中国农业科学 ›› 2018, Vol. 51 ›› Issue (21): 4177-4187.doi: 10.3864/j.issn.0578-1752.2018.21.016
所属专题: 猪瘟与非洲猪瘟
收稿日期:
2018-08-28
接受日期:
2018-09-17
出版日期:
2018-11-01
发布日期:
2018-11-01
通讯作者:
罗玉子,仇华吉
基金资助:
YuZi LUO(),Yuan SUN,Tao WANG,HuaJi QIU(
)
Received:
2018-08-28
Accepted:
2018-09-17
Online:
2018-11-01
Published:
2018-11-01
Contact:
YuZi LUO,HuaJi QIU
摘要:
非洲猪瘟(African swine fever, ASF)是由非洲猪瘟病毒(African swine fever virus, ASFV)感染家猪和野猪引起的一种烈性传染病,急性型临床上表现为高热、沉郁、厌食、皮肤发绀、各脏器出血,发病率和病死率可高达100%。世界动物卫生组织(OIE)将其列为法定报告动物疫病,我国将其列为一类动物疫病,是我国重点防范的外来动物疫病之一。ASF在撒哈拉以南的非洲地区、意大利撒丁岛、高加索地区以及俄罗斯和东欧部分国家流行,给疫区国家的养猪业造成巨大的经济损失,并严重冲击畜产品的国际贸易。2018年8月,ASF首次传入我国,随后迅速大范围蔓延,对我国养猪业构成重大威胁,防控形势异常严峻。随着经济全球化发展,ASF呈全球流行态势,持续传入我国的风险极高。鉴于目前无商业化的ASF疫苗,亟需研发可实现现场快速检测的早期诊断技术,做到对疫情早发现、早控制。由于ASFV具有庞大的基因组结构和复杂的免疫逃逸机制,使得研制有效的疫苗十分困难。目前研制的灭活疫苗、亚单位疫苗和核酸疫苗不能提供免疫保护或仅能提供部分保护,而减毒活疫苗和基因缺失疫苗可以诱导完全的同源保护和部分的交叉保护。未来需要深入解析病毒毒力相关基因和免疫保护性相关抗原,并着力研制基因缺失疫苗和弱毒疫苗,解决其安全性、稳定性和免疫效力等难题。本文就ASF的流行病学、诊断技术和疫苗研发等方面的最新研究进展及防控面临的挑战进行综述,并提出防控策略及建议,以期为我国ASF的防控提供参考。
罗玉子,孙元,王涛,仇华吉. 非洲猪瘟——我国养猪业的重大威胁[J]. 中国农业科学, 2018, 51(21): 4177-4187.
YuZi LUO,Yuan SUN,Tao WANG,HuaJi QIU. African Swine Fever: A Major Threat to the Chinese Swine Industry[J]. Scientia Agricultura Sinica, 2018, 51(21): 4177-4187.
[1] |
COSTARD S, MUR L, LUBROTH J, SANCHEZ-VIZCAINO J M, PFEIFFER D U . Epidemiology of African swine fever virus. Virus Research, 2013,173(1):191-197.
doi: 10.1016/j.virusres.2012.10.030 pmid: 23123296 |
[2] |
ROWLANDS R J, MICHAUD V, HEATH L, HUTCHINGS G, OURA C, VOSLOO W, DWARKA R, ONASHVILI T, ALBINA E, DIXON L K . African swine fever virus isolate, Georgia, 2007. Emerging Infectious Diseases, 2008,14(12):1870-1874.
doi: 10.3201/eid1412.080591 pmid: 19046509 |
[3] |
GOGIN A, GERASIMOV V, MALOGOLOVKIN A, KOLBASOV D . African swine fever in the North Caucasus region and the Russian Federation in years 2007-2012. Virus Research, 2013,173:198-203.
doi: 10.1016/j.virusres.2012.12.007 pmid: 23266725 |
[4] | OIE. 2018. World Animal Health Information Database (WAHID). . |
[5] |
SáNCHEZ-VIZCAíNO J M, MUR L, BASTOS A D, PENRITH M L . New insights into the role of ticks in African swine fever epidemiology. Revue Scientifique et Technique, 2015,34(2):503-511.
