中国农业科学 ›› 2021, Vol. 54 ›› Issue (11): 2445-2463.doi: 10.3864/j.issn.0578-1752.2021.11.016
李奇峰(),李嘉位(
),马为红(
),高荣华,余礼根,丁露雨,于沁杨
收稿日期:
2020-06-17
接受日期:
2020-12-22
出版日期:
2021-06-01
发布日期:
2021-06-09
通讯作者:
马为红
作者简介:
李奇峰,E-mail:基金资助:
LI QiFeng(),LI JiaWei(
),MA WeiHong(
),GAO RongHua,YU LiGen,DING LuYu,YU QinYang
Received:
2020-06-17
Accepted:
2020-12-22
Online:
2021-06-01
Published:
2021-06-09
Contact:
WeiHong MA
摘要:
畜牧业是我国农业的重要组成部分,目前我国畜牧业向着规模化、集约化发展,同时也增加了畜禽疾病诊断的难度。为提高畜禽养殖中的动物福利水平,并降低畜牧养殖中因动物疫病与健康异常带来的经济损失与公共卫生安全风险,近年出现了一批通过数字化、智能化手段实现畜禽疫病诊疗的自动化方法,如机器视觉分析、动物音频分析、红外温度感知、深度学习分类等,这些方法可以有效提高对患病或异常畜禽动物的诊断效率、缩短诊断周期、降低畜牧养殖中人工巡检劳动力。畜禽疫病自动诊疗方法不同于常规的基于病理学知识的诊断方法,其主要通过各类传感器自动获取畜禽在养殖过程中的图像、声音、体温、心率、排泄物等各类特征信息,而后通过梅尔倒谱系数、Logistics回归分析等数学模型和支持向量机、深度学习等智能算法对采集的信息进行综合分析与处理,并对动物的健康状态做出评价与预测。文章分别从畜禽形态诊断技术、行为诊断技术、声音诊断技术、体温诊断技术、其他生理参数诊断技术等几个方面总结阐述了目前动物疫病智能诊断技术研究的进展和一些基础的方法原理,这些方法基于动物外型与体尺、行为与动作、鸣叫与声音、体温、排泄物、呼吸与心率等数字化特征,通过数学模型对传感器采集到的特征进行实时分析与分归类,基本实现了对理想环境下动物健康状态的评价。目前的畜禽动物疾病自动诊疗技术研究成果丰富,但相关诊断方法大多是在理想环境下进行,而实际的生产养殖环境中干扰因素很大,目前的诊断方法大多无法很好地排除干扰并精确提取出所需特征信息;并且目前的数字化禽畜疾病诊断方法多是基于禽畜的一种特征信息进行分析诊断,这使得诊断系统的诊断准确度受到影响,诊断结果说服力不足。同时目前的大多数数字化禽畜疾病诊断方法还存在诊断泛化能力差、抗干扰能力差等问题,这些问题制约了其推广与应用。未来畜禽疾病自动诊断的研究重点是提高其传感算法的精度和数学模型的适用性与鲁棒性,并进一步发展基于多种特征耦合与数据融合的智能化畜禽疾病诊疗专家系统,争取实现实时、高效、智能、精准的畜禽健康诊断。
李奇峰,李嘉位,马为红,高荣华,余礼根,丁露雨,于沁杨. 畜禽养殖疾病诊断智能传感技术研究进展[J]. 中国农业科学, 2021, 54(11): 2445-2463.
LI QiFeng,LI JiaWei,MA WeiHong,GAO RongHua,YU LiGen,DING LuYu,YU QinYang. Research Progress of Intelligent Sensing Technology for Diagnosis of Livestock and Poultry Diseases[J]. Scientia Agricultura Sinica, 2021, 54(11): 2445-2463.
表1
疾病识别中动物外型、行为采集技术对比"
图像类别 Image category | 可见光图像 Visible image | 深度图像 Depth image | 红外热成像图像 Infrared image |
---|---|---|---|
所占空间 Space occupied | 较小 Small | 较大 Big | 一般 Common |
处理速度 Processing speed | 较快 Fast | 较慢 Slow | 一般 Common |
主要优势 Main advantages | 提取形状形态 Shape extraction | 提取三维尺寸 3D dimensions | 动物区域定位/测温 Temperature measure |
设备成本 Equipment cost | 较低 Low | 一般 Common | 较高 High |
安装难度 Installation difficulty | 较小 Easy | 较大 Difficult | 一般 Common |
主要影响 Main impact | 背景与遮挡 Background | 阳光直射/墙角反射 Reflection | 距离与环境温度 Ambient temperature |
相机种类 Camera type | CCD/CMOS CCD/CMOS | TOF/结构光/双目 TOF/ SL/binocular | 制冷型/非制冷型 Refrigerated/uncooled |
表2
动物疾病识别中常用音频特征参数"
特征参数 Parameters | 简称 Abbreviation | 特征优势 Advantage | 适用范围 Applicability |
---|---|---|---|
线性预测倒谱系数 Linear prediction cepstrum coefficient | LPCC | 浊音判断准确 Accurate judgment of voiced sounds | 病态呼噜声等识别 Sick snoring recognition |
梅尔频率倒谱系数 Mel frequency cepstrum coefficient | MFCC | 辅音判断准确 Accurate judgment of consonants | 病态咳嗽声等识别 Sick cough sound recognition |
功率谱密度系数 Power spectral density coefficient | PSD | 瞬态判断、音频计数 Transient judgment, audio counting | 呼吸频率/进食量监测 Respiratory rate/food intake monitoring |
表3
疾病识别中动物体温采集技术对比"
采集方法 Collection method | 植入或穿戴设备 Implanted device | 红外设备 Infrared device |
---|---|---|
温度精确程度 Temperature accuracy | 较高 High | 较低 Low |
针对动物群体 Targeting animal groups | 大型、个体 Large, individual | 大型、小型、个体、群体 Large, small, individual, group |
主要测量干扰 Main measurement interference | 设备移位、动物应激 Equipment shift, animal stress | 目标定位、环境温度/距离 Target setting, ambient temperature/distance |
部署难度 Deployment difficulty | 较大 Difficult | 较低 Easy |
测温区域 Measurement area | 较小、不可移动 Small, unmovable | 较大、可移动 Large, movable |
设备续航 Equipment battery life | 较短 Short | 较长 Long |
表4
疾病自动诊疗主流代表方法"
诊断依据 Diagnostic basis | 技术手段 Technical means | 主要用途 The main purpose | 识别精度 identification accuracy | 代表文献 The literature |
---|---|---|---|---|
形态特征 Morphological characteristics | SVM分类 SVM classification 深度学习分类 Deep learning classify | 疾病诊病/敏感特征提取 Disease diagnosis/ feature extraction | 97.5% -97.8% 91.7% | [ [ |
动作姿态 Action & posture | 三轴加速传感器 Acceleration sensor SVM分类 SVM classification 视频特征识别 Video feature recognition 深度学习分类 Deep learning classify | 动物姿态与健康状态评价 Posture and health evaluation | 80% 94% 90% 99% | [ [ [ [ |
