中国农业科学 ›› 2021, Vol. 54 ›› Issue (22): 4800-4812.doi: 10.3864/j.issn.0578-1752.2021.22.008
收稿日期:
2021-04-14
接受日期:
2021-05-12
出版日期:
2021-11-16
发布日期:
2021-11-19
通讯作者:
农向群,王广君
作者简介:
蔡霓,E-mail: 基金资助:
CAI Ni(),YAN DuoZi,NONG XiangQun(),WANG GuangJun(),TU XiongBing,ZHANG ZeHua
Received:
2021-04-14
Accepted:
2021-05-12
Online:
2021-11-16
Published:
2021-11-19
Contact:
XiangQun NONG,GuangJun WANG
摘要:
【目的】昆虫病原真菌绿僵菌兼具植物内生性。已知黏附素MAD2是绿僵菌两种黏附蛋白之一,在实现绿僵菌与植物的黏附、定殖中起重要作用,但其作用机理知之甚少。本研究通过构建金龟子绿僵菌(Metarhizium anisopliae)mad2敲除突变株(Δmad2),探究MAD2蛋白对绿僵菌生物学功能的影响。【方法】从NCBI中获取mad2前后基因组DNA序列,设计扩增mad2前后同源臂特异性引物,以绿僵菌基因组DNA为模板,扩增得到前后同源臂基因S1、S2;设计特异性引物Hyg-F/R,以pKH-KO载体为模板,扩增得到带有启动子序列的潮霉素基因hyg;再通过overlap PCR构建mad2的同源敲除盒S1H、S2H;最后利用PEG介导的原生质体转化,获得稳定遗传的mad2敲除株。通过对比敲除株与野生株(WT)的生长特性、黏附作用、杀虫毒力以及诱导花生共生基因转录水平的变化,分析MAD2蛋白的生物学功能。【结果】原生质体转化获得了敲除mad2的同源重组转化子;敲除株与野生株对比分析表明,敲除株的孢子萌发率显著低于野生株,萌发中时间比野生株延长5.47 h;培养12 h和14 h时,敲除株的菌丝长度显著均小于野生株,分别为野生株的77.8%和76.3%;培养12 d的产孢量也比野生株减少33.3%。敲除株对洋葱内表皮的黏附力明显降低,但对蝗虫后翅的黏附性无显著影响。敲除mad2并不影响绿僵菌对家蚕的毒力。敲除株处理花生12 h后,与野生株处理相比,花生共生受体SYMRK、钙信号解码相关基因(CaM、CCaMK和DELLA)、脂质氮素转运相关基因(LTP1、NRT24、ABCC2)的转录水平出现显著下调;而与空白对照相比,mad2缺失后SYMRK转录水平仍有一定的上调,CaM、CCaMK和DELLA的转录水平产生显著抑制,对ABCC2、LTP1、NRT24的转录无明显影响。【结论】金龟子绿僵菌黏附素MAD2影响菌株的孢子萌发、早期菌丝生长、产孢及对植物的黏附力,但对昆虫的黏附和杀虫毒力无影响;在菌株与花生互作早期,MAD2触发了花生共生基因的转录。
蔡霓,闫多子,农向群,王广君,涂雄兵,张泽华. 绿僵菌mad2敲除株构建及其生物学和诱导植物响应的功能分析[J]. 中国农业科学, 2021, 54(22): 4800-4812.
CAI Ni,YAN DuoZi,NONG XiangQun,WANG GuangJun,TU XiongBing,ZHANG ZeHua. Adhesin Gene mad2 Knockout and Functional Effects on Biological Characteristics and Inducing Plant Responses in Metarhizium anisopliae[J]. Scientia Agricultura Sinica, 2021, 54(22): 4800-4812.