doi: 10.20506/rst.34.2.2375 pmid: 26601452 |
[6] | ZHOU X, LI N, LUO Y, LIU Y, MIAO F, CHEN T, ZHANG S, CAO P, LI X, TIAN K, QIU H J, HU R . Emergence of African swine fever in China, 2018. Transboundary and Emerging Diseases, 2018 Aug 13. doi: 10.1111/tbed.12989.[Epub ahead of print] |
[7] |
DIXON L K, CHAPMAN D A, NETHERTON C L, UPTON C . African swine fever virus replication and genomics. Virus Research, 2013,173:3-14.
doi: 10.1016/j.virusres.2012.10.020 pmid: 23142553 |
[8] | ALONSO C, BORCA M, DIXON L, REVILLA Y, RODRIGUEZ F, ESCRIBANO J M, ICTV REPORT CONSORTIUM . ICTV virus taxonomy profile:Asfarviridae. Journal of General Virology, 2018,99:613-614. |
[9] |
GALINDO I, ALONSO C . African swine fever virus: A review. Viruses, 2017,9:103.
doi: 10.3390/v9050103 pmid: 28489063 |
[10] |
QUEMBO C J, JORI F, VOSLOO W, HEATH L . Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transboundary and Emerging Diseases, 2018,65:420-431.
doi: 10.1111/tbed.12700 pmid: 28921895 |
[11] |
GALINDO I, CUESTA-GEIJO M A, HLAVOVA K, MUñOZ- MORENO R, BARRADO-GIL L, DOMINGUEZ J, ALONSO C . African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis. Virus Research, 2015,200:45-55.
doi: 10.1016/j.virusres.2015.01.022 pmid: 25662020 |
[12] |
HERNAEZ B, ALONSO C . Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry. Journal of Virology, 2010,84(4):2100-2109.
doi: 10.1128/JVI.01557-09 |
[13] | DENYER M S, WILKINSON P J . African swine fever. Encyclopedia of Immunology, 1998,76(2):54-56. |
[14] |
MONTGOMERY R E . On a farm of swine fever occurring in British East Africa (Kenya Colony). Journal of Comparative Pathology, 1921,34:159-191.
doi: 10.1016/S0368-1742(21)80031-4 |
[15] | PENRITH M L . History of ‘swine fever’ in Southern Africa. Journal of the South African Veterinary Association, 2013,84(1):e1. |
[16] |
PENRITH M L, VOSLOO W . Review of African swine fever: transmission, spread and control. Journal of the South African Veterinary Association, 2009,80(2):58-62.
doi: 10.4102/jsava.v80i2.172 pmid: 19831264 |
[17] |
ANDERSON E C, HUTCHINGS G H, MUKARATI N, WILKINSON P J . African swine fever virus infection of the bushpig (Potamochoerus porcus) and its significance in the epidemiology of the disease. Veterinary Microbiology, 1998,62(1):1-15.
doi: 10.1016/S0378-1135(98)00187-4 pmid: 9659687 |
[18] |
WILKINSON P J . The persistence of African swine fever in Africa and the Mediterranean. Preventive Veterinary Medicine, 1984,2(1/4):71-82.
doi: 10.1016/0167-5877(84)90050-3 |
[19] |
HEUSCHELE W P, COGGINS L . Isolation of African swine fever virus from a giant forest hog. Bulletin of Epizootic Diseases of Africa, 1965, 13(3):255-256.
pmid: 4283999 |
[20] | ARIAS M, SáNCHEZ-VIZCAíNO J M . African swine fever. Pediatric Transplantation, 2002,10(7):838-843. |
[21] |
FAREZ S, MORLEY R S . Potential animal health hazards of pork and pork products. Revue Scientifique et Technique, 1997,16(1):65-78.
doi: 10.1016/S0167-5877(96)01088-4 pmid: 9329109 |
[22] |
OWOLODUN O A, BASTOS A D, ANTIABONG J F, OGEDENGBE M E, EKONG P S, YAKUBU B . Molecular characterisation of African swine fever viruses from Nigeria (2003-2006) recovers multiple virus variants and reaffirms CVR epidemiological utility. Virus Genes, 2010,41(3):361-368.