位置特征 Location feature | 视频光流法 Video optical flow UWB定位模块法 Positioning module 深度学习目标检测 Deep learning Target Detection | 运动量检测、采食量、饮水量估计等 Exercise detection, estimated feed intake and water consumption | 较低 Lower 最高 Highest 较高 Higher | [ [ [ |
声音特征 Voice characteristics | 发声图谱分析 Voice atlas analysis 偏度聚类分析 Skewness cluster analysis | 疾病诊断及应激评价 Disease diagnosis & stress evaluation | 88% 95% | [ [ |
呼吸特征 Respiratory characteristics | 稀疏光流法 Sparse optical flow WIFI感知法 WIFI perception method 深度图像分析 Depth image analysis 穿戴式传感器 Wearable sensor | 代谢评价及舒适度评价 Metabolic & Comfort evaluation | 98.58% 约98% 85.3% — | [ [ [ [ |
体温特征 Body temperature | 植入传感器 Implanted sensor 红外测温法 Infrared Thermometry | 疾病诊断及应激评价 Disease diagnosis & stress evaluation | ±0.05℃ ±1.5℃ | [ [ |
表5
疾病自动诊疗依据特征表"
动物特征 Features | 主要方法 Method | 成熟程度 Maturity | 存在问题 Problems | 改进措施 Improvement measures |
---|---|---|---|---|
外型与形态 Shape and pattern | 机器视觉(可见光、深度、红外) Machine vision(visible light\depth\infrared) | 较高 High | 视野容易受限 Easy to view limited | 优化图像传感器部署方式,研究相关校正算法 Optimize correlation correction algorithm |
行为与动作 Behavior and action | 机器视觉、加速度传感器 Machine vision, Acceleration sensor | 高 High | 个体跟踪困难 Individual tracking difficult | 引入深层卷积网络模型,扩大训练数据集 Use deep convolutional network and expand the training data set |
鸣叫与声音 Chirps and sounds | 音频处理 Audio processing | 较高 High | 噪音滤除 问题 Noise problem | 优化拾音器部署方案,综合分析多种声音特征 Analyze multiple sound features comprehensively |
体温与健康 Body temperature and health | 红外热成像,植入/捆绑传感器 Infrared thermal imaging, Implant sensor | 一般 Common | 易造成环境与动物应激 Environmental animal stress | 研究嵌入式设备,可见光与红外融合目标定位 Embedded equipment, visible light and infrared fusion target location |
心率与血压 Heart rate and blood pressure | 红外热成像,植入/捆绑传感器 Infrared thermal imaging, Implant sensor | 较低 Low | 精度与稳定性不高 Low accuracy and stability | 优化算法提升植入设备精度与设备续航能力 Optimization algorithm precision and endurance of the implanted device |
排泄物 Waste | 电子鼻、机器视觉 Electronic nose, machine vision | 低 Low | 识别精低 Low identification accuracy | 问题具体化,多源数据融合分析 Multi-source data fusion analysis |
[1] | 孙康泰, 王小龙, 张建民, 蒋大伟, 葛毅强. “十三五”国家重点研发计划中的畜牧兽医科技布局与评述. 畜牧兽医学报, 2020(1):198-204. |
SUN K T, WANG X L, ZHANG J M, JIANG D W, GE Y Q. The distribution and review of National Key Research and Development Program in Animal Husbandry and Veterinary Medicine Field during the 13th Five-Year Period. Acta Veterinaria et Zootechnica Sinica, 2020(1):198-204. (in Chinese) | |
[2] | 李建雄. 市场经济条件下我国畜牧业生产组织的创新研究[D]. 北京: 中国社会科学院研究生院, 2016. |
LI J X. Research on innovation of animal husbandry production organization in China under market economy[D]. Beijing: Graduate School of Chinese Academy of Social Sciences, 2016. (in Chinese) | |
[3] | 王健. 当前畜牧业发展形势及重点任务. 兽医导刊, 2019(13):1. |
WANG J. Current Development Situation and Key Tasks of Animal Husbandry. Veterinary Orientation, 2019(13):1. (in Chinese) | |
[4] | 国务院办公厅. 国家中长期动物疫病防治规划(2012—2020年): http://www.gov.cn/zwgk/2012-05/25/content_2145581.htm. |
General Office of the State Council. National animal disease prevention and control for the medium and long term planning (2012-2020): http://www.gov.cn/zwgk/2012-05/25/content_2145581.htm. (in Chinese) | |
[5] | 韩艳东. 信息化对现代畜牧业建设作用及趋势. 中国畜禽种业, 2018,14(5):21. |
HAN Y D. Effect of informatization on the construction of modern animal husbandry and its trend. The Chinese Livestock and Poultry Breeding, 2018,14(5):21. (in Chinese) | |
[6] | 楚维斌, 史彬林, 红雷, 赵启龙. 抗生素在畜禽生产中的应用·危害及科学使用. 安徽农业科学, 2015,43(19):128-130. |
CHU W B, SHI B L, HONG L, ZHAO Q L. The application, harm and scientific use of antibiotics in livestock production. Journal of Anhui Agricultural Sciences, 2015,43(19):128-130. (in Chinese) | |
[7] |
OKINDA C, LU M Z, LIU L S, NYALALA , MUNERI C, WANG J T, ZHANG H L, SHEN M X. A machine vision system for early detection and prediction of sick birds: A broiler chicken model. Biosystems Engineering, 2019,188:229-242.
