中国农业科学 ›› 2018, Vol. 51 ›› Issue (18): 3470-3485.doi: 10.3864/j.issn.0578-1752.2018.18.004
武永峰1(), 胡新2, 任德超2, 史萍1, 游松财1(
)
收稿日期:
2018-03-23
接受日期:
2018-06-19
出版日期:
2018-09-16
发布日期:
2018-09-16
作者简介:
联系方式:武永峰,E-mail:
基金资助:
YongFeng WU1(), Xin HU2, DeChao REN2, Ping SHI1, SongCai YOU1(
)
Received:
2018-03-23
Accepted:
2018-06-19
Online:
2018-09-16
Published:
2018-09-16
摘要:
【目的】探究晚霜冻胁迫对冬小麦株高及其构成因素的影响,阐明株高降低特性及其与节间长、穗长和籽粒产量的内在关系,为晚霜冻害评估指标的建立提供依据。【方法】基于低温室和田间可移动式霜箱2种模拟霜冻手段,分别以冬小麦幼穗发育阶段(小花原基分化、雌雄蕊原基分化、药隔形成、四分体形成和抽穗期)和零下处理温度(-1℃、-3℃、-5℃、-7℃、-9℃和-11℃)为梯度,共开展6期盆栽试验和3期小区试验;在考察植株茎部冻害、测定株高与其构成因素、统计籽粒产量要素的基础上,运用方差分析、回归函数拟合、以及突变检验等方法研究晚霜冻胁迫下株高降低特性,分析各构成因素对株高的贡献、以及株高与籽粒产量的回归关系。【结果】(1)在雌雄蕊原基分化至药隔形成后期,株高随处理温度降低而呈突变性降低特征,处理温度低于-5 ℃左右时突变开始,且不同植株个体、品种间有一定差异;在同一处理温度下,株高最大降幅出现在药隔形成后期。(2)在雌雄蕊原基分化期、药隔形成前期和药隔形成后期,对株高贡献排前两位的节间分别为倒四节间和倒三节间、倒三节间和倒二节间、倒二节间和倒四节间,其长度均因冻害胁迫而显著缩短,且与株高呈极强显著相关性(P<0.001),此时株高亦呈显著降低趋势。(3)株高与穗粒数、千粒重、单株产量之间的回归模型符合幂函数曲线特征,其中,单株产量的降幅随株高降低而呈现先快后慢的变化态势;当单株产量因冻害胁迫降低至1.5 g以下时,其随株高继续降低而不再明显减少,此时穗粒数变化也已不大。【结论】在模拟晚霜冻胁迫条件下,正在伸长或待伸长的冬小麦节间长度与穗长显著缩短;当缩短节间与对株高起主要贡献的节间相一致时,株高显著降低。利用节间缩短特性、以及单株产量和株高降低之间的幂函数关系模型,可为冬小麦生长后期植株倒伏以及产量损失风险评估方法提供新的研究途径。
武永峰, 胡新, 任德超, 史萍, 游松财. 晚霜冻胁迫后冬小麦株高降低及其与籽粒产量关系[J]. 中国农业科学, 2018, 51(18): 3470-3485.
YongFeng WU, Xin HU, DeChao REN, Ping SHI, SongCai YOU. Reduction of Plant Height in Winter Wheat and Its Relationship with Grain Yield Under Late Frost Stress[J]. Scientia Agricultura Sinica, 2018, 51(18): 3470-3485.