doi: 10.1007/s11262-009-0444-0 pmid: 20052526 |
[23] |
GALLARDO C, MWAENGO D M, MACHARIA J M, ARIAS M, TARACHA E A, SOLER A, OKOTH E, MARTíN E, KASITI J, BISHOP R P . Enhanced discrimination of African swine fever virus isolates through nucleotide sequencing of the p54, p72, and pB602L (CVR) genes. Virus Genes, 2009,38(1):85-95.
doi: 10.1007/s11262-008-0293-2 pmid: 19009341 |
[24] |
BASTOS A D, PENRITH M L, CRUCIÈRE C, EDRICH J L, HUTCHINGS G, ROGER F, COUACY-HYMANN E, R THOMSON G . Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Archives of Virology, 2003,148(4):693-706.
doi: 10.1007/s00705-002-0946-8 pmid: 12664294 |
[25] |
BOSHOFF C I, BASTOS A D, GERBER L J, VOSLOO W . Genetic characterisation of African swine fever viruses from outbreaks in southern Africa (1973-1999). Veterinary Microbiology, 2007,121(1/2):45-55.
doi: 10.1016/j.vetmic.2006.11.007 pmid: 17174485 |
[26] |
LUBISI B A, BASTOS A D, DWARKA R M, VOSLOO W . Molecular epidemiology of African swine fever in East Africa. Archive of Virology, 2005,150(12):2439-2452.
doi: 10.1007/s00705-005-0602-1 pmid: 16052280 |
[27] |
BASTOS A D, PENRITH M L, MACOME F, PINTO F, THOMSON G R . Co-circulation of two genetically distinct viruses in an outbreak of African swine fever in Mozambique: no evidence for individual co-infection. Veterinary Microbiology, 2004,103(3/4):169-182.
doi: 10.1016/j.vetmic.2004.09.003 pmid: 15504588 |
[28] |
LUO Y, ATIM S A, SHAO L, AYEBAZIBWE C, SUN Y, LIU Y, JI S, MENG X Y, LI S, LI Y, MASEMBE C, STåHL K, WIDÉN F, LIU L, QIU H J . Development of an updated PCR assay for detection of African swine fever virus. Archives of Virology, 2017,162(1):191-199.
doi: 10.1007/s00705-016-3069-3 pmid: 27714502 |
[29] |
OURA C A, EDWARDS L, BATTEN C A . Virological diagnosis of African swine fever-comparative study of available tests. Virus Research, 2013,173:150-158.
doi: 10.1016/j.virusres.2012.10.022 pmid: 23131492 |
[30] |
GALLARDO C, NIETO R, SOLER A, PELAYO V, FERNáNDEZ- PINERO J, MARKOWSKA-DANIEL I, PRIDOTKAS G, NURMOJA I, GRANTA R, SIMÓN A, PÉREZ C, MARTíN E, FERNáNDEZ- PACHECO P, ARIAS M . Assessment of African swine fever diagnostic techniques as a response to the epidemic outbreaks in Eastern European Union countries: how to improve surveillance and control programs. Journal of Clinical Microbiology, 2015,53:2555-2565.
doi: 10.1128/JCM.00857-15 pmid: 4508403 |
[31] |
KING DP, REID S M, HUTCHINGS G H, GRIERSON S S, WILKINSON P J, DIXON L K, BASTOS A D, DREW T W . Development of a TaqMan PCR assay with internal amplification control for the detection of African swine fever virus. Journal of Virological Methods, 2003,107(1):53-61.
doi: 10.1016/S0166-0934(02)00189-1 pmid: 12445938 |
[32] |
MCKILLEN J, HJERTNER B, MILLAR A, MCNEILLY F, BELáK S, ADAIR B, ALLAN G . Molecular beacon real-time PCR detection of swine viruses. Journal of Virological Methods, 2007,140(1/2):155-165.