doi: 10.1016/j.biosystemseng.2019.09.015 |
[8] |
HUANG J D, WANG W Q, ZHANG T M. Method for detecting avian influenza disease of chickens based on sound analysis. Biosystems Engineering, 2019,180:16-24
doi: 10.1016/j.biosystemseng.2019.01.015 |
[9] |
NASIRAHMADI A, STURM B, OLSSON A C, JEPPSSON K H, MÜLLER S, EDWARDS S, HENSEL O. Automatic scoring of lateral and sternal lying posture in grouped pigs using image processing and Support vector machine. Computers and Electronics in Agriculture, 2019,156:475-481.
doi: 10.1016/j.compag.2018.12.009 |
[10] | 郑国生, 施正香, 滕光辉. 基于不同行为时间的奶牛健康状况评价. 农业工程学报, 2019,35(19):238-244. |
ZHENG G S, SHI Z X, TENG G H. Health assessment of cows based on different behavior time. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(19):238-244. (in Chinese) | |
[11] |
HALACHMI I, POLAK P, ROBERTS D J, KLOPCIC M. Cow body shape and automation of condition scoring. Journal of Dairy Science, 2008,91(11):4444-4451.
doi: 10.3168/jds.2007-0785 |
[12] | 陆明洲, 沈明霞, 丁永前, 杨晓静, 周波, 王志国. 畜牧信息智能监测研究进展. 中国农业科学, 2012,45(14):2939-2947. |
LU M Z, SHEN M X, DING Y Q, YANG X J, ZHOU B, WANG Z G. Review on the intelligent technology for animal husbandry information monitoring. Scientia Agricultura Sinica, 2012,45(14):2939-2947. (in Chinese) | |
[13] |
ZHUANG X L, BI M N, GUO J L, WU S Y, ZHANG T M. Development of an early warning algorithm to detect sick broilers. Computers and Electronics in Agriculture, 2018,144:102-113.
doi: 10.1016/j.compag.2017.11.032 |
[14] |
ZHUANG X L, ZHANG T M. Detection of sick broilers by digital image processing and deep learning. Biosystems Engineering, 2019,179:106-116
doi: 10.1016/j.biosystemseng.2019.01.003 |
[15] | 毕敏娜, 张铁民, 庄晓霖, 焦培荣. 基于鸡头特征的病鸡识别方法研究. 农业机械学报, 2018,49(1):51-57. |
BI M N, ZHANG T M, ZHUANG X L, JIAO P R. Recognition method of sick yellow feather chicken based on head features. Transactions of the Chinese Society for Agricultural Machinery, 2018,49(1):51-57. (in Chinese) | |
[16] | 李亚硕, 毛文华, 胡小安, 张小超. 基于机器视觉识别鸡冠颜色的病鸡检测方法. 机器人技术与应用, 2014(5):23-25. |
LI Y S, MAO W H, HU X A, ZHANG X C. Detection method for sick chicken based on machine vision recognition of comb color. Robot Technique and Application, 2014(5):23-25. (in Chinese) | |
[17] |
AZZARO G, CACCAMO M, FERGUSON J D, BATTIATO S, FARINELLA G M, GUARNERA G C, PUGLISI G, PETRIGLIERI R, LICITRA G. Objective estimation of body condition score by modeling cow body shape from digital images. Journal of Dairy Science, 201194(4):2126-2137.
doi: 10.3168/jds.2010-3467 |
[18] |
SPOLIANSKY R, EDAN Y, PARMET Y, HALACHMI I. Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera. Journal of Dairy Science, 2016,99(9):7714-7725.
doi: 10.3168/jds.2015-10607 |
[19] |
BLÖMKE L, VOLKMANN N, KEMPER N. Evaluation of an automated assessment system for ear and tail lesions as animal welfare indicators in pigs at slaughter. Meat Science, 2020,159:107934.
doi: 10.1016/j.meatsci.2019.107934 |
[20] | 滕光辉, 申志杰, 张建龙, 石晨, 余炅桦. 基于Kinect传感器的无接触式母猪体况评分方法. 农业工程学报, 2018,34(13):211-217. |
TENG G H, SHEN Z J, ZHANG J L, SHI C, YU J H. Non-contact sow body condition scoring method based on Kinect sensor. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(13):211-217. (in Chinese) | |
[21] | 高云, 郭继亮, 黎煊, 雷明刚, 卢军, 童宇. 基于深度学习的群猪图像实例分割方法. 农业机械学报, 2019,50(4):179-187. |
GAO Y, GUO J L, LI X, LEI M G, LU J, TONG Y. Instance-level segmentation method for group pig images based on deep learning. Transactions of the Chinese Society for Agricultural Machinery, 2019,50(4):179-187. (in Chinese) | |
[22] | 薛月菊, 杨晓帆, 郑婵, 陈畅新, 甘海明, 李诗梅. 基于隐马尔科夫模型的深度视频哺乳母猪高危动作识别. 农业工程学报, 2019,35(13):184-190. |
XUE Y J, YANG X F, ZHENG C, CHEN C X, GAN H M, LI S M. Lactating sow high-dangerous body movement recognition from depth videos based on hidden Markov model. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(13):184-190. (in Chinese) | |
[23] | 邓寒冰, 许童羽, 周云成, 苗腾, 张聿博, 徐静, 金莉, 陈春玲. 基于DRGB的运动中肉牛形体部位识别. 农业工程学报, 2018,34(5):166-175. |
DENG H B, XU T Y, ZHOU Y C, MIAO T, ZHANG Y B, XU J, JIN L, CHEN C L. Body shape parts recognition of moving cattle based on DRGB. Transactions of the Chinese Society of Agricultural Engineering, 2012,34(5):166-175. (in Chinese) | |
[24] |
LOKESHBABU D S, JEYAKUMAR S, VASANT P J, SATHIYABARATHIG M, MANIMARAN A, KUMARESAN A, HEARTWIN A. M, SIVARAMD A, RAMESHAE M, MUKUND A, SIDDARAMANNA F. Monitoring foot surface temperature using infrared thermal imaging for assessment of hoof health status in cattle: A review. Journal of Thermal Biology, 2018,78:10-21
doi: 10.1016/j.jtherbio.2018.08.021 |
[25] |
TAMI M. BROWN-BRANDL, ROGER A. EIGENBERG, JOSEPH L P, Using thermal imaging as a method of investigating thermal thresholds in finishing pigs. Biosystems Engineering, 2013,114(3):327-333.