表1
载体构建及目标片段特异性引物"
引物名称Primer name | 序列Sequence | 片段长度Sequence length (bp) |
---|---|---|
Hyg-F | 5′-ATGCCTCAGCGAATTCGATAACTG-3′ | 1426 |
Hyg-R | 5′-GTTCCCGGTCGGCATCTACTCTA-3′ | |
mad2 S1-F | 5′-CCCATTGTCTC CACGCACACT-3′ | 1046 |
mad2 S1-R | 5′-GTTATCGAATTCGCTGAGGCATCGAAGGTATAAGGTGAGAGCGGTTG-3′ | |
mad2 S2-F | 5′-TAGAGTAGATGCCGACCGGGAACGTTGACCGCACAGCATAT ATCCTGG-3′ | 1174 |
mad2 S2-R | 5′-CCCAGCAACAAGCCCACATGCAGCAA-3′ | |
Hyg S2-F | 5′-CAGCTTCGATGTAGGAGGGCGTGG-3′ | 1174 + 936 |
Hyg S1-R | 5′-GGCAGTCCTCGGCCCAAAGCATCAG-3′ | 1046 + 945 |
OUT-mad2-F | 5′-ATGAAGTCTTTCATTGCTGTTGCGG-3′ | 921 |
OUT-mad2-R | 5′-CTAGATCAGGAGAGCGGCGATGAGG-3′ |
表2
候选基因及其特异性引物"
基因Gene | 引物序列Primer sequence | 基因Gene | 引物序列Primer sequence |
---|---|---|---|
RPL7 | 5′-ACAGTTGGTCCTCACTTCAG-3′ | LTP1 | 5′-CAACCAACCAATCACCCTC-3′ |
5′-GCTCATTTATGTAAGCTTCCCT-3′ | 5′-GGGCTAATCTTGTATGGGATG-3′ | ||
CCaMK | 5′-ATCCGCCTTTCATTGCTC-3′ | NRT24 | 5′-CCCACGGAGAAGAGAATCATC-3′ |
5′-GAACATCTTTGGCTACATCACC-3′ | 5′-GGAATGGCAAACATCATAGCAC-3′ | ||
ABCC2 | 5′-CTCATAGGCATTGTCAGCAC-3′ | DELLA | 5′-CCTCCACCATCACAACTTCC-3′ |
5′-GTGAATCGGATGTTGTTGTC-3′ | 5′-CATTCTCCTGCGAGTCAACC-3′ | ||
SYMRK | 5′-AAGCAATGTGGAGAGTGGTG-3′ | CaM | 5′-TGATGGCTAAGTGAGGACC-3′ |
5′-AGATGAAGTAGAGGGCGGAA-3′ | 5′-AATGAAAGCAAGGGACAGAG-3′ |
[1] |
MENG Y, ZHANG X, GUO N, FANG W. Mrst12 implicated in the regulation of transcription factor AFTF1 by Fus3-MAPK during cuticle penetration by the entomopathogenic fungus Metarhizium robertsii. Fungal Genetics and Biology, 2019, 131: 103244. DOI: 10.1016/j.fgb.2019.103244.
doi: 10.1016/j.fgb.2019.103244 |
[2] |
PARSA S, ORTIZ V, GÓMEZ-JIMÉNEZ M I, KRAMER M, VEGA F E. Root environment is a key determinant of fungal entomopathogen endophytism following seed treatment in the common bean, Phaseolus vulgaris. Biological Control, 2018, 116: 74-81. DOI: 10.1016/j.biocontrol.2016.09.001.
doi: 10.1016/j.biocontrol.2016.09.001 |
[3] |
STEINWENDER B M, ENKERLI J, WIDMER F, EILENBERG J, KRISTENSEN H L, BIDOCHKA M J, MEYLING N V. Root isolations of Metarhizium spp. from crops reflect diversity in the soil and indicate no plant specificity. Journal of Invertebrate Pathology, 2015, 132: 142-148. DOI: 10.1016/j.jip.2015.09.007.
doi: 10.1016/j.jip.2015.09.007 |
[4] |
RAYA-DÍAZ S, SÁNCHEZ-RODRÍGUEZ A R, SEGURA-FERNÁNDEZ J M, DEL CARMEN DEL CAMPILLO M, QUESADA-MORAGA E. Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates. PLoS ONE, 2017, 12(10): e0185903. DOI: 10.1371/journal.pone.0185903.
doi: 10.1371/journal.pone.0185903 |
[5] |
KHAN A L, HAMAYUN M, KANG S M, KIM Y H, JUNG H Y, LEE J H, LEE I J. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: An example of Paecilomyces formosus LHL10. BMC Microbiology, 2012, 12: 3. DOI: 10.1186/1471-2180-12-3.
doi: 10.1186/1471-2180-12-3 |
[6] |
AKELLO J, SIKORA R. Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biological Control, 2012, 61(3): 215-221. DOI: 10.1016/j.biocontrol.2012.02.007.
doi: 10.1016/j.biocontrol.2012.02.007 |
[7] |
WANG C, ST LEGER R J. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryotic Cell, 2007, 6(5): 808-816. DOI: 10.1128/EC.00409-06.