doi: 10.1016/j.jviromet.2006.11.018 pmid: 17196673 |
[33] |
LIU S, ZHAO Y, HU Q, LV C, ZHANG C, ZHAO R, HU F, LIN W, CUI S . A multiplex RT-PCR for rapid and simultaneous detection of porcine teschovirus, classical swine fever virus, and porcine reproductive and respiratory syndrome virus in clinical specimens. Journal of Virological Methods, 2011,172:88-92.
doi: 10.1016/j.jviromet.2010.12.023 pmid: 21192983 |
[34] | GALLARDO C, ADEMUN A R, NIETO R, NANTIMA N, ARIAS M, MARTTN E, PELAYO V, BISHOP R P . Genotyping of African swine fever virus (ASFV) isolates associated with disease outbreaks in Uganda in 2007. African Journal of Biotechnology, 2013,10:3488-3497. |
[35] |
HU L, LIN X Y, YANG Z X, YAO X P, LI G L, PENG S Z, WANG Y . A multiplex PCR for simultaneous detection of classical swine fever virus, African swine fever virus, highly pathogenic porcine reproductive and respiratory syndrome virus, porcine reproductive and respiratory syndrome virus and pseudorabies in swines. Poland Journal of Veterinary Science, 2015,18(4):715-723.
doi: 10.1515/pjvs-2015-0093 pmid: 26812812 |
[36] | WILKOMSON D A . 'Third wave technologies' invader assays for nucleic acid detection. The Scientist, 1993,13(22):16. |
[37] |
JAMES H E, EBERT K, MCGONIGLE R, REID S M, BOONHAM N, TOMLINSON J A, HUTCHINGS G H, DENYER M, OURA C A, DUKES J P, KING D P . Detection of African swine fever virus by loop-mediated isothermal amplification. Journal of Virological Methods, 2010,164(1-2):68-74.
doi: 10.1016/j.jviromet.2009.11.034 pmid: 202020202020202020202020 |
[38] |
GAO Y, MENG X Y, ZHANG H, LUO Y, SUN Y, LI Y, ABID M, QIU H J , 2018, Cross-priming amplification combined with immunochromatographic strip for rapid on-site detection of African swine fever virus. Sensors and Actuators B:Chemical, 2018,259:573-579.
doi: 10.1016/j.snb.2017.12.087 |
[39] |
BOTIJA CS . Diagnosis of African swine fever by immunofluorescence. Bulletin de Office International des Épizooties, 1970,72(11):819-839.
doi: 10.1007/BF02251387 pmid: 4934981 |
[40] |
BLOME S, GABRIEL C, BEER M . Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine, 2014,32(31):3879-3882.
doi: 10.1016/j.vaccine.2014.05.051 pmid: 24877766 |
[41] |
TAKAMATSU H H, DENYER M S, LACASTA A, STIRLING C M, ARGILAGUET J M, NETHERTON C L, OURA C A, MARTINS C, RODRíGUEZ F . Cellular immunity in ASFV responses. Virus Research, 2013,173(1):110-121.
doi: 10.1016/j.virusres.2012.11.009 pmid: 23201582 |
[42] |
ESCRIBANO J M, GALINDO I, ALONSO C . Antibody-mediated neutralization of African swine fever virus: Myths and facts. Virus Research, 2013,173(1):101-109.
doi: 10.1016/j.virusres.2012.10.012 pmid: 23159730 |
[43] |
ARGILAGUET J M, PÉREZ-MARTíN E, NOFRARíAS M, GALLARDO C, ACCENSI F, LACASTA A, MORA M, BALLESTER M, GALINDO-CARDIEL I, LÓPEZ-SORIA S, ESCRIBANO J M, RECHE P A, RODRíGUEZ F, . DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS ONE, 2012,7(9):e40942.
doi: 10.1371/journal.pone.0040942 pmid: 23049728 |
[44] |
LACASTA A, BALLESTER M, MONTEAGUDO P L, RODRíGUEZ J M, SALAS M L, ACCENSI F, PINA-PEDRERO S, BENSAID A, ARGILAGUET J, LÓPEZ-SORIA S, HUTET E, LE POTIER M F, RODRíGUEZ F . Expression library immunization can confer protection against lethal challenge with African swine fever virus. Journal of Virology, 2014,88(22):13322-13332.
