花色素苷合成研究进展. 果树学报, 2004,21(5):456-460. |
ZHANG X Y, ZHANG S L, LUO J, YE Z W, LI S C . Advances in research on fruit anthocyanin synthesis. Journal of Fruit Science, 2004,21(5):456-460. (in Chinese) | |
[2] |
ZHANG W S, LI X, ZHENG J T, WANG G Y, SUN C D, FERGUSON I B, CHEN K S . Bioactive components and antioxidant capacity of Chinese bayberry(Myrica rubra Sieb. and Zucc.)fruit in relation to fruit maturity and postharvest storage. European Food Research and Technology, 2008,227(4):1091-1097.
doi: 10.1007/s00217-008-0824-z |
[3] |
SUN C D, HUANG H Z, XU C J, LI X, CHEN K S . Biological activities of extracts from Chinese bayberry (Myrica rubra Sieb. et Zucc.): A review. Plant Foods for Human Nutrition, 2013,68(2):97-106.
doi: 10.1007/s11130-013-0349-x pmid: 23605674 |
[4] | KOES R, VERWEIJ W, QUATTROCCHIO F . Flavonoids, a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science, 2005,10:236-242. |
[5] |
BAI S L, SAITO A, HONDA C, HATSUYAMA Y, ITO A, MORIGUCHI T . An apple B-box protein, MdCOL11, is involved in UV-Band temperature-induced anthocyanin biosynthesis. Planta, 2014,240:1051-1062.
doi: 10.1007/s00425-014-2129-8 pmid: 25074586 |
[6] |
BALLESTER A R, MOLTHOFF J, DE VOS R , TE LINTEL H B, ORZAEZ D, FERNANDEZMORENO J P, TRIPODI P, GRANDILLO S, MARTIN C, HELDENS J, YKEMA M, GRANELL A, BOVY A. Biochemical molecular analysis of pink tomatoes, deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiology, 2010,152:71-84.
doi: 10.1104/pp.109.147322 pmid: 19906891 |
[7] |
ALBERT N W, LEWIS D H, ZHANG H, SCHWINN K E, JAMESON P E, DAVIES K M . Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. The Plant Journal, 2011,65:771-784.
doi: 10.1111/j.1365-313X.2010.04465.x pmid: 21235651 |
[8] |
AZUMA A, KOBAYASHI S, MITANI N, SHIRAISHI M, YAMADA M, UENO T, KONO A, YAKUSHIJI H, KOSHITA Y . Genomic and genetic analysis of Myb-related genes that regulate anthocyanin biosynthesis in grape berry skin. Theoretical and Applied Genetics, 2008,117:1009-1019.
doi: 10.1007/s00122-008-0840-1 pmid: 18651125 |
[9] | WANG L K, BOLITHO K, GRAFTON K, KORTSTEE A, KARUNAIRETNAM S, MCGHIE T K, ESPLEY R V, HELLENS R P, ALLAN A C . An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology, 2010,10:50. |
[10] | FENG S Q, WANG Y L, SONG Y, XU Y T, CHEN X S . Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. Planta, 2010,232:245-255. |
[11] |
TAKOS A M, JAFFÉ F W, JACOB S R, BOGS J, ROBINSON S P, WALKER A R . Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology, 2006,142(3):1216-1232.
doi: 10.1104/pp.106.088104 pmid: 17012405 |
[12] |
BAN Y, HONDA C, HATSUYAMA Y, IGARASHI M, BESSHO H, MORIGUCHI T . Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant and Cell Physiology, 2007,48:958-970.
doi: 10.1093/pcp/pcm066 pmid: 17526919 |
[13] |
ESPLEY R V, HELLENS R P, PUTTERILL J, STEVENSON D E, KUTTY-AMMA S, ALLAN A C . Red colouration in apple fruit is due to the activity of the MYB transcription factor MdMYB10. The Plant Journal, 2007,49:414-427.
doi: 10.1111/j.1365-313X.2006.02964.x pmid: 1865000 |
[14] |
ESPLEY R V, BRENDOLISE C, CHAGNÉ D, KUTTY-AMMA S, GREEN S, VOLZ R, PUTTERILL J, SCHOUTEN H J, GARDINER S E, HELLENS R P, ALLAN A C . Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell, 2009,21:168-183.