doi: 10.1128/EC.00409-06 |
[8] |
NICHOLSON R L, EPSTEIN L. Adhesion of fungi to the plant surface// COLE G T. The Fungal Spore and Disease Initiation in Plants and Animals. Springer US, 1991: 3-23. DOI: https://doi.org/10.1007/978-1-4899-2635-7_1.
doi: https://doi.org/10.1007/978-1-4899-2635-7_1 |
[9] |
SHEPPARD D C, YEAMAN M R, WELCH W H, PHAN Q T, FU Y, IBRAHIM A S, FILLER S G, ZHANG M, WARING A J, JR EDWARDS J E. Functional and structural diversity in the Als protein family of Candida albicans. The Journal of Biological Chemistry, 2004, 279(29): 30480-30489. DOI: 10.1074/jbc.M401929200.
doi: 10.1074/jbc.M401929200 |
[10] |
PAVA-RIPOLL M, ANGELINI C, FANG W, WANG S, POSADA F J, ST LEGER R. The rhizosphere-competent entomopathogen Metarhizium anisopliae expresses a specific subset of genes in plant root exudate. Microbiology, 2011, 157(1): 47-55. DOI: 10.1099/mic.0.042200-0.
doi: 10.1099/mic.0.042200-0 |
[11] |
闫多子, 蔡霓, 王峰, 农向群, 王广君, 涂雄兵, 张泽华. 绿僵菌黏附素MAD1体外表达及诱导花生响应的作用. 中国农业科学, 2021, 54(4): 744-753. DOI: 10.3864/j.issn.0578-1752.2021.04.007.
doi: 10.3864/j.issn.0578-1752.2021.04.007 |
YAN D Z, CAI N, WANG F, NONG X Q, WANG G J, TU X B, ZHANG Z H. Expression in vitro of Metarhizium anisopliae adhesin MAD1 and its effect on inducing response in peanut. Scientia Agricultura Sinica, 2021, 54(4): 744-753. DOI: 10.3864/j.issn.0578-1752.2021.04.007. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2021.04.007 |
|
[12] |
KRELL V, UNGER S, JAKOBS-SCHÖNWANDT D, PATEL A V. Endophytic Metarhizium brunneum mitigates nutrient deficits in potato and improves plant productivity and vitality. Fungal Ecology, 2018, 34: 43-49. DOI: 10.1016/j.funeco.2018.04.002.
doi: 10.1016/j.funeco.2018.04.002 |
[13] |
BEHIE S W, BIDOCHKA M J. Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: An additional branch of the soil nitrogen cycle. Applied and Environmental Microbiology, 2014, 80(5): 1553-1560. DOI: 10.1128/AEM.03338-13.
doi: 10.1128/AEM.03338-13 |
[14] |
BEHIE S W, MOREIRA C C, SEMENTCHOUKOVA I, BARELLI L, ZELISKO P M, BIDOCHKA M J. Carbon translocation from a plant to an insect-pathogenic endophytic fungus. Nature Communications, 2017, 8: 14245. DOI: 10.1038/ncomms14245.
doi: 10.1038/ncomms14245 |
[15] |
BEHIE S W, ZELISKO P M, BIDOCHKA M J. Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science, 2012, 336(6088): 1576-1577. DOI: 10.1126/science.1222289.
doi: 10.1126/science.1222289 |
[16] |
SASAN R K, BIDOCHKA M J. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany, 2012, 99(1): 101-107. DOI: 10.3732/ajb.1100136.
doi: 10.3732/ajb.1100136 |
[17] |
LIAO X, O’BRIEN T R, FANG W, ST LEGER R J. The plant beneficial effects of Metarhizium species correlate with their association with roots. Applied Microbiology and Biotechnology, 2014, 98(16): 7089-7096. DOI: 10.1007/s00253-014-5788-2.
doi: 10.1007/s00253-014-5788-2 |
[18] |
BEHIE S W, JONES S J, BIDOCHKA M J. Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecology, 2015, 13: 112-119. DOI: 10.1016/j.funeco.2014.08.001.
doi: 10.1016/j.funeco.2014.08.001 |
[19] |
CAI N, WANG F, NONG X Q, WANG G J, MCNEILL M, CAO G C, HAO K, LIU S F, ZHANG Z H. Visualising confirmation of the endophytic relationship of Metarhizium anisopliae with maize roots using molecular tools and fluorescent labelling. Biocontrol Science and Technology, 2019, 29(11): 1023-1036. DOI: 10.1080/09583157.2019.1641792.