表1
晚霜冻模拟试验相关要素"
晚霜冻模拟手段 Simulating method of late frost | 试验年份 Experimental year | 冬小麦品种 Winter wheat varieties | 种植方式 Planting pattern | 处理温度 Treatment temperature |
---|---|---|---|---|
低温室模拟 Cold Climate Chamber simulating | 2015-2016 | 周麦22 ZM22 | 盆栽种植 Pot planting | -1℃、-3℃、-5℃、-7℃、-9℃、-11℃ |
田间可移动式霜箱模拟 Field Movable Climate Chamber simulating | 2011-2012 2013-2014 | 豫麦18、周麦18和偃展4110 YM18, ZM18 and YZ4110 周麦22 ZM22 | 小区种植 Plot planting | -1℃、-3℃、-5℃、-7℃、-9℃ |
表2
基于低温室的降温处理设计"
试验 Experiment | 处理日期 Treatment date | 处理温度及时间间隔 Treatment temperature and time interval | 主茎幼穗分化阶段 Differentiation stage of young ear in the main stem |
---|---|---|---|
试验1 Exp.1 | 03-20-03-22, 2016 | -11℃: 12:00-18:00; -9℃: 18:30-00:30; -7℃: 01:20-07:20; -5℃: 09:00-15:00; -3℃: 15:30-21:30; -1℃: 22:00-04:00 | 小花原基分化期 Floret primordia differentiation phase |
试验2 Exp.2 | 03-25-03-27, 2016 | -11℃: 12:30-18:30; -9℃: 18:30-00:30; -7℃: 01:00-07:00; -5℃: 08:30-14:30; -3℃: 14:30-20:30; -1℃: 21:00-03:00 | 雌雄蕊原基分化期 Pistil and stamen primordia differentiation phase |
试验3 Exp.3 | 03-30-04-01, 2016 | -11℃: 21:30-03:30; -9℃: 15:30-21:30; -7℃: 09:00-15:00; -5℃: 16:00-22:00; -3℃: 22:30-04:30; -1℃: 10:00-16:00 | 药隔形成前期 Early anther connective tissue formation phase |
试验4 Exp.4 | 04-05-04-07, 2016 | -11℃: 12:30-18:30; -9℃: 19:30-01:30; -7℃: 02:00-08:00; -5℃: 09:00-15:00; -3℃: 19:00-01:00; -1℃: 01:00-07:00 | 药隔形成后期 Late anther connective tissue formation phase |
试验5 Exp.5 | 04-10-04-12, 2016 | -9℃: 19:00-01:00; -7℃: 01:00-07:00; -5℃: 12:00-18:00; -3℃: 19:00-01:00; -1℃: 01:00-07:00 | 四分体时期 Tetrad formation phase |
试验6 Exp.6 | 04-15-04-16, 2016 | -9℃: 09:00-15:00; -7℃: 17:00-23:00; -5℃: 23:00-05:00; -3℃: 10:30-16:30; -1℃: 16:30-22:30 | 抽穗期 Heading phase |
表3
基于田间可移动式霜箱的降温处理设计"
试验 Experiment | 处理日期 Treatment date | 处理温度及时间间隔 Treatment temperature and time interval | 主茎幼穗分化阶段 Differentiation stage of young ear in the main stem |
---|---|---|---|
试验7 Exp.7 | 03-30-03-31, 2012 | -1℃: 6:30 - 12:30; -3℃: 12:30 - 18:30; -5℃: 18:30 - 0:30; -7℃: 0:30 - 6:30; -9℃: 6:30 - 12:30 | 药隔形成后期 Late anther connective tissue formation phase |
试验8 Exp.8 | 03-20-03-22, 2014 | -9℃: 17:20 - 01:20; -7℃: 01:20 - 09:20; -5℃: 09:20 - 17:20; -3℃: 17:20 - 01:20; -1℃: 01:20 - 09:20 | 雌雄蕊原基分化期 Pistil and stamen primordia differentiation phase |
试验9 Exp.9 | 04-01-04-02, 2014 | -9℃: 17:20 - 23:20; -7℃: 23:20 - 05:20; -5℃: 05:20 - 11:20; -3℃: 11:20 - 17:20; -1℃: 17:20 - 23:20 | 四分体时期 Tetrad formation phase |
表4
株高及其构成因素数据的样本量"
试验 Experiment | 品种 Cultivar | 处理 Treatment | 对照 CK | 试验 Experiment | 品种 Cultivar | 处理 Treatment | 对照 CK | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