doi: 10.1105/tpc.108.059329 |
[15] | 张小燕, 陈学森, 彭勇, 王海波, 石俊, 张红 . 新疆野苹果酚类物质组分的遗传多样性. 园艺学报, 2008,35(9):1351-1356. |
ZHANG X Y, CHEN X S, PENG Y, WANG H B, SHI J, ZHANG H . Genetic diversity of phenolic compounds in Malus sieversii. Acta Horticulturae Sinica, 2008,35(9):1351-1356. (in Chinese) | |
[16] | 张小燕, 陈学森, 彭勇, 王海波, 石俊, 张红 . 新疆野苹果矿质元素与糖酸组分的遗传多样性. 园艺学报, 2008,35(2):277-280. |
ZHANG X Y, CHEN X S, PENG Y, WANG H B, SHI J, ZHANG H . Genetic diversity of mineral elements, sugar and acid components in Malus sieversii( Ldb.) Roem. Acta Horticulturae Sinica, 2008,35(2):277-280. (in Chinese) | |
[17] | ZHANG C Y, CHEN X S, HE T M, LIU X L, FENG T, YUAN Z H . Genetic structure of Malus sieversii population from Xinjiang, China, revealed by SSR markers. Journal of Genetics and Genomics, 2007,34(10):947-955. |
[18] | 张艳敏, 冯涛, 张春雨, 何天明, 张小燕, 吴传金, 刘遵春, 王艳玲, 束怀瑞, 陈学森 . 新疆野苹果研究进展. 园艺学报, 2009,36(3):447-452. |
ZHANG Y M, FENG T, ZHANG C Y, HE T M, ZHANG X Y, WU C J, LIU Z C, WANG Y L, SHU H R, CHEN X S . Advances in research of the Malus sieversii( Lebed.) Roem. Acta Horticulturae Sinica, 2009,36(3):447-452. (in Chinese) | |
[19] | 冯涛, 张红, 陈学森, 张艳敏, 何天明, 冯建荣, 许正 . 新疆野苹果果实形态与矿质元素含量多样性以及特异性状单株. 植物遗传资源学报, 2006,7(3):270-276. |
FENG T, ZHANG H, CHEN X S, ZHANG Y M, HE T M, FENG J R, XU Z . Genetic diversity of fruit morphological traits and content of mineral element in Malus sieversii( Ldb.) Roem and its elite seedlings. Journal of Plant Genetic Resources, 2006,7(3):270-276. (in Chinese) | |
[20] | 王延玲, 张艳敏, 冯守千, 宋杨, 徐玉亭, 张友朋, 陈学森 . 新疆红肉苹果果皮果肉呈色差异机理. 中国农业科学, 2012,45(13):2771-2778. |
WANG Y L, ZHANG Y M, FENG S Q, SONG Y, XU Y T, ZHANG Y P, CHEN X S . The mechanism of red coloring difference between skin and cortex in Malus sieversii f. neidzwetzkyana(Dieck) Langenf. Scientia Agricultura Sinica, 2012,45(13):2771-2778. (in Chinese) | |
[21] | 许海峰, 王楠, 姜生辉, 王意程, 刘静轩, 曲常志, 王得云, 左卫芳, 张晶, 冀晓昊, 张宗营, 毛志泉, 陈学森 . 新疆红肉苹果杂种一代4个株系类黄酮含量及其合成相关基因表达分析. 中国农业科学, 2016,49(16):3174-3187. |
XU H F, WANG N, JIANG S H, WANG Y C, LIU J X, QU C Z, WANG D Y, ZUO W F, ZHANG J, JI X H, ZHANG Z Y, MAO Z Q, CHEN X S . Content and analysis of biosynthesis-related genes of flavonoid among four strains of Malus sieversii f. neidzwetzkyana F1 population. Scientia Agricultura Sinica, 2016,49(16):3174-3187. (in Chinese) | |
[22] |
JI X H, WANG Y T, ZHANG R, WU S J, AN M M, LI M, WANG C Z, CHEN X L, ZHANG Y M, CHEN X S . Effect of auxin, cytokinin and nitrogen on anthocyanin biosynthesis in callus cultures of red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant Cell, Tissue and Organ Culture, 2015,120:325-337.
doi: 10.1007/s11240-014-0609-y |
[23] | JI X H, ZHANG R, WANG N, YANG L, CHEN X S . Transcriptome profiling reveals auxin suppressed anthocyanin biosynthesis in red-fleshed apple callus (Malus sieversii f.niedzwetzkyana). Plant Cell, Tissue and Organ Culture, 2015,123:389-404. |
[24] | WANG N, ZHENG Y, DUAN N B, ZHANG Z Y, JI X H, JIANG S H, SUN S S, YANG L, BAI Y, FEI Z J, CHEN X S . Comparative transcriptomes analysis of red and white-fleshed apples in an F1 populationofMalus sieversii f. niedzwetzkyana crossed with M. domestica ‘Fuji’. PLoS ONE, 2015. Doi: 10.1371/journal.pone. 0133468, 2015. |
[25] | XU H F, WANG N, LIU J X, QU C Z, WANG Y C, JIANG S H, LU N L, WANG D Y, ZHANG Z Y, CHEN X S . The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes. Plant Molecular Biology, 2017,94:149-165. |
[26] | WANG N, XU H F, JIANG S H, ZHANG Z Y, LU N L, QIU H R, QY C Z, WANG Y C, WU S J, CHEN X S . MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). The Plant journal, 2017,90:276-292. |
[27] | JIN H L, COMINELLI E, BAILEY P, PARR A, MEHRTENS F, JONES J, TONELLI C . Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO Journal, 2000,19:6150-6161. |
[28] |
HEMM M R, HERRMANN K M, CHAPPLE C . AtMYB4: A transcription factor general in the battle against UV. Trends in Plant Science, 2001,6(4):135-136.