doi: 10.1016/S1590-8658(00)80141-3 pmid: 4249112 |
[45] |
JANCOVICH JK, CHAPMAN D, HANSEN D T, ROBIDA M D, LOSKUTOV A, CRACIUNESCU F, BOROVKOV A, KIBLER K, GOATLEY L, KING K, NETHERTON C L, TAYLOR G, JACOBS B, SYKES K, DIXON L K . Immunization of pigs by DNA prime and recombinant vaccinia virus boost to identify and rank African swine fever virus immunogenic and protective proteins. Journal of Virology, 2018,92(8):e02219-17.
doi: 10.1128/JVI.02219-17 pmid: 29386289 |
[46] |
GÓMEZ-PUERTAS P, RODRíGUEZ F, OVIEDO J M, BRUN A, ALONSO C, ESCRIBANO J M . The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology, 1998,243(2):461-471.
doi: 10.1006/viro.1998.9068 pmid: 9568043 |
[47] |
NEILAN J G, ZSAK L, LU Z, BURRAGE T G, KUTISH G F, ROCK D L . Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology. 2004,319(2):337-342.
doi: 10.1016/j.virol.2003.11.011 pmid: 14980493 |
[48] |
BURMAKINA G, MALOGOLOVKIN A, TULMAN E R, ZSAK L, DELHON G, DIEL D G, SHOBOGOROV N M, MORGUNOV Y P, MORGUNOV S Y, KUTISH G F, KOLBASOV D, ROCK D L . African swine fever virus serotype-specific proteins are significant protective antigens for African swine fever. Journal of General Virology, 2016,97(7):1670-1675.
doi: 10.1099/jgv.0.000490 pmid: 27114233 |
[49] |
LOPERA-MADRID J, OSORIO J E, HE Y, XIANG Z, ADAMS L G, LAUGHLIN R C, MWANGI W, SUBRAMANYA S, NEILAN J, BRAKE D, BURRAGE T G, BROWN W C, CLAVIJO A, BOUNPHENG M A . Safety and immunogenicity of mammalian cell derived and Modified Vaccinia Ankara vectored African swine fever subunit antigens in swine. Veterinary Immunology and Immunopathology, 2017,185:20-33.
doi: 10.1016/j.vetimm.2017.01.004 pmid: 28241999 |
[50] |
LOKHANDWALA S, WAGHELA S D, BRAY J, MARTIN C L, SANGEWAR N, CHARENDOFF C, SHETTI R, ASHLEY C, CHEN C H, BERGHMAN L R, MWANGI D, DOMINOWSKI P J, FOSS D L, RAI S, VORA S, GABBERT L, BURRAGE T G, BRAKE D, NEILAN J, MWANGI W . Induction of robust immune responses in swine by using a cocktail of Adenovirus-vectored African swine fever virus antigens. Clinical and Vaccine Immunology, 2016,23(11):888-900.
doi: 10.1128/CVI.00395-16 pmid: 5098023 |
[51] |
LOKHANDWALA S, WAGHELA S D, BRAY J, SANGEWAR N, CHARENDOFF C, MARTIN C L, HASSAN W S, KOYNARSKI T, GABBERT L, BURRAGE T G, BRAKE D, NEILAN J, MWANGI W . Adenovirus-vectored novel African swine fever virus antigens elicit robust immune responses in swine. PLoS ONE, 2017,12(5):e0177007.
doi: 10.1371/journal.pone.0177007 pmid: 5421782 |
[52] |
LEITãO A, CARTAXEIRO C, COELHO R, CRUZ B, PARKHOUSE R M, PORTUGAL F, VIGáRIO J D, MARTINS C L . The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. Journal of General Virology, 2001,82(3):513-523.
doi: 10.1099/0022-1317-82-3-513 pmid: 11172092 |
[53] |
MULUMBA-MFUMU L K, GOATLEY L C, SAEGERMAN C, TAKAMATSU H H, DIXON L K . Immunization of African indigenous pigs with attenuated genotype I African swine fever virus OURT88/3 induces protection against challenge with virulent strains of genotype I. Transboundary and Emerging Diseases, 2016,63(5):e323-7.
