[1] |
DIXON L K, STAHL K, JORI F, VIAL L, PFEIFFER D U. African swine fever epidemiology and control. Annual Review of Animal Biosciences, 2020, 8: 221-246. doi: 10.1146/annurev-animal-021419-083741.
doi: 10.1146/annurev-animal-021419-083741
|
[2] |
DIXON L, SUN H, ROBERTS H. African swine fever. Antiviral Research, 2019, 165: 34-41. doi: 10.1016/j.antiviral.2019.02.018.
doi: 10.1016/j.antiviral.2019.02.018
|
[3] |
QUEMBO C J, JORI F, VOSLOO W, HEATH L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transboundary and Emerging Diseases, 2018, 65(2): 420-431. doi: 10.1111/tbed.12700.
doi: 10.1111/tbed.12700
|
[4] |
BASTOS A D S, PENRITH M L, CRUCIÈRE C, EDRICH J L, HUTCHINGS G, ROGER F, COUACY-HYMANN E, R THOMSON G. Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Archives of Virology, 2003, 148(4): 693-706. doi: 10.1007/s00705-002-0946-8.
doi: 10.1007/s00705-002-0946-8
|
[5] |
GARIGLIANY M, DESMECHT D, TIGNON M, CASSART D, LESENFANT C, PATERNOSTRE J, VOLPE R, CAY A B, VAN DEN BERG T, LINDEN A. Phylogeographic analysis of African swine fever virus, western Europe, 2018. Emerging Infectious Diseases, 2019, 25(1): 184-186. doi: 10.3201/eid2501.181535.
doi: 10.3201/eid2501.181535
|
[6] |
PEJSAK Z, TRUSZCZYŃSKI M, NIEMCZUK K, KOZAK E, MARKOWSKA-DANIEL I. Epidemiology of African Swine Fever in Poland since the detection of the first case. Polish Journal of Veterinary Sciences, 2014, 17(4): 665-672. DOI: 10.2478/pjvs-2014-0097.
doi: 10.2478/pjvs-2014-0097
|
[7] |
ZHOU X, LI N, LUO Y, LIU Y, MIAO F, CHEN T, ZHANG S, CAO P, LI X, TIAN K, QIU H J, HU R. Emergence of African swine fever in China, 2018. Transboundary and Emerging Diseases, 2018, 65(6): 1482-1484. doi: 10.1111/tbed.12989.
doi: 10.1111/tbed.12989
|
[8] |
GE S, LI J, FAN X, LIU F, LI L, WANG Q, REN W, BAO J, LIU C, WANG H, LIU Y, ZHANG Y, XU T, WU X, WANG Z. Molecular characterization of African swine fever virus, China, 2018. Emerging Infectious Diseases, 2018, 24(11): 2131-2133. doi: 10.3201/eid2411.181274.
doi: 10.3201/eid2411.181274
|
[9] |
LE V P, JEONG D G, YOON S W, KWON H M, TRINH T B N, NGUYEN T L, BUI T T N, OH J, KIM J B, CHEONG K M, VAN TUYEN N, BAE E, VU T T H, YEOM M, NA W, SONG D. Outbreak of African swine fever, Vietnam, 2019. Emerging Infectious Diseases, 2019, 25(7): 1433-1435. doi: 10.3201/eid2507.190303.
doi: 10.3201/eid2507.190303
|
[10] |
KIM H J, CHO K H, LEE S K, KIM D Y, NAH J J, KIM H J, KIM H J, HWANG J Y, SOHN H J, CHOI J G, KANG H E, KIM Y J. Outbreak of African swine fever in South Korea, 2019. Transboundary and Emerging Diseases, 2020, 67(2): 473-475. doi: 10.1111/tbed.13483.
doi: 10.1111/tbed.13483
|
[11] |
ENJUANES L, CARRASCOSA A, MORENO M, VIñUELA E. Titration of African swine fever (ASF) virus. The Journal of General virology, 1976, 32(3): 471-477.DOI: 10.1099/0022-1317-32-3-471.
doi: 10.1099/0022-1317-32-3-471
|
[12] |
PéREZ J, RODRíGUEZ F, FERNáNDEZ A, MARTíN DE LAS MULAS J, GóMEZ-VILLAMANDOS J, SIERRA M. Detection of African swine fever virus protein VP73 in tissues of experimentally and naturally infected pigs. Journal of Veterinary Diagnostic Investigation: Official Publication of the American Association of Veterinary Laboratory Diagnosticians, Inc, 1994, 6(3): 360-365. doi: 10.1177/104063879400600314.