doi: 10.1016/j.biosystemseng.2012.11.015 |
[26] |
CORTIVO P D, DIAS E, BARCELLOS J O J, PERIPOLLI V, COSTA JR J B G, B S L DALLAGO, MCMANUS C M. Use of thermographic images to detect external parasite load in cattle. Computers and Electronics in Agriculture, 2016,127:413-417.
doi: 10.1016/j.compag.2016.07.002 |
[27] | 李广栋, 吕东颖, 田秀芝, 姬鹏云, 郭江鹏, 路永强, 刘国世. 组学技术在奶牛乳房炎上应用的相关研究进展. 中国农业科学, 2019,52(2):350-358. |
LI G D, LÜ D Y, TIAN X Z, JI P Y, GUO J P, LU Y Q, LIU G S. Research progress of omics technologies in cow mastitis. Scientia Agricultura Sinica, 2019,52(2):350-358. (in Chinese) | |
[28] | 陈仁金, 杨章平, 毛永江, 陈莹, 常玲玲, 吴海涛, 冀德君, 李云龙, 张亚琴. 中国荷斯坦牛LYZ基因多态性及其与乳房炎的关联分析. 中国农业科学, 2010,43(23):4936-4941. |
CHEN R J, YANG Z P, MAO Y J, CHEN Y, CHANG L L, WU H T, JI D J, LI Y L, ZHANG Y Q. Polymorphism of LYZ gene and its association with mastitis trait in Chinese Holstein. Scientia Agricultura Sinica, 2010,43(23):4936-4941. (in Chinese) | |
[29] | SATHIYABARATHI M, JEYAKUMAR S, MANIMARAN A, PUSHPADASS H A, SIVARAM M, RAMESHA K P, DAS D N, KATAKTALWARE M A. Infrared thermal imaging of udder skin surface temperature variations to monitor udder health status in Bos indicus (Deoni) cows. Infrared Physics & Technology, 2018,88:239-244. |
[30] |
STOKES J E, LEACH K A, MAIN D C J, WHAY H R. An investigation into the use of infrared thermography (IRT) as a rapid diagnostic tool for foot lesions in dairy cattle. The Veterinary Journal, 2012,193(3):674-678.
doi: 10.1016/j.tvjl.2012.06.052 |
[31] |
MARTINS R F S, PAIM T D P, CARDOSO C D A, DALLAGO B S L, MELO C B D, LOUVANDINI H, MASTITIS C M. Detection in sheep by infrared thermography. Research in Veterinary Science, 2013,94(3):722-724
doi: 10.1016/j.rvsc.2012.10.021 |
[32] | AMEZCUA , WALSH M, SHANNON, LUIMES R H, FRIENDSHIP R M. Infrared thermography to evaluate lameness in pregnant sows. The Canadian Veterinary Journal, 2014,55:268-272. |
[33] |
ZHANG X D, KANG X, FENG N N, LIU G. Automatic recognition of dairy cow mastitis from thermal images by a deep learning detector. Computers and Electronics in Agriculture, 2020,178:105754.
doi: 10.1016/j.compag.2020.105754 |
[34] |
URSINUS W W, REENEN C G V, KEMP B, BOLHUIS J E. Tail biting behaviour and tail damage in pigs and the relationship with general behaviour: Predicting the inevitable. Applied Animal Behaviour Science, 2014,156:22-36.
doi: 10.1016/j.applanim.2014.04.001 |
[35] |
MURPHY E, REBECCA E N, STAAY F J. A review of behavioural methods to study emotion and mood in pigs, Sus scrofa. Applied Animal Behaviour Science, 2014,159:9-28.
doi: 10.1016/j.applanim.2014.08.002 |
[36] |
MATTHEWS S G, MILLER A L, CLAPP J, PLOTZ T, KYRIAZAKIS L. Early detection of health and welfare compromises through automated detection of behavioural changes in pigs. The Veterinary Journal, 2016,217:43-51
doi: 10.1016/j.tvjl.2016.09.005 |
[37] |
MADSEN T N, KRISTENSEN A R. A model for monitoring the condition of young pigs by their drinking behavior. Computers and Electronics in Agriculture, 2005,48(2):138-154.
doi: 10.1016/j.compag.2005.02.014 |
[38] |
CORNOU C, VINTHER J, KRISTENSEN A R. Automatic detection of oestrus and health disorders using data from electronic sow feeders. Livestock Science, 2008,118(3):262-271.
doi: 10.1016/j.livsci.2008.02.004 |
[39] |
AYDIN A. Using 3D vision camera system to automatically assess the level of inactivity in broiler chickens. Computers and Electronics in Agriculture, 2017,135:4-10.