doi: 10.1016/S1360-1385(01)01915-X pmid: 11286899 |
[29] |
AHARONI A, DE VOS C, WEIN M, SUN Z, GRECO R, KROON A, MOL J N , O’CONNELL A P . The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. The Plant Journal, 2001,28(3):319-332.
doi: 10.1046/j.1365-313X.2001.01154.x pmid: 11722774 |
[30] | KENNETH J L, THOMAS D S . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -△△CT method . Methods, 2001,25:402-408. |
[31] |
HE J X, GENDRON J M, SUN Y ,GAMPALA S S L, GENDRON N, SUN C Q, WANG Z. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 2005,307:1634-1638.
doi: 10.1126/science.1107580 pmid: 2925132 |
[32] |
HARTMANN U, SAGASSER M, MEHRTENS F, STRACKE R, WEISSHAAR B . Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB,BZIP,and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Molecular Biology, 2005,57(2):155-171.
doi: 10.1007/s11103-004-6910-0 pmid: 15821875 |
[33] |
ALBERT N W, DAVIES K M, LEWIS D H, ZHANG H, MONTEFIORI M, BRENDOLIS C, BOASE M R, NGO H, JAMESON P E, SCHWINN K E . A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell, 2014,26:962-980.
doi: 10.4161/psb.29526 pmid: 24642943 |
[34] |
PAOLOCCI F, ROBBINS M P, PASSERI V, HAUCK B, MORRIS P, RUBINI A, ARCIONI S, DAMIANI F . The strawberry transcription factor FaMYB1 inhibits the biosynthesis of proanthocyanidins in Lotus corniculatus leaves. Journal of Experimental Botany, 2011,62(3):1189-1200.
doi: 10.1093/jxb/erq344 pmid: 21041370 |
[35] |
JUN J Y, LIU C G, XIAO X R, DIXON R A . The Transcriptional repressor MYB2 regulates both spatial and temporal patterns of proanthocyandin and anthocyanin pigmentation in Medicago truncatula. Plant Cell, 2015. doi: 10.1105/tpc.15.00476.
doi: 10.1105/tpc.15.00476 pmid: 26410301 |
[36] | CAVALLINI E, MATUS J T, FINEZZO L, ZENONI S, LOYOLA R, GUZZO F, SCHLECHTER R, AGEORGES A, ARCE-JOHNSON P, TORNIELLI G B . The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine. Plant Physiology, 2015,167:1448-1470. |
[37] | COLQUHOUN T A, KIM J Y, WEDDE A E, LEVIN L A, SCHMITT K C, SCHUURINK R C, CLARK D G . PhMYB4 fine-tunes the floral volatile signature of Petunia × hybrida through PhC4H. Journal of Experimental Botany, 2011,62:1133-1143. |
[38] | OHTA M, MATSUI K, SHINSHI H, OHME-TAKAGI M . Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell, 2001,13:1959-1968. |
[39] |
TIWARI S B, WANG X J, HAGEN G, GUILFOYLE T J . Aux/IAA proteins are active repressors and their stability and activity are modulated by auxin. Plant Cell, 2001,13:2809-2822.
doi: 10.2307/3871536 pmid: 11752389 |
[40] |
TIWARI S B, HAGEN G, GUILFOYLE T J . Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell, 2004,16:533-543.
doi: 10.1105/tpc.017384 pmid: 14742873 |
[41] | CIFTCI-YILMAZ S, MORSY M R, SONG L H, COUTU A, KRIZEK B A, LEWIS M W, WARREN D, CUSHMAN J, CONNOLLY E L, MITTLER R . The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response ofArabidopsis to salinity stress. The Journal of Biological Chemistry, 2007,282:9260-9268. |
[42] | MITSUDA N, TODAKA D, NAKASHIMA K, YAMAGUCHI- SHINOZAKI K, OHME-TAKAGI M . Efficient production of male and female sterile plants by expression of a chimeric repressor inArabidopsis and rice. Plant Biotechnol Journal, 2006,4:325-332. |
[43] |
KAM J, GRESSHOFF P M, SHORTER R, XUE G P . The Q-type C2H2 zinc finger subfamily of transcription factors in Triticum aestivum is predominantly expressed in roots and enriched with members containing an EAR repressor motif and responsive to drought stress. Plant Molecular Biology, 2008,67(3):305-322.