doi: 10.1177/104063879400600314
|
[13] |
VIDAL M I, STIENE M, HENKEL J, BILITEWSKI U, COSTA J V, OLIVA A G. A solid-phase enzyme linked immunosorbent assay using monoclonal antibodies, for the detection of African swine fever virus antigens and antibodies. Journal of Virological Methods, 1997, 66(2): 211-218. doi: 10.1016/s0166-0934(97)00059-1.
doi: 10.1016/s0166-0934(97)00059-1
|
[14] |
孙书华, 孙淑芳, 蒋正军, 吴时友. 多聚酶链反应技术检测非洲猪瘟. 中国兽医科技, 1995, 11(25): 29. doi: 10.16656/j.issn.1673-4696.1995.11.016.
doi: 10.16656/j.issn.1673-4696.1995.11.016
|
|
SUN S H, SUN S F, JIANG Z J, WU S Y. Detection of African swine fever by polymerase chain reaction. Chinese Journal of Veterinary Science and Technology, 1995, 11(25): 29. doi: 10.16656/j.issn.1673-4696.1995.11.016. (in Chinese)
doi: 10.16656/j.issn.1673-4696.1995.11.016
|
[15] |
LUO Y Z, ATIM S A, SHAO L N, AYEBAZIBWE C, SUN Y, LIU Y, JI S W, MENG X Y, LI S, LI Y F, MASEMBE C, STÅHL K, WIDÉN F, LIU L H, QIU H J. Development of an updated PCR assay for detection of African swine fever virus. Archives of Virology, 2017, 162(1): 191-199. doi: 10.1007/s00705-016-3069-3.
doi: 10.1007/s00705-016-3069-3
|
[16] |
KING D P, REID S M, HUTCHINGS G H, GRIERSON S S, WILKINSON P J, DIXON L K, BASTOS A D, DREW T W. Development of a TaqMan PCR assay with internal amplification control for the detection of African swine fever virus. Journal of Virological Methods, 2003, 107(1): 53-61. doi: 10.1016/s0166-0934(02)00189-1.
doi: 10.1016/s0166-0934(02)00189-1
|
[17] |
FERNÁNDEZ-PINERO J, GALLARDO C, ELIZALDE M, ROBLES A, GÓMEZ C, BISHOP R, HEATH L, COUACY-HYMANN E, FASINA F O, PELAYO V, SOLER A, ARIAS M. Molecular diagnosis of African Swine Fever by a new real-time PCR using universal probe library. Veterinary Medicine and Science, 2013, 60(1): 48-58. doi: 10.1111/j.1865-1682.2012.01317.x.
doi: 10.1111/j.1865-1682.2012.01317.x
|
[18] |
JAMES H E, EBERT K, MCGONIGLE R, REID S M, BOONHAM N, TOMLINSON J A, HUTCHINGS G H, DENYER M, OURA C A, DUKES J P, KING D P. Detection of African swine fever virus by loop-mediated isothermal amplification. Journal of Virological Methods, 2010, 164(1/2): 68-74. doi: 10.1016/j.jviromet.2009.11.034.
doi: 10.1016/j.jviromet.2009.11.034
|
[19] |
WANG D, YU J, WANG Y, ZHANG M, LI P, LIU M, LIU Y. Development of a real-time loop-mediated isothermal amplification (LAMP) assay and visual LAMP assay for detection of African swine fever virus (ASFV). Journal of Virological Methods, 2020, 276: 13775. DOI: 10.1016/j.jviromet.2019.113775
doi: 10.1016/j.jviromet.2019.113775
|
[20] |
全国动物卫生标准化技术委员会. 2019, 伪狂犬病诊断方法GB/T 18641-2018.
|
|
NATIONAL TECHNICAL STANDARDIZATION COMMITTEE OF ANIMAL HEALTH. 2019, Diagnostic method for pseudorabies GB/T 18641-2018. (in Chinese)
|
[21] |
全国动物防疫标准化技术委员会. 2011, 猪瘟病毒实时荧光RT-PCR检测方法GB/T 27540-2011.
|
|
NATIONAL TECHNICAL STANDARDIZATION COMMITTEE OF ANIMAL EPIDEMIC PREVENTION. 2011, Method of the real-time QPCR for the detection of classical swine fever virus GB/T 27540-2011. (in Chinese)
|
[22] |
全国动物防疫标准化技术委员会. 2008, 猪圆环病毒聚合酶链反应试验方法GB/T 21674-2008.