doi: 10.1080/09583157.2019.1641792 |
[20] |
HAO K, WANG F, NONG X Q, MCNEILL M R, LIU S F, WANG G J, CAO G C, ZHANG Z H. Response of peanut Arachis hypogaea roots to the presence of beneficial and pathogenic fungi by transcriptome analysis. Scientific Reports, 2017, 7(1): 964. DOI: 10.1038/s41598-017-01029-3.
doi: 10.1038/s41598-017-01029-3 |
[21] |
徐芳, 姚泉洪, 熊爱生, 彭日荷, 侯喜林, 曹兵. 重叠延伸PCR技术及其在基因工程上的应用. 分子植物育种, 2006, 4(5): 747-750. DOI: 10.3969/j.issn.1672-416X.2006.05.025.
doi: 10.3969/j.issn.1672-416X.2006.05.025 |
XU F, YAO Q H, XIONG A S, PENG R H, HOU X L, CAO B. SOE PCR and its application in genetic engineering. Molecular Plant Breeding, 2006, 4(5): 747-750. DOI: 10.3969/j.issn.1672-416X.2006.05.025. (in Chinese)
doi: 10.3969/j.issn.1672-416X.2006.05.025 |
|
[22] |
王晓玲, 蒋伶活, 张泽华. 以G418抗性为选择标记的金龟子绿僵菌原生质体转化的研究. 安徽农业科学, 2007, 35(28): 8865-8866, 8868. DOI: 10.3969/j.issn.0517-6611.2007.28.020.
doi: 10.3969/j.issn.0517-6611.2007.28.020 |
WANG X L, JIANG L H, ZHANG Z H. Protoplast transformation of Metarhizium anisopliae with G418 resistance as selective marker. Journal of Anhui Agricultural Sciences, 2007, 35(28): 8865-8866, 8868. DOI: 10.3969/j.issn.0517-6611.2007.28.020. (in Chinese)
doi: 10.3969/j.issn.0517-6611.2007.28.020 |
|
[23] |
刘艳微. 转Mad1基因球孢白僵菌工程菌株的构建及鉴定[D]. 哈尔滨: 哈尔滨师范大学, 2015. DOI: 10.7666/d.D678481.
doi: 10.7666/d.D678481 |
LIU Y W. Construction and identification of Mad1 transgenic Beauveria bassiana strains[D]. Harbin: Harbin Normal University, 2015. DOI: 10.7666/d.D678481. (in Chinese)
doi: 10.7666/d.D678481 |
|
[24] |
蔡守平, 何学友, 曾丽琼, 黄金水, 钟景辉, 嵇保中. 感染星天牛幼虫高致病力金龟子绿僵菌菌株的筛选. 中国生物防治学报, 2012, 28(2): 293-297. DOI: 10.3969/j.issn.2095-039X.2012.02.023.
doi: 10.3969/j.issn.2095-039X.2012.02.023 |
CAI S P, HE X Y, ZENG L Q, HUANG J S, ZHONG J H, JI B Z. Susceptibility of Anoplophora chinensis larvae to the entomopathogenic fungus, Metarhzium anisopliae. Chinese Journal of Biological Control, 2012, 28(2): 293-297. DOI: 10.3969/j.issn.2095-039X.2012.02.023. (in Chinese)
doi: 10.3969/j.issn.2095-039X.2012.02.023 |
|
[25] |
MAYO S, COMINELLI E, SPARVOLI F, GONZÁLEZ-LÓPEZ O, RODRÍGUEZ-GONZÁLEZ A, GUTIÉRREZ S, CASQUERO P A. Development of a qPCR strategy to select bean genes involved in plant defense response and regulated by the Trichoderma velutinum - Rhizoctonia solani interaction. Frontiers in Plant Science, 2016, 7: 1109. DOI: 10.3389/fpls.2016.01109.
doi: 10.3389/fpls.2016.01109 |
[26] |
廉翠红, 刘维达. 与白念珠菌黏附和侵入相关的毒力因子研究进展. 国际皮肤性病学杂志, 2004, 30(5): 323-325. DOI: 10.3760/cma.j.issn.1673-4173.2004.05.018.
doi: 10.3760/cma.j.issn.1673-4173.2004.05.018 |
LIAN C H, LIU W D. Research progress on virulence factors related to adhesion and invasion of Candida albicans. International Journal of Dermatology and Venereology, 2004, 30(5): 323-325. DOI: 10.3760/cma.j.issn.1673-4173.2004.05.018. (in Chinese)
doi: 10.3760/cma.j.issn.1673-4173.2004.05.018 |
|
[27] |
WÄCHTLER B, CITIULO F, JABLONOWSKI N, FÖRSTER S, DALLE F, SCHALLER M, WILSON D, HUBE B. Candida albicans-epithelial interactions: Dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PLoS ONE, 2012, 7(5): e36952. DOI: 10.1371/journal.pone.0036952.