doi: 10.1016/j.compag.2017.01.024 |
[40] | 朱伟兴, 浦雪峰, 李新城, 陆晨芳. 基于行为监测的疑似病猪自动化识别系统. 农业工程学报, 2010,26(1):188-192. |
ZHU W X, PU X F, LI X C, LU C F. Automatic identification system of pigs with suspected case based on behavior monitoring. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(1):188-192. (in Chinese) | |
[41] |
PORTO S M C, ARCIDIACONO C, ANGUZZA U, CASCONE G. A computer vision-based system for the automatic detection of lying behaviour of dairy cows in free-stall barns. Biosystems Engineering, 2013,115(2):184-194.
doi: 10.1016/j.biosystemseng.2013.03.002 |
[42] | 温长吉, 张金凤, 李卓识, 娄月, 于合龙, 姜海龙. 改进稀疏超完备词典方法识别奶牛跛足行为. 农业工程学报, 2018,34(18):219-227. |
WEN C J, ZHANG J F, LI Z S, LOU Y, YU H L, JIANG H L. Improved sparse and super-complete dictionary method for identification of lameness in dairy cows. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(18):219-227. (in Chinese) | |
[43] |
WU D H, YIN X Q, JIANG B, JIANG M, LI Z Y, SONG H B. Detection of the respiratory rate of standing cows by combining the Deeplab V3+ semantic segmentation model with the phase-based video magnification algorithm. Biosystems Engineering, 2020,192:72-89.
doi: 10.1016/j.biosystemseng.2020.01.012 |
[44] | WEEKS C A, DANBURY D T, DAVIES H C. The behaviour of broiler chickens and its modification by lameness. Applied Animal Behaviour Science, 2000(67):111-125. |
[45] |
LAO F D T, BROWN-BRAND L, STINN J P, LIU K, TENG G H, XIN H. Automatic recognition of lactating sow behaviors through depth image processing. Computers and Electronics in Agriculture, 2016,125:56-62.
doi: 10.1016/j.compag.2016.04.026 |
[46] | 宋怀波, 牛满堂, 姬存慧, 李振宇, 祝清梅. 基于视频分析的多目标奶牛反刍行为监测. 农业工程学报, 2018,34(18):211-218. |
SONG H B, NIU M T, JI C H, LI Z Y, ZHU Q M. Monitoring of multi-target cow ruminant behavior based on video analysis technology. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(18):211-218. (in Chinese). | |
[47] |
YANG Q M, XIAO D Q, LIN S C. Feeding behavior recognition for group-housed pigs with the Faster R-CNN. Computers and Electronics in Agriculture, 2018,155:453-460.
doi: 10.1016/j.compag.2018.11.002 |
[48] | 陶源栋, 沈明霞, 刘龙申, 陆明洲, 许佩全, 施宏. 基于Kinect的母猪呼吸频率测定算法. 南京农业大学学报, 2017,40(5):921-927. |
TAO Y D, SHEN M X, LIU L S, LU M Z, XU P Q, SHI H. Study on measurement algorithm of sow respiratory frequency based on Kinect. Journal of Nanjing Agricultural University, 2017,40(5):921-927. (in Chinese) | |
[49] |
TSAI Y C, HSU J T, DING S T, RUSTIA D J, LIN T T. Assessment of dairy cow heat stress by monitoring drinking behaviour using an embedded imaging system. Biosystems Engineering, 2020,199:97-108.
doi: 10.1016/j.biosystemseng.2020.03.013 |
[50] |
NASIRAHMADI A, HENSEL O, EDWARDS S A, STURM B. Automatic detection of mounting behaviours among pigs using image analysis. Computers and Electronics in Agriculture, 2016,124:295-302.
doi: 10.1016/j.compag.2016.04.022 |
[51] | 康熙, 张旭东, 刘刚, 马丽. 基于机器视觉的跛行奶牛牛蹄定位方法. 农业机械学报, 2019,50(S1):276-282. |
KANG X, ZHANG X D, LIU G, MA L. Hoof location method of lame dairy cows based on machine vision. Transactions of the Chinese Society for Agricultural Machinery, 2019,50(S1):276-282. (in Chinese) | |
[52] |
DAWKINS M S, RUSSEL C, STEPHEN J R. Flock behavior and chicken welfare. Animal Behaviour, 2012,84(1):219-223.
doi: 10.1016/j.anbehav.2012.04.036 |
[53] | 沈明霞, 李嘉位, 陆明洲, 刘龙申, 孙玉文, 李泊. 基于动态多特征变量的黄羽肉鸡跛行状态定量评价方法. 农业机械学报, 2018,49(9):35-44. |
SHEN M X, LI J W, LU M Z, LIU L S, SUN Y W, LI B. Evaluation method of limping status of broilers based on dynamic multi-feature variables. Transactions of the Chinese Society for Agricultural Machinery, 2008,49(9):35-44. (in Chinese) | |
[54] |
JABBAR K A, HANSEN M F, SMITH M L, SMITH L N. Early and non-intrusive lameness detection in dairy cows using 3-dimensional video. Biosystems Engineering, 2017,153:63-69.
doi: 10.1016/j.biosystemseng.2016.09.017 |
[55] |
KASHIHA M A, BAHR C, QTT S, MOONS C P H, NIEWOLD T, ATUYTTENS F, BERCKMANS D. Automatic monitoring of pig locomotion using image analysis. Livestock Science, 2014,159:141-148.
doi: 10.1016/j.livsci.2013.11.007 |
[56] | 朱家骥, 朱伟兴. 基于星状骨架模型的猪步态分析. 江苏农业科学, 2015,43(12):453-457. |
ZHU J J, ZHU W X. Analysis of pig gait based on stellate skeleton model. Jiangsu Agricultural Sciences, 2015,43(12):453-457. (in Chinese) | |
[57] |
XIAO L F, DING K Y, GAO Y W, RAO X Q. Behavior-induced health condition monitoring of caged chickens using binocular vision. Computers and Electronics in Agriculture, 2019,156:254-262.