试验1 Exp.1 | 周麦22 ZM22 | 136 | 11 | 试验7 Exp.7 | 豫麦18 YM18 | 50 | 10 | ||||
试验2 Exp.2 | 128 | 10 | 周麦18 ZM18 | 49 | 9 | ||||||
试验3 Exp.3 | 124 | 11 | 偃展4110 YZ4110 | 48 | 10 | ||||||
试验4 Exp.4 | 119 | 11 | 试验8 Exp.8 | 周麦22 ZM22 | 142 | 29 | |||||
试验5 Exp.5 | 132 | 11 | 试验9 Exp.9 | 周麦22 ZM22 | 141 | 29 | |||||
试验6 Exp.6 | 135 | 9 |
表5
株高构成因素与处理温度的相关系数"
试验 Experiment | 穗长 EL | 穗下节间长 PL | 倒二节间长 PIL | 倒三节间长 AIL | 倒四节间长 FIL |
---|---|---|---|---|---|
试验1 Exp.1 | 0.080 | -0.175* | -0.112 | 0.100 | 0.261** |
试验2 Exp.2 | 0.339*** | -0.127 | 0.181* | 0.308*** | 0.114 |
试验3 Exp.3 | 0.270** | 0.132 | 0.323*** | 0.139 | 0.296*** |
试验4 Exp.4 | 0.472*** | -0.036 | 0.406*** | 0.259** | 0.626*** |
试验5 Exp.5 | -0.139 | -0.249** | 0.149 | 0.297*** | 0.201* |
试验6 Exp.6 | -0.186* | 0.175* | -0.073 | 0.047 | -0.294*** |
表6
晚霜冻胁迫下株高与其构成因素的相关系数"
株高构成因素 PH’s component | 试验1 Exp.1 | 试验2 Exp.2 | 试验3 Exp.3 | 试验4 Exp.4 | 试验5 Exp.5 | 试验6 Exp.6 | 试验7 Exp.7 | 试验8 Exp.8 | 试验9 Exp.9 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
豫麦18 YM 18 | 周麦18 ZM18 | 偃展4110 YZ4110 | |||||||||
穗长 EL | 0.315*** | 0.422*** | 0.381*** | 0.806*** | 0.433*** | 0.392*** | 0.790*** | 0.525*** | 0.767*** | 0.404*** | 0.189* |
穗下节间长 PL | -0.225** | -0.321*** | 0.116 | 0.416*** | 0.160 | 0.183* | 0.841*** | 0.560*** | 0.744*** | 0.009 | 0.404*** |
倒二节间长 PIL | 0.724*** | 0.729*** | 0.820*** | 0.886*** | 0.770*** | 0.831*** | 0.441** | 0.845*** | 0.864*** | 0.521*** | 0.783*** |
倒三节间长 AIL | 0.748*** | 0.804*** | 0.737*** | 0.727*** | 0.555*** | 0.639*** | |||||
倒四节间长 FIL | 0.597*** | 0.786*** | 0.679*** | 0.742*** | 0.562*** | 0.504*** |
表7
逐步回归模型中各株高构成因素的直接通径系数"
试验 Experiment | 入选自变量的直接通径系数 Direct path coefficient of entered independent variable | 显著性水平 Significant level (P) | ||||
---|---|---|---|---|---|---|
穗长 EL | 穗下节间长 PL | 倒二节间长 PIL | 倒三节间长 AIL | 倒四节间长 FIL | ||
试验1 Exp.1 | — | — | 0.459 | 0.483 | — | < 0.001 |
试验2 Exp.2 | 0.116 | 0.297 | 0.252 | 0.401 | 0.529 | < 0.001 |
试验3 Exp.3 | 0.116 | 0.202 | 0.424 | 0.488 | 0.172 | < 0.001 |
试验4 Exp.4 | 0.245 | 0.132 | 0.426 | 0.251 | 0.304 | < 0.001 |
试验5 Exp.5 | 0.176 | 0.270 | 0.534 | 0.183 | 0.362 | < 0.001 |
试验6 Exp.6 | 0.079 | 0.261 | 0.571 | 0.186 | 0.329 | < 0.001 |
[1] | ZHANG N, FAN X L, CUI F, ZHAO C H, ZHANG W, ZHAO X Q, YANG L J, PAN R Q, CHEN M, HAN J, JI J, LIU D C, ZHAO Z W, TONG Y P, ZHANG A M, WANG T, LI J M.Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the OTL level and their influence on yield-related traits. Theoretical and Applied Genetics, 2017, 130(6): 1235-1252. |
[2] |
李春燕, 杨景, 张玉雪, 姚梦浩, 朱新开, 郭文善. 小麦分蘖期冻害后增施恢复肥的产量挽回效应及其生理机制. 中国农业科学, 2017, 50(10): 1781-1791.