doi: 10.1371/journal.pone.0036952 |
[28] |
SILVERMAN R J, NOBBS A H, VICKERMAN M M, BARBOUR M E, JENKINSON H F. Interaction of Candida albicans cell wall Als3 protein with Streptococcus gordonii SspB adhesin promotes development of mixed-species communities. Infection and Immunity, 2010, 78(11): 4644-4652. DOI: 10.1128/IAI.00685-10.
doi: 10.1128/IAI.00685-10 |
[29] |
MURCIANO C A, MOYES D L, RUNGLALL M, TOBOUTI P, ISLAM A, HOYER L L, NAGLIK J R. Evaluation of the role of Candida albicans agglutinin-like sequence (Als) proteins in human oral epithelial cell interactions. PLoS ONE, 2012, 7(3): e33362. DOI: 10.1371/journal.pone.0033362.
doi: 10.1371/journal.pone.0033362 |
[30] |
STAAB J F, BRADWAY S D, FIDEL P L, SUNDSTROM P. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science, 1999, 283(5407): 1535-1538. DOI: 10.1126/science.283.5407.1535.
doi: 10.1126/science.283.5407.1535 |
[31] |
GALE C A, BENDEL C M, MCCLELLAN M, HAUSER M, BECKER J M, BERMAN J, HOSTETTER M K. Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science, 1998, 279(5355): 1355-1358. DOI: 10.1126/science.279.5355.1355.
doi: 10.1126/science.279.5355.1355 |
[32] |
FU Y, IBRAHIM A S, SHEPPARD D C, CHEN Y C, FRENCH S W, CUTLER J E, FILLER S G, EDWARDS J E. Candida albicans ALS1p: An adhesin that is a downstream effector of the EFG1 filamentation pathway. Molecular Microbiology, 2002, 44(1): 61-72. DOI: 10.1046/j.1365-2958.2002.02873.x.
doi: 10.1046/j.1365-2958.2002.02873.x |
[33] |
BARELLI L, PADILLA-GUERRERO I E, BIDOCHKA M J. Differential expression of insect and plant specific adhesin genes, Mad1 and Mad2, in Metarhizium robertsii. Fungal Biology, 2011, 115(11): 1174-1185. DOI: 10.1016/j.funbio.2011.08.003.
doi: 10.1016/j.funbio.2011.08.003 |
[34] |
BATISTI O, KUDLA J. Analysis of calcium signaling pathways in plants. Biochimica et Biophysica Acta, 2012, 1820(8): 1283-1293. DOI: 10.1016/j.bbagen.2011.10.012.
doi: 10.1016/j.bbagen.2011.10.012 |
[35] |
熊珊珊, 赵斌. 丛枝菌根真菌的钙调素基因在共生过程中的作用. 湖北农业科学, 2014, 53(13): 3177-3182. DOI: 10.3969/j.issn.0439-8114.2014.13.052.
doi: 10.3969/j.issn.0439-8114.2014.13.052 |
XIONG S S, ZHAO B. The roles of calmodulin gene of Glomus intraradices in symbiosis process. Hubei Agricultural Sciences, 2014, 53(13): 3177-3182. DOI: 10.3969/j.issn.0439-8114.2014.13.052. (in Chinese)
doi: 10.3969/j.issn.0439-8114.2014.13.052 |
|
[36] |
MACLEAN A M, BRAVO A, HARRISON M J. Plant signaling and metabolic pathways enabling arbuscular mycorrhizal symbiosis. The Plant Cell, 2017, 29(10): 2319-2335. DOI: 10.1105/tpc.17.00555.
doi: 10.1105/tpc.17.00555 |
[37] |
WANG F, NONG X Q, HAO K, CAI N, WANG G J, LIU S F, ULLAH H, ZHANG Z H. Identification of the key genes involved in the regulation of symbiotic pathways induced by Metarhizium anisopliae in peanut (Arachis hypogaea) roots. 3 Biotech, 2020, 10(3): 124. DOI: 10.1007/s13205-020-2105-x.
doi: 10.1007/s13205-020-2105-x |
[38] |
JIN Y, LIU H, LUO D, YU N, DONG W, WANG C, ZHANG X, DAI H, YANG J, WANG E. Della proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways. Nature Communications, 2016, 7: 12433. DOI: 10.1038/ncomms12433.