doi: 10.1007/s11103-008-9319-3 pmid: 18347915 |
[1] | 董永鑫,卫其巍,洪浩,黄莹,赵延晓,冯明峰,窦道龙,徐毅,陶小荣. 在中国大豆品种上创建ALSV诱导的基因沉默体系[J]. 中国农业科学, 2022, 55(9): 1710-1722. |
[2] | 陈学森, 伊华林, 王楠, 张敏, 姜生辉, 徐娟, 毛志泉, 张宗营, 王志刚, 姜召涛, 徐月华, 李建明. 芽变选种推动世界苹果和柑橘产业优质高效发展案例解读[J]. 中国农业科学, 2022, 55(4): 755-768. |
[3] | 路翔, 高源, 王昆, 孙思邈, 李连文, 李海飞, 李青山, 冯建荣, 王大江. 苹果栽培品种不同族系香气特征分析[J]. 中国农业科学, 2022, 55(3): 543-557. |
[4] | 高小琴,聂继云,陈秋生,韩令喜,刘璐,程杨,刘明雨. 基于矿物元素指纹技术的‘富士’苹果产地溯源[J]. 中国农业科学, 2022, 55(21): 4252-4264. |
[5] | 储宝华,曹富国,卞宁宁,钱谦,李中兴,李雪薇,刘泽远,马锋旺,管清美. 84个苹果栽培品种对斑点落叶病的抗性评价和全基因组关联分析[J]. 中国农业科学, 2022, 55(18): 3613-3628. |
[6] | 解斌,安秀红,陈艳辉,程存刚,康国栋,周江涛,赵德英,李壮,张艳珍,杨安. 不同苹果砧木对持续低磷的响应及适应性评价[J]. 中国农业科学, 2022, 55(13): 2598-2612. |
[7] | 刘瑞达, 葛常伟, 王敏轩, 申延会, 李朋珍, 崔子倩, 刘瑞华, 沈倩, 张思平, 刘绍东, 马慧娟, 陈静, 张桂寅, 庞朝友. 陆地棉转录因子基因GhMYB108的克隆及其在抗旱中的作用[J]. 中国农业科学, 2022, 55(10): 1877-1890. |
[8] | 宋博文,杨龙,潘云飞,李海强,李浩,冯宏祖,陆宴辉. 农田景观格局对南疆苹果园梨小食心虫成虫种群动态的影响[J]. 中国农业科学, 2022, 55(1): 85-95. |
[9] | 沙仁和,兰黎明,王三红,罗昌国. 苹果转录因子MdWRKY40b抗白粉病的机理[J]. 中国农业科学, 2021, 54(24): 5220-5229. |
[10] | 曹钰晗,李紫腾,张静怡,张静娜,胡同乐,王树桐,王亚南,曹克强. 我国苹果斑点落叶病菌携带dsRNA分析及一种dsRNA病毒的鉴定[J]. 中国农业科学, 2021, 54(22): 4787-4799. |
[11] | 李紫腾,曹钰晗,李楠,孟祥龙,胡同乐,王树桐,王亚南,曹克强. 苹果锈果类病毒在7个品种苹果上的分子变异及系统发育关系[J]. 中国农业科学, 2021, 54(20): 4326-4336. |
[12] | 宋春晖,陈晓菲,王枚阁,郑先波,宋尚伟,焦健,王苗苗,马锋旺,白团辉. 基于SLAF-seq技术鉴定苹果砧木耐涝候选基因[J]. 中国农业科学, 2021, 54(18): 3932-3944. |
[13] | 孙擎,赵艳霞,程晋昕,曾厅余,张祎. 基于多种算法的果树果实生长模型研究—以云南昭通苹果为例[J]. 中国农业科学, 2021, 54(17): 3737-3751. |
[14] | 王程利,尹志远,聂嘉俊,林永辉,黄丽丽. 苹果黑腐皮壳菌CAP超家族蛋白基因鉴定及毒性功能分析[J]. 中国农业科学, 2021, 54(16): 3440-3450. |
[15] | 刘锴,何闪闪,张彩霞,张利义,卞书迅,袁高鹏,李武兴,康立群,丛佩华,韩晓蕾. 苹果叶片不定芽再生过程的差异表达基因鉴定与分析[J]. 中国农业科学, 2021, 54(16): 3488-3501. |
|