doi: 10.1111/tbed.12303 pmid: 25691347883 |
[54] |
KING K, CHAPMAN D, ARGILAGUET J M, FISHBOURNE E, HUTET E, CARIOLET R, HUTCHINGS G, OURA C A, NETHERTON C L, MOFFAT K, TAYLOR G, LE POTIER M K, DIXON L H . Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation. Vaccine, 2011,29(28):4593-4600.
doi: 10.1016/j.vaccine.2011.04.052 pmid: 3120964 |
[55] |
REVILLA Y, PENA L, VIñUELA E . Interferon-gamma production by African swine fever virus-specific lymphocytes. Scandinavian Journal of Immunology, 1992,35(2):225-230.
doi: 10.1111/j.1365-3083.1992.tb02854.x pmid: 1738818 |
[56] |
GALLARDO C, SáNCHEZ E G, PÉREZ-NÚñEZ D, NOGAL M, DE LEÓN P, CARRASCOSA á R, SOLER A, ARIAS M L, REVILLA Y . African swine fever virus (ASFV) protection mediated by NH/P68 and NH/P68 recombinant live-attenuated viruses. Vaccine, 2018,36(19):2694-2704.
doi: 10.1016/j.vaccine.2018.03.040 pmid: 29609966 |
[57] |
O’DONNELL V, HOLINKA L G, SANFORD B, KRUG P W, CARLSON J, PACHECO J M, REESE B, RISATTI G R, GLADUE D P, BORCA M V . African swine fever virus Georgia isolate harboring deletions of 9GL and MGF360/505 genes is highly attenuated in swine but does not confer protection against parental virus challenge. Virus Research, 2016,221:8-14.
doi: 10.1016/j.virusres.2016.05.014 |
[58] |
O'DONNELL V, RISATTI G R, HOLINKA LG, KRUG P W, CARLSON J, VELAZQUEZ-SALINAS L, AZZINARO P A, GLADUE D P, BORCA M V . Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate offers increased safety and protection against homologous challenge. Journal of Virology, 2017,91(1):e01760-16.
doi: 10.1128/JVI.01760-16 pmid: 27795430 |
[59] |
MONTEAGUDO P L, LACASTA A, LÓPEZ E, BOSCH L, COLLADO J, PINA-PEDRERO S, CORREA-FIZ F, ACCENSI F, NAVAS M J, VIDAL E, BUSTOS M J, RODRíGUEZ J M, GALLEI A, NIKOLIN V, SALAS M L, RODRíGUEZ F . BA71ΔCD2: A new recombinant live attenuated African swine fever virus with cross-protective capabilities. Journal of Virology, 2017,91(21):e01058-17.
doi: 10.1128/JVI.01058-17 |
[60] |
SáNCHEZ-VIZCAíNO J M, MUR L, GOMEZ-VILLAMANDOS J C, CARRASCO L . An update on the epidemiology and pathology of African swine fever. Journal of Comparative Pathology, 2015,152(1):9-21.
doi: 10.1016/j.jcpa.2014.09.003 pmid: 25443146 |
[61] |
SáNCHEZ-VIZCAíNO J M, MUR L, MARTíNEZ-LÓPEZ B . African swine fever (ASF): Five years around Europe. Veterinary Microbiology, 2013,165(1/2):45-50.
doi: 10.1016/j.vetmic.2012.11.030 pmid: 23265248 |
[62] |
GALLARDO M C, REOYO A T, FERNáNDEZ-PINERO J, IGLESIAS I, MUñOZ M J, ARIAS M L . African swine fever: a global view of the current challenge. Porcine Health Management, 2015,1:21.
doi: 10.1186/s40813-015-0013-y pmid: 5382474 |
[63] |
SáNCHEZ-CORDÓN P J, MONTOYA M, REIS A L, DIXON L K . African swine fever: A re-emerging viral disease threatening the global pig industry. Veterinary Journal, 2018,233:41-48.