doi: 10.3864/j.issn.0578-1752.2017.10.004 |
LI C Y, YANG J, ZHANG Y X, YAO M H, ZHU X K, GUO W S.Retrieval effects of remedial fertilizer after freeze injury on wheat yield and its mechanism at tillering stage.Scientia Agricultura Sinica, 2017, 50(10): 1781-1791. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.10.004 |
|
[3] | FOWLER D B, N’DIAYE A, LAUDENCIA-CHINGCUANCO D, POZNIAK C J. Quantitative trait loci associated with phenological development, low-temperature tolerance, grain quality, and agronomic characters in wheat (Triticum aestivum L.). PLoS ONE, 2016, 11(3): e0152185. |
[4] |
WHALEY J M, KIRBY E J M, SPINK J H, FOULKES M J, SPARKES D L. Frost damage to winter wheat in the UK: The effect of plant population density.European Journal of Agronomy, 2004, 21(1): 105-115.
doi: 10.1016/S1161-0301(03)00090-X |
[5] |
MAHFOOZI S, LIMIN A E, AHAKPAZ F, FOWLER D B.Phenological development and expression of freezing resistance in spring and winter wheat under field conditions in northwest Iran.Field Crops Research, 2006, 97(2): 182-187.
doi: 10.1016/j.fcr.2005.09.012 |
[6] |
WU Y F, ZHONG X L, HU X, REN D C, LÜ G H, WEI C Y, SONG J Q.Frost affects grain yield components in winter wheat.New Zealand Journal of Crop and Horticultural Science, 2014, 42(3): 194-204.
doi: 10.1080/01140671.2014.887588 |
[7] |
胡新, 任德超, 倪永静, 黄建英, 宋吉青, 武永峰. 冬小麦籽粒产量及其构成要素随晚霜冻害变化规律研究. 中国农业气象, 2014, 35(5): 575-580.
doi: 10.3969/j.issn.1000-6362.2014.05.015 |
HU X, REN D C, NI Y J, HUANG J Y, SONG J Q, WU Y F.Impacts of late frost on grain yield and its components of winter wheat.Chinese Journal of Agrometeorology, 2014, 35(5): 575-580. (in Chinese)
doi: 10.3969/j.issn.1000-6362.2014.05.015 |
|
[8] |
ZHANG J N, HAO C Y, REN Q, CHANG X P, LIU G R, JING R L.Association mapping of dynamic developmental plant height in common wheat.Planta, 2011, 234(5): 891-902.
doi: 10.1007/s00425-011-1434-8 pmid: 21647605 |
[9] | WOODRUFF D, DOUGLAS N, FRENCH V.Frost Damage in Winter Crops, Crop Link. Queensland,Brisbane: Department of Primary Industries, 1997. |
[10] |
CROMEY M G, WRIGHT D S C, BODDINGTON H J. Effects of frost during grain filling on wheat yield and grain structure.New Zealand Journal of Crop and Horticultural Science, 1998, 26(4): 279-290.
doi: 10.1080/01140671.1998.9514065 |
[11] | 武永峰, 胡新, 钟秀丽, 吕国华, 任德超, 宋吉青. 农田尺度下冬小麦晚霜冻害空间差异及原因分析. 中国农业科学, 2014, 47(21): 4246-4256. |
U Y F, HU X, ZHONG X L, LÜ G H, REN D C, SONG J Q. Study on spatial differences of late frost injury to winter wheat and its reasons at field scale.Scientia Agricultura Sinica, 2014, 47(21): 4246-4256. (in Chinese) | |
[12] | SHROYER J P, MIKESELL M E, PAULSEN G M.Spring Freeze Injury to Kansas Wheat. Manhattan: Kansas State University, 1995. |
[13] | FREDERIKS T M, CHRISTOPHER J T, FLETCHER S E H, BORRELL A K. Post head-emergence frost resistance of barley genotypes in the northern grain region of Australia. Crop & Pasture Science, 2011, 62(9): 736-745. |
[14] |
FREDERIKS T M, CHRISTOPHER J T, SUTHERLAND M W, BORRELL A K.Post-head-emergence frost in wheat and barley: Defining the problem, assessing the damage, and identifying resistance. Journal of Experimental Botany, 2015, 66(12): 3487-3498.