|
|
NATIONAL TECHNICAL STANDARDIZATION COMMITTEE OF ANIMAL EPIDEMIC PREVENTION. 2008, Detecting porcine circovirus with polymerase chain reaction GB/T 21674-2008. (in Chinese)
|
[23] |
全国动物防疫标准化技术委员会. 2011, 鉴别猪繁殖与呼吸综合征病毒高致病性与经典毒株复合RT-PCR方法 GB/T 27517-2011.
|
|
NATIONAL TECHNICAL STANDARDIZATION COMMITTEE OF ANIMAL EPIDEMIC PREVENTION. 2011, A multiplex QPCR method to differentiate the highly pathogenic and classical porcine reproductive and respiratory syndrome virus GB/T 27517-2011. (in Chinese)
|
[24] |
国家认证认可监督委员会. 2007, 猪细小病毒病聚合酶链反应操作规程SN/T 1874-2007.
|
|
CERTIFICATION AND ACCREDITATION ADMINISTRATION OF THE P.R.C. 2007, Protocol of polymerase chain reaction for porcine parvovirus SN/T 1874-2007. (in Chinese)
|
[25] |
COSTARD S, WIELAND B, DE GLANVILLE W, JORI F, ROWLANDS R, VOSLOO W, ROGER F, PFEIFFER D, DIXON L. African swine fever: How can global spread be prevented? Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2009, 364(1530): 2683-2696.DOI: 10.1098/rstb.2009.0098.
doi: 10.1098/rstb.2009.0098
|
[26] |
PIEPENBURG O, WILLIAMS C H, STEMPLE D L, ARMES N A. DNA detection using recombination proteins. PLoS Biology, 2006, 4(7): e204. doi: 10.1371/journal.pbio.0040204.
doi: 10.1371/journal.pbio.0040204
|
[27] |
CHAO C C, BELINSKAYA T, ZHANG Z, CHING W M. Development of recombinase polymerase amplification assays for detection of Orientia tsutsugamushi or Rickettsia typhi. PLoS Neglected Tropical Diseases, 2015, 9(7): e0003884. doi: 10.1371/journal.pntd.0003884.
doi: 10.1371/journal.pntd.0003884
|
[28] |
LI Y, LI L, FAN X, ZOU Y, ZHANG Y, WANG Q, SUN C, PAN S, WU X, WANG Z. Development of real-time reverse transcription recombinase polymerase amplification (RPA) for rapid detection of peste des petits ruminants virus in clinical samples and its comparison with real-time PCR test. Scientific Reports, 2018, 8(1): 17760. doi: 10.1038/s41598-018-35636-5.
doi: 10.1038/s41598-018-35636-5
|
[29] |
JAMES A, MACDONALD J. Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics. Expert Review of Molecular Diagnostics, 2015, 15(11): 1475-1489. doi: 10.1586/14737159.2015.1090877.
doi: 10.1586/14737159.2015.1090877
|
[30] |
LIU X Q, YAN Q Y, HUANG J F, CHEN J, GUO Z Y, LIU Z D, CAI L, LI R S, WANG Y, YANG G W, LAN Q X. Influence of design probe and sequence mismatches on the efficiency of fluorescent RPA. World Journal of Microbiology and Biotechnology, 2019, 35(6): 95. doi: 10.1007/s11274-019-2620-2.
doi: 10.1007/s11274-019-2620-2
|
[31] |
WU L, YE L, WANG Z, CUI Y, WANG J. Utilization of recombinase polymerase amplification combined with a lateral flow strip for detection of Perkinsus beihaiensis in the oyster Crassostrea hongkongensis. Parasites & Vectors, 2019, 12(1): 360. doi: 10.1186/s13071-019-3624-3.
doi: 10.1186/s13071-019-3624-3
|
[32] |
MIAO F, ZHANG J, LI N, CHEN T, WANG L, ZHANG F, MI L, ZHANG J, WANG S, WANG Y, ZHOU X, ZHANG Y, LI M, ZHANG S, HU R. Rapid and sensitive recombinase polymerase amplification combined with lateral flow strip for detecting African swine fever virus. Frontiers in Microbiology, 2019, 10: 1004. doi: 10.3389/fmicb.2019.01004.
doi: 10.3389/fmicb.2019.01004
|