doi: 10.1016/j.tvjl.2017.12.025 pmid: 29486878 |
[1] | 刘针杉, 涂红霞, 周荆婷, 马艳, 柴久凤, 王旨意, 杨鹏飞, 杨小芹, Kumail Abbas, 王浩, 王燕, 王小蓉. 中国樱桃正反交F1代果实主要性状的遗传分析[J]. 中国农业科学, 2023, 56(2): 345-356. |
[2] | 王一丹,杨发龙,陈弟诗,向华,任玉鹏. 猪腹泻病毒一步法多重TaqMan荧光定量RT-PCR检测法的建立及应用[J]. 中国农业科学, 2023, 56(1): 179-192. |
[3] | 耿仁浩,刘博,王芳,罗玉峰,曲鸿飞,范学政,秦玉明,丁家波,许冠龙,沈青春,秦爱建. 细胞和病毒活疫苗中支原体污染的PCR检测方法建立与应用[J]. 中国农业科学, 2022, 55(7): 1458-1468. |
[4] | 张洁,姜长岳,王跃进. 中国野生毛葡萄转录因子VqWRKY6与VqbZIP1互作调控抗白粉病功能分析[J]. 中国农业科学, 2022, 55(23): 4626-4639. |
[5] | 王艳文,王梦静,张虹,高鑫鑫,郭晶,李旭勇. 1998-2021年我国人感染H9N2亚型禽流感病毒的遗传演化规律[J]. 中国农业科学, 2022, 55(20): 4075-4090. |
[6] | 张冯禧,肖琦,朱家平,尹力鸿,赵霞玲,严明帅,徐晋花,温立斌,牛家强,何孔旺. 非洲猪瘟病毒P30蛋白单克隆抗体制备、鉴定及阻断ELISA方法的建立[J]. 中国农业科学, 2022, 55(16): 3256-3266. |
[7] | 魏天,王成宇,王凤杰,李忠鹏,张芳毓,张守峰,扈荣良,吕礼良,王永志. 非洲猪瘟病毒p30蛋白单克隆抗体制备及线性抗原表位定位[J]. 中国农业科学, 2022, 55(15): 3062-3070. |
[8] | 吴秋琳,姜玉英,刘媛,刘杰,马景,胡高,杨明进,吴孔明. 草地贪夜蛾在中国西北地区的迁飞路径[J]. 中国农业科学, 2022, 55(10): 1949-1960. |
[9] | 张静远,缪发明,陈腾,李敏,扈荣良. 非洲猪瘟实时荧光RPA诊断方法建立及应用[J]. 中国农业科学, 2022, 55(1): 197-207. |
[10] | 周群,陈小飞,阚蕊慈,李玉,曹慧,彭艳伶,张斌. 2017-2019年四川地区猪A群轮状病毒的分子流行病学调查[J]. 中国农业科学, 2021, 54(5): 1063-1072. |
[11] | 王涛,韩玉,潘力,王冰,孙茂文,王翌,罗玉子,仇华吉,孙元. 针对非洲猪瘟病毒MGF360-13L基因的TaqMan荧光定量PCR的建立[J]. 中国农业科学, 2021, 54(5): 1073-1080. |
[12] | 丁茜,赵凯茜,王跃进. 中国野生毛葡萄芪合酶基因表达及对葡萄抗白粉病的影响[J]. 中国农业科学, 2021, 54(2): 310-323. |
[13] | 张丽,汤亚飞,李正刚,于琳,蓝国兵,佘小漫,何自福. 侵染广东省葫芦科作物的中国南瓜曲叶病毒的分子特征[J]. 中国农业科学, 2021, 54(19): 4097-4109. |
[14] | 宋美洁,欧爱群,薛晓锋,吴黎明,寿旗扬,王凯. 蜂胶提取物对脂多糖诱导小鼠急性乳腺炎及乳腺屏障功能的保护作用[J]. 中国农业科学, 2021, 54(12): 2675-2688. |
[15] | 李奇峰,李嘉位,马为红,高荣华,余礼根,丁露雨,于沁杨. 畜禽养殖疾病诊断智能传感技术研究进展[J]. 中国农业科学, 2021, 54(11): 2445-2463. |
|