doi: 10.1093/jxb/erv088 pmid: 25873656 |
[15] | 任德超, 胡新, 陈丹丹, 张建涛, 倪永静, 刘红杰, 黄绍华, 李国强. 不同低温处理对小麦光合特性和产量性状的影响. 中国农学通报, 2016, 32(21): 44-50. |
REN D C, HU X, CHEN D D, ZHANG J T, NI Y J, LIU H J, HUANG S H, LI G Q.Effects of different low temperature treatments on photosynthetic characteristics and yield traits of wheat. Chinese Agricultural Science Bulletin, 2016, 32(21): 44-50. (in Chinese) | |
[16] | 冯玉香, 何维勋, 孙忠富, 钟秀丽. 我国冬小麦霜冻害的气候分析. 作物学报, 1999, 25(3): 335-340. |
FENG Y X, HE W X, SUN Z F, ZHONG X L.Climatological study on frost damage of winter wheat in China. Acta Agronomica Sinica, 1999, 25(3): 335-340. (in Chinese) | |
[17] |
张雪芬, 郑有飞, 王春乙, 陈怀亮, 任振和, 邹春辉. 冬小麦晚霜冻害时空分布与多时间尺度变化规律分析. 气象学报, 2009, 67(2): 321-330.
doi: 10.3321/j.issn:0577-6619.2009.02.015 |
ZHANG X F, ZHENG Y F, WANG C Y, CHEN H L, REN Z H, ZOU C H.Spatial-temporal distribution and multiple-temporal scale variation analyses of winter wheat late freezing injury. Acta Meteorologica Sinica, 2009, 67(2): 321-330. (in Chinese)
doi: 10.3321/j.issn:0577-6619.2009.02.015 |
|
[18] | 武永峰, 胡新, 吕国华, 任德超, 蒋卫国, 宋吉青. 晚霜冻影响下冬小麦冠层红边参数比较. 光谱学与光谱分析, 2014, 34(8): 2190-2195. |
WU Y F, HU X, LÜ G H, REN D C, JIANG W G, SONG J Q.Comparison of red edge parameters of winter wheat canopy under late frost stress.Spectroscopy and Spectral Analysis, 2014, 34(8): 2190-2195. (in Chinese) | |
[19] |
张朝生, 章申, 张立成, 王立军. 长江水系河流沉积物重金属元素含量的计算方法研究. 环境科学学报, 1995, 15(3): 257-264.
doi: 10.1007/BF02943514 |
ZHANG C S, ZHANG S, ZHANG L C, WANG L J.Calculation of heavy metal contents in sediments of the Changjiang river system. Acta Scientiae Circumstantiae, 1995, 15(3): 257-264. (in Chinese)
doi: 10.1007/BF02943514 |
|
[20] | 柴元方, 李义天, 李思璇, 朱博渊, 王靖宜. 长江流域近期水沙变化趋势及成因分析. 灌溉排水学报, 2017, 36(3): 94-101. |
CHAI Y F, LI Y T, LI S X, ZHU B Y, WANG J Y.Analysis of recent variation trend and cause of runoff and sediment load variations in the Yangtze River Basin. Journal of Irrigation and Drainage, 2017, 36(3): 94-101. (in Chinese) | |
[21] | 陈贵菊, 陈明丽, 王福玉, 高国良, 江涛, 尹逊利, 李根英, 宋国琦. 药隔期低温对小麦生长发育的影响. 山东农业科学, 2015, 47(2): 25-28. |
CHEN G J, CHEN M L, WANG F Y, GAO G L, JIANG T, YIN X L, LI G Y, SONG G Q.Influences of low temperature in connectivum period on wheat growth and development. Shandong Agricultural Sciences, 2015, 47(2): 25-28. (in Chinese) | |
[22] | 刘立伟. 药隔、减数分裂、开花期低温对小麦产量的影响与补救研究[D]. 扬州: 扬州大学, 2016. |
LIU L W.Effects of low temperature at anther connective formation, meiosis and anthesis stages on grain yield in wheat and remedial techniques[D]. Yangzhou: Yangzhou University, 2016. (in Chinese) | |
[23] | 靖华, 亢秀丽, 马爱平, 崔欢虎, 王娟玲, 刘建华. 晋南旱垣春季低温对不同播种期小麦冻害的影响. 中国农学通报, 2011, 27(9): 76-80. |
JING H, KANG X L, MA A P, CUI H H, WANG J L, LIU J H.Effect of spring low temperature on different sowing date winter wheat frozen injury on the arid area of southern Shanxi province. Chinese Agricultural Science Bulletin, 2011, 27(9): 76-80. (in Chinese) | |
[24] |
AL-ISSAWI M, RIHAN H Z, EL-SARKASSY N, FULLER M P.Frost hardiness expression and characterisation in wheat at ear emergence.Journal of Agronomy and Crop Science, 2013, 199(1): 66-74.