doi: 10.1016/j.compag.2018.11.022 |
[58] |
CHEN C, ZHU W X, LIU D, STEIBEL J, SIEGFORD J, WURTZ K, HAN J J, NORTON T. Detection of aggressive behaviours in pigs using a RealSence depth sensor. Computers and Electronics in Agriculture, 2019,166:105003.
doi: 10.1016/j.compag.2019.105003 |
[59] | 高云, 陈斌, 廖慧敏, 雷明刚, 黎煊, 李静, 罗俊杰. 群养猪侵略性行为的深度学习识别方法. 农业工程学报, 2019,35(23):192-200. |
GAO Y, CHEN B, LIAO H M, LEI M G, LI X, LI J, LUO J J. Recognition method for aggressive behavior of group pigs based on deep learning. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(23):192-200. (in Chinese) | |
[60] |
ESCALANTE H J, RODRIGUEZ S V, CORDERO J, KRISENSEN A R, CORNOU C. Sow-activity classification from acceleration patterns: A machine learning approach. Computers and Electronics in Agriculture, 2013,93:17-26.
doi: 10.1016/j.compag.2013.01.003 |
[61] |
SHEN W Z, ZHANG A J, ZHANG Y, WEI X L, SUN J. Rumination recognition method of dairy cows based on the change of noseband pressure. Information Processing in Agriculture, 2020. DOI: 10.1016/ j.inpa.2020.01.005.
doi: 10.1016/ j.inpa.2020.01.005 |
[62] | 邓寒冰, 周云成, 许童羽, 苗腾, 徐静. 基于RGB-D的肉牛图像全卷积网络语义分割优化. 农业工程学报, 2019,35(18):151-160. |
DENG H B, ZHOU Y C, XU T Y, MIAO T, XU J. Optimization of cattle’s image semantics segmentation with fully convolutional networks based on RGB-D. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(18):151-160. (in Chinese) | |
[63] | 宋怀波, 吴頔华, 阴旭强, 姜波, 何东健. 基于Lucas-Kanade稀疏光流算法的奶牛呼吸行为检测. 农业工程学报, 2019,35(17):215-224. |
SONG H B, WU D H, YIN X Q, JIANG B, HE D J. Detection of cow breathing behavior based on Lucas-Kanade sparse optical flow algorithm. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(17):215-224. (in Chinese) | |
[64] | 赵晓洋. 基于动物发声分析的畜禽舍环境评估[D]. 杭州: 浙江大学, 2019. |
ZHAO X Y. Environmental assessment of livestock houses based on vocal analysis of animals[D]. Hangzhou: Zhejiang University, 2019. (in Chinese) | |
[65] |
WANG X S, ZHAO X Y, HE Y, WANG K Y. Cough sound analysis to assess air quality in commercial weaner barns. Computers and Electronics in Agriculture, 2019,160:8-13.
doi: 10.1016/j.compag.2019.03.001 |
[66] | 杨稷, 沈明霞, 刘龙申, 陆明洲, 何灿隆, 李嘉位. 基于音频技术的肉鸡采食量检测方法研究. 华南农业大学学报, 2018,39(5):118-124. |
YANG J, SHEN M X, LIU L S, LU M Z, HE C L, LI J W. Research of detection method for broiler chicken feed intake based on audio technology. Journal of South China Agricultural University, 2018,39(5):118-124. (in Chinese) | |
[67] | 徐亚妮. 基于语音识别技术的母猪咳嗽监测系统研究与实现[D]. 南京: 南京农业大学, 2016. |
XU Y N. Research and implementation of sow’s cough monitoring system based on voice recognition technology[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese) | |
[68] |
SHENG H, ZHANG S F, ZUO L S, DUAN G H, ZHANG H L, OKINDA C, SHEN M X, CHEN K L, LU M Z, NORTON T. Construction of sheep forage intake estimation models based on sound analysis. Biosystems Engineering, 2020,192:144-158.
doi: 10.1016/j.biosystemseng.2020.01.024 |
[69] |
DENIZ N N, CHELOTTI J O, GALLI J R, PLANISICH A M, LARRIPA M J, RUFINER H L, GIOVANINI L L. Embedded system for real-time monitoring of foraging behavior of grazing cattle using acoustic signals. Computers and Electronics in Agriculture, 2017,138:167-174.
doi: 10.1016/j.compag.2017.04.024 |
[70] | 闫丽, 邵庆, 吴晓梅, 谢秋菊, 孙昕, 韦春波. 基于偏度聚类的哺乳期母猪声音特征提取与分类识别. 农业机械学报, 2016,47(5):300-306. |
YAN L, SHAO Q, WU X M, XIE Q J, SUN X, WEI C B. Feature extraction and classification based on skewness clustering algorithm for lactating sow. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(5):300-306. (in Chinese) | |
[71] | 余礼根, 滕光辉, 李保明, 劳凤丹, 曹晏飞. 栖架养殖模式下蛋鸡发声分类识别. 农业机械学报, 2013,44(9):236-242. |
YU L G, TENG G H, LI B M, LAO F D, CAO Y F. Classification methods of vocalization for laying hens in perch system. Transactions of the Chinese Society for Agricultural Machinery, 2013,44(9):236-242. (in Chinese) | |
[72] |
EXADAKTYLOS V, SILVA M, AERTS J M, TAYLOR C J, BERCKMANS D. Real-time recognition of sick pig cough sounds. Computers and Electronics in Agriculture, 2008,63(2):207-214.