doi: 10.1111/j.1439-037X.2012.00524.x |
[25] |
FULLER M P, FULLER A M, KANIOURAS S K, CHRISTOPHERS J, FREDERICKS T.The freezing characteristics of wheat at ear emergence. European Journal of Agronomy, 2007, 26(4): 435-441.
doi: 10.1016/j.eja.2007.01.001 |
[26] |
LIVINGSTON Ⅲ D P, TUONG T D, ISLEIB T G, MURPHY J P. Differences between wheat genotypes in damage from freezing temperatures during reproductive growth. European Journal of Agronomy ,2016, 74: 164-172.
doi: 10.1016/j.eja.2015.12.002 |
[27] |
陈广凤, 陈建省, 田纪春. 小麦株高相关性状与SNP标记全基因组关联分析. 作物学报, 2015, 41(10): 1500-1509.
doi: 10.3724/SP.J.1006.2015.01500 |
CHEN G F, CHEN J S, TIAN J C.Genome-wide association analysis between SNP markers and plant height related traits in wheat. Acta Agronomica Sinica, 2015, 41(10): 1500-1509. (in Chinese)
doi: 10.3724/SP.J.1006.2015.01500 |
|
[28] |
朱新开, 郭文善, 李春燕, 封超年, 彭永欣. 小麦株高及其构成指数与产量及品质的相关性. 麦类作物学报, 2009, 29(6): 1034-1038.
doi: 10.7606/j.issn.1009-1041.2009.06.017 |
ZHU X K, GUO W S, LI C Y, FENG C N, PENG Y X.Relationship of plant height component indexes with grain yield and quality in wheat. Journal of Triticeae Crops, 2009, 29(6): 1034-1038. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2009.06.017 |
|
[29] |
LIVINGSTON Ⅲ D P, TUONG T D, MURPHY J P, GUSTA L V, WILLICK I, WISNIEWSKI M E. High-definition infrared thermography of ice nucleation and propagation in wheat under natural frost conditions and controlled freezing. Planta, 2018, 247(4): 791-806.
doi: 10.1007/s00425-017-2823-4 pmid: 29224121 |
[30] |
JI H T, XIAO L J, XIA Y M, SONG H, LIU B, TANG L, CAO W X, ZHU Y, LIU L L.Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat. Agricultural and Forest Meteorology, 2017, 243: 33-42.
doi: 10.1016/j.agrformet.2017.04.016 |
[31] |
BANATH C L, SINGLE W V.Frost injury to wheat stems and grain production. Australian Journal of Agricultural Research, 1976, 27(6): 749-753.
doi: 10.1071/ar9760749 |
[32] | 刘凯, 邓志英, 张莹, 王芳芳, 刘佟佟, 李青芳, 邵文, 赵宾, 田纪春, 陈建省. 小麦茎秆断裂强度相关性状OTL的连锁和关联分析. 作物学报, 2017, 43(4): 483-495. |
LIU K, DENG Z Y, ZHANG Y, WANG F F, LIU T T, LI Q F, SHAO W, ZHAO B, TIAN J C, CHEN J S.Linkage analysis and genome-wide association study of OTLs controlling stem-breaking- strength-related traits in wheat. Acta Agronomica Sinica, 2017, 43(4): 483-495. (in Chinese) | |
[33] | 胡昊, 李莎莎, 华慧, 孙蒙蒙, 康娟, 夏国军, 王晨阳. 不同小麦品种主茎茎秆形态结构特征及其与倒伏的关系. 麦类作物学报, 2017, 37(10): 1343-1348. |
HU H, LI S S, HUA H, SUN M M, KANG J, XIA G J, WANG C Y.Research on stalk morphological structure characteristics and its relationship between the lodging of different wheat varieties. Journal of Triticeae Crops, 2017, 37(10): 1343-1348. (in Chinese) |
[1] | 徐久凯, 袁亮, 温延臣, 张水勤, 李燕婷, 李海燕, 赵秉强. 畜禽有机肥氮在冬小麦季对化肥氮的相对替代当量[J]. 中国农业科学, 2023, 56(2): 300-313. |
[2] | 刘硕,张慧,高志源,许吉利,田汇. 437个小麦品种钾收获指数的变异特征[J]. 中国农业科学, 2022, 55(7): 1284-1300. |
[3] | 王洋洋,刘万代,贺利,任德超,段剑钊,胡新,郭天财,王永华,冯伟. 基于多元统计分析的小麦低温冻害评价及水分效应差异研究[J]. 中国农业科学, 2022, 55(7): 1301-1318. |
[4] | 伊英杰,韩坤,赵斌,刘国利,林佃旭,陈国强,任昊,张吉旺,任佰朝,刘鹏. 长期不同施肥措施冬小麦-夏玉米轮作体系周年氨挥发损失的差异[J]. 中国农业科学, 2022, 55(23): 4600-4613. |
[5] | 刘丰,蒋佳丽,周琴,蔡剑,王笑,黄梅,仲迎鑫,戴廷波,曹卫星,姜东. 美国软麦籽粒品质变化趋势及对我国弱筋小麦标准达标度分析[J]. 中国农业科学, 2022, 55(19): 3723-3737. |
[6] | 韩守威,司纪升,余维宝,孔令安,张宾,王法宏,张海林,赵鑫,李华伟,孟鈺. 山东省冬小麦产量差与氮肥利用效率差形成机理解析[J]. 中国农业科学, 2022, 55(16): 3110-3122. |
[7] | 孟雨,温鹏飞,丁志强,田文仲,张学品,贺利,段剑钊,刘万代,冯伟. 基于热红外图像的小麦品种抗旱性鉴定与评价[J]. 中国农业科学, 2022, 55(13): 2538-2551. |
[8] | 高志源,许吉利,刘硕,田汇,王朝辉. 大田群体冬小麦氮收获指数变异特征研究[J]. 中国农业科学, 2021, 54(3): 583-595. |
[9] | 毛安然,赵护兵,杨慧敏,王涛,陈秀文,梁文娟. 不同覆盖时期和覆盖方式对旱地冬小麦经济和环境效应的影响[J]. 中国农业科学, 2021, 54(3): 608-618. |
[10] | 郭淑青,宋慧,杨清华,高金锋,高小丽,冯佰利,杨璞. 谷子株高及穗部性状主基因+多基因混合遗传模型分析[J]. 中国农业科学, 2021, 54(24): 5177-5193. |
[11] | 向晓玲,陈松鹤,杨洪坤,杨永恒,樊高琼. 秸秆覆盖与施磷对丘陵旱地小麦产量和磷素吸收利用效应的影响[J]. 中国农业科学, 2021, 54(24): 5194-5205. |
[12] | 高兴祥,张悦丽,安传信,李美,李健,房锋,张双应. 山东省冬小麦田杂草群落调查及其变化原因分析[J]. 中国农业科学, 2021, 54(24): 5230-5239. |
[13] | 宗毓铮,张函青,李萍,张东升,林文,薛建福,高志强,郝兴宇. 大气CO2与温度升高对北方冬小麦旗叶光合特性、碳氮代谢及产量的影响[J]. 中国农业科学, 2021, 54(23): 4984-4995. |
[14] | 李姜玲,杨澜,阮仁武,李中安. 杂交小麦苗期光合特性分析及其对强优势组合的早期预测[J]. 中国农业科学, 2021, 54(23): 4996-5007. |
[15] | 陈杨,王磊,白由路,卢艳丽,倪露,王玉红,徐孟泽. 有效积温与不同氮磷钾处理夏玉米株高和叶面积指数定量化关系[J]. 中国农业科学, 2021, 54(22): 4761-4777. |
|