doi: 10.1016/j.compag.2008.02.010 |
[73] | 韩磊磊, 田建艳, 张苏楠, 李江丽. 基于决策树支持向量机和模糊推理的生猪异常声音识别. 畜牧与兽医, 2019,51(3):38-44. |
HAN L L, TIAN J Y, ZHANG S N, LI J L. Porcine abnormal sounds recognition using decision-tree-based support vector machine and fuzzy inference. Animal Husbandry & Veterinary Medicine, 2019,51(3):38-44. (in Chinese) | |
[74] | 宣传忠, 武佩, 张丽娜, 马彦华, 张永安, 邬娟. 羊咳嗽声的特征参数提取与识别方法. 农业机械学报, 2016,47(3):342-348. |
XUAN C Z, WU P, ZHANG L N, MA Y H, ZHANG Y A, WU J. Feature parameters extraction and recognition method of sheep cough sound. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(3):342-348. (in Chinese) | |
[75] |
HUANG J D, WANG W Q, ZHANG T M. Method for detecting avian influenza disease of chickens based on sound analysis. Biosystems Engineering, 2019,180:16-24.
doi: 10.1016/j.biosystemseng.2019.01.015 |
[76] | 张小栓, 张梦杰, 王磊, 罗海玲, 李军. 畜牧养殖穿戴式信息监测技术研究现状与发展分析. 农业机械学报, 2019,50(11):1-14. |
ZHANG X S, ZHANG M J, WANG L, LUO H L, LI J. Research status and development analysis of wearable information monitoring technology in animal husbandry. Transactions of the Chinese Society for Agricultural Machinery, 2019,50(11):1-14. (in Chinese) | |
[77] |
ZHANG Z Q, ZHANG H, LIU T H. Study on body temperature detection of pig based on infrared technology: A review. Artificial Intelligence in Agriculture, 2019,1:14-26.
doi: 10.1016/j.aiia.2019.02.002 |
[78] | 张国锋, 陶莎, 于丽娜, 褚琦, 贾敬敦, 高万林. 基于植入式RFID感温芯片的猪体温与饮水监测系统. 农业机械学报, 2019,50(S1):297-304. |
ZHANG G F, TAO S, YU L N, CHU Q, JIA J D, GAO W L. Pig body temperature and drinking water monitoring system based on implantable RFID temperature Chip. Transactions of the Chinese Society for Agricultural Machinery, 2019,50(S1):297-304. (in Chinese) | |
[79] | 屈东东, 刘素梅, 吴金杰, 李阳, 王传忠. 群养奶牛体温实时监测系统设计与实现. 农业机械学报, 2016,47(S1):408-412. |
QU D D, LIU S M, WU J J, LI Y, WANG C Z. Design and implementation of monitoring system for multiple cows body temperature. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(S1):408-412. (in Chinese) | |
[80] | 何东健, 刘畅, 熊虹婷. 奶牛体温植入式传感器与实时监测系统设计与试验. 农业机械学报, 2018,49(12):195-202. |
HE D J, LIU C, XIONG H T. Design and experiment of implantable sensor and real-time detection system for temperature monitoring of cow. Transactions of the Chinese Society for Agricultural Machinery, 2018,49(12):195-202. (in Chinese) | |
[81] | HENTZEN M, HOVDEN D, JANSEN M, ESSEN G V. Design and validation of a wireless temperature measurement system for laboratory and farm animals. Proceedings of Measuring Behavior 2012: 466-471. |
[82] | 李赞. 一种柔性贴片式在线测量方式在生猪体温测量中的应用研究[D]. 长春: 吉林农业大学, 2018. |
LI Z. Application of a flexible patch online measurement method in pig body temperature measurement[D]. Changchun: Jilin Agricultural University, 2018. (in Chinese) | |
[83] | 蔡勇. 牛体表温度自动采集系统研发及其与体内温度拟合曲线的研究[D]. 北京: 中国农业科学院, 2015. |
CAI Y. The study on the designing of the automatical acquisition system for cow surface temperature and the fitting for surface temperature with rectal temperature[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese) | |
[84] | 胡肄农. 动物体温无线测量系统的研究. 中国畜牧兽医学会信息技术分会, 2014: 54-63. |
HU Y N. Study on the wireless measurement system of animal body temperature. Information Technology Branch of Chinese Society of Animal Husbandry and Veterinary Medicine, 2014: 54-63. (in Chinese) | |
[85] |
SALLES M S, SILVA S C, SALLES F A, JR L C, FARO L E, LEAN P A, OLIVEIRA C E, MARTELLO L S. Mapping the body surface temperature of cattle by infrared thermography. Journal of Thermal Biology, 2016,62(Part A):63-69.
doi: 10.1016/j.jtherbio.2016.10.003 |
[86] |
SIEWERT C, DANICKE S, KERSETEN S, BROSIG B, ROHWEDER D, BEYERVACG M, SEIFERT H. Difference method for analysing infrared images in pigs with elevated body temperatures. Zeitschrift für Medizinische Physik, 2014,24:6-15.
doi: 10.1016/j.zemedi.2013.11.001 |
[87] |
IYASERE O S, EDWARDS S A, BATESON M, MITCHELL M, GUY J H. Validation of an intramuscularly-implanted microchip and a surface infrared thermometer to estimate core body temperature in broiler chickens exposed to heat stress. Computers and Electronics in Agriculture, 2017,133:1-8
doi: 10.1016/j.compag.2016.12.010 |
[88] | 沈明霞, 陆鹏宇, 刘龙申, 孙玉文, 许毅, 秦伏亮. 基于红外热成像的白羽肉鸡体温检测方法. 农业机械学报, 2019,50(10):222-229. |
SHEN M X, LU P Y, LIU L S, SUN Y W, XU Y, QIN F L. Body temperature detection method of ross broiler based on infrared thermography. Transactions of the Chinese Society for Agricultural Machinery, 2019,50(10):222-229. (in Chinese) | |
[89] |
ELLIS C K, STAHL R S, NOL P, WATERS W R, PALMER M V, RHYAN J C, VERCAUTEREN K C, MCCOLLUM M, SAKMAN M D. A pilot study exploring the use of breath analysis to differentiate healthy cattle from cattle experimentally infected with Mycobacterium bovis, PLoS ONE, 2014,9(2):e89280.
doi: 10.1371/journal.pone.0089280 |
[90] |
SANDERINK F E, GERRITSEN J W, KOERKAMP P W, MOURIK S V. Automatic detection of oestrus cows via breath sampling with an electronic nose: A pilot study. Biosystems Engineering, 2017,156:1-6.
doi: 10.1016/j.biosystemseng.2017.01.004 |
[91] | 张宏, 沈明霞, 陆明洲, 刘龙申, 张弛, 张光跃. 穿戴式猪用心电监测系统设计. 南京农业大学学报, 2016,39(5):872-879. |
ZHANG H, SHEN M X, LU M Z, LIU L S, ZHANG C, ZHANG G Y. Design of wearable electrocardiogram monitoring system for pig. Journal of Nanjing Agricultural University, 2016,39(5):872-879. (in Chinese) | |
[92] | 逯玉兰, 李广, 郝玉胜, 林强. 基于Wi-Fi无线感知技术的猪呼吸频率监测. 农业工程学报, 2019,35(24):183-190. |
LU Y L, LI G, HAO Y S, LIN Q. Monitoring pig respiration frequency using Wi-Fi wireless sensing technology. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(24):183-190. (in Chinese) | |
[93] | 贾桂锋, 王自唱, 向兴发, 武墩, 高云, 黎煊, 冯耀泽. 短时经验模态分解实时识别生猪心电QRS波群. 农业工程学报, 2018,34(10):172-177. |
JIA G F, WANG Z S, XIANG X F, WU D, GAO Y, LI X, FENG Y Z. Short-time empirical mode decomposition method of real-time QRS complex identifying for electrocardiography of pig. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(10):172-177. (in Chinese) | |
[94] |
AHMED S T, MUN H S, YOE H, YANG C J. Monitoring of behavior using a video-recording system for recognition of Salmonella infection in experimentally infected growing pigs. Animal: An International Journal of Animal Bioscience, 2015,9:115-121.
doi: 10.1017/S1751731114002213 |
[95] |
KIM D G, WANG C W, HO J G, MIN S D, KIM Y, CHOI M H. Development and feasibility test of a capacitive belt sensor for noninvasive respiration monitoring in different postures, Smart Health, 2020,16:100106.
doi: 10.1016/j.smhl.2020.100106 |
[96] |
YUZER A H, SUMBUL H, POLAT K. A novel wearable real-time sleep apnea detection system based on the acceleration sensor. IRBM, 2020,41:39-47.
doi: 10.1016/j.irbm.2019.10.007 |
[97] | 蒋皆恢, 徐俊, 周虎成, 严壮志. 一款基于穿戴式的无创连续血压监测系统. 中国医疗器械杂志, 2018,42(6):400-404. |
JIANG J H, XU J, ZHOU H C, YAN Z Z. Wearable device for non-Invasive continuously blood pressure monitoring. Chinese Journal of Medical Instrumentation, 2008,42(6):400-404. (in Chinese) | |
[98] | 盛婷钰, 方震, 陈贤祥, 赵湛. 腕表式睡眠呼吸暂停监测系统设. 传感器与微系统, 2018,37(7):96-98. |
SHENG T Y, FANG Z, CHEN X X, ZHAO Z. Design of wearable sleep apnea monitoring system. Transducer and Microsystem Technologies, 2018,37(7):96-98. (in Chinese) | |
[99] | 陈真诚, 宋浩, 朱健铭, 梁永波. 基于光电容积脉搏波的呼吸监测系统研究. 中国医学物理学杂志, 2019,36(5):579-584. |
CHEN Z C, SONG H, ZHU J M, LIANG Y B. Respiration monitoring system based on photolethysmography. Chinese Journal of Medical Physics, 2019,36(5):579-584. (in Chinese) | |
[100] | 李珊珊. 基于脉搏波的穿戴式连续血压监测方法的研究. 东南大学, 2017. |
LI S S. Study on wearable continuous measurement method of blood pressure base on pulse wave. Southeast University, 2017. (in Chinese) | |
[101] |
ZHUANG S J, MASELYNE J, NUFFEL A V, VANGEYTE J, SONCK B. Tracking group housed sows with an ultra-wideband indoor positioning system: A feasibility study. Biosystems Engineering, 2020,200:176-187.
doi: 10.1016/j.biosystemseng.2020.09.011 |
[102] | 高宏岩. 动物疾病专家诊断系统及其应用. 中国畜牧兽医学会信息技术分会, 中国畜牧兽医学会中国畜牧兽医学会, 2017: 331-335. |
GAO H Y. Expert diagnosis system of animal diseases and its application. Information Technology Branch of Chinese Society of Animal Husbandry and Veterinary. 2017: 331-335. (in Chinese) | |
[103] | 王柯. 一种猪病知识库自动训练学习方法及猪病辅助诊断装置. 北京市饲料工业协会. 2016北京论坛, 2016: 200-204. |
WANG K. Automatic training and learning method of a knowledge base for Pig disease and its auxiliary diagnostic device. Beijing Feed Industry Association. 2016 Beijing Forum, 2016: 200-204. (in Chinese) | |
[104] | 谢南林, 廖广贤, 周盈庭. 基于网络的鸡病防治与诊断专家系统设计. 养殖与饲料, 2017(9):73-74. |
XIE N L, LIAO G X, ZHOU Y T. Design of a web-based expert system for chicken Disease Prevention and Diagnosis. Animals Breeding and Feed, 2017(9):73-74. (in Chinese) | |
[105] | 哈达. 羊病防治专家系统的开发. 畜牧兽医科技信息, 2018(5):68-69. |
HADA . Development of an expert system for prevention and treatment of sheep disease. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2018(5):68-69. (in Chinese) |
No related articles found! |
|