doi: 10.1038/ncomms12433 |
[39] |
邵若玄, 沈忆珂, 周文彬, 方佳, 郑炳松. 植物ATP结合盒(ABC)转运蛋白研究进展. 浙江农林大学学报, 2013, 30(5): 761-768. DOI: 10.11833/j.issn.2095-0756.2013.05.020.
doi: 10.11833/j.issn.2095-0756.2013.05.020 |
SHAO R X, SHEN Y K, ZHOU W B, FANG J, ZHENG B S. Recent advances for plant ATP-binding cassette transporters. Journal of Zhejiang A&F University, 2013, 30(5): 761-768. DOI: 10.11833/j.issn.2095-0756.2013.05.020. (in Chinese)
doi: 10.11833/j.issn.2095-0756.2013.05.020 |
|
[40] |
CARVALHO A O, GOMES V M. Role of plant lipid transfer proteins in plant cell physiology: A concise review. Peptides, 2007, 28: 1144-1153. DOI: 10.1016/j.peptides.2007.03.004.
doi: 10.1016/j.peptides.2007.03.004 |
[41] |
李国纪, 朱林, 曹金山, 王幼宁. 大豆GmNRT1.2a和GmNRT1.2b基因的克隆及功能探究. 作物学报, 2020, 46(7): 1025-1032. DOI: 10.3724/SP.J.1006.2020.94152.
doi: 10.3724/SP.J.1006.2020.94152 |
LI G J, ZHU L, CAO J S, WANG Y N. Cloning and functional analysis of GmNRT1.2a and GmNRT1.2b in soybean. Acta Agronomica Sinica, 2020, 46(7): 1025-1032. DOI: 10.3724/SP.J.1006.2020.94152. (in Chinese)
doi: 10.3724/SP.J.1006.2020.94152 |
[1] | 邬伟,徐慧丽,王正亮,俞晓平. 褐飞虱丝氨酸蛋白酶抑制剂基因Nlserpin2的克隆及其功能分析[J]. 中国农业科学, 2022, 55(12): 2338-2346. |
[2] | 闫多子,蔡霓,王峰,农向群,王广君,涂雄兵,张泽华. 绿僵菌黏附素MAD1体外表达及诱导花生响应的作用[J]. 中国农业科学, 2021, 54(4): 744-753. |
[3] | 王程利,尹志远,聂嘉俊,林永辉,黄丽丽. 苹果黑腐皮壳菌CAP超家族蛋白基因鉴定及毒性功能分析[J]. 中国农业科学, 2021, 54(16): 3440-3450. |
[4] | 王丹丹,唐雨婷,马月辉,王立刚,潘登科,蒋琳. 用ZBED6基因敲除猪研究心脏发育的分子机制[J]. 中国农业科学, 2018, 51(7): 1390-1400. |
[5] | 侯瑞,王晨芳. 禾谷镰孢碳源代谢调控因子FgCreA的功能[J]. 中国农业科学, 2018, 51(2): 257-267. |
[6] | 刘志国,王冰源,牟玉莲,魏泓,陈俊海,李奎. 分子编写育种——动物育种的发展方向[J]. 中国农业科学, 2018, 51(12): 2398-2409. |
[7] | 苗阳阳,师尚礼,康文娟. 赤霉素对根瘤菌运移、定殖及苜蓿幼苗生长的影响[J]. 中国农业科学, 2017, 50(23): 4545-4557. |
[8] | 梁美霞,乔绪强,郭笑彤,张洪霞. 柱型苹果生长特性及Co基因定位研究进展[J]. 中国农业科学, 2017, 50(22): 4421-4430. |
[9] | 郭瑞,周际,杨帆,李峰. 碱胁迫对小麦(Triticum aestivum Linn)叶片代谢过程的影响[J]. 中国农业科学, 2017, 50(2): 250-259. |
[10] | 许春景,吴玉星,戴青青,李正鹏,高小宁,黄丽丽. 苹果树腐烂病菌多聚半乳糖醛酸酶基因Vmpg7和Vmpg8的功能[J]. 中国农业科学, 2016, 49(8): 1489-1498. |
[11] | 鱼小军,柴锦隆,徐长林,师尚礼,肖红,马隆喜,曹国顺. 覆膜种植对甘南高寒区苜蓿生长和杂草数量的影响[J]. 中国农业科学, 2016, 49(4): 791-801. |
[12] | 刘少芳,王苗苗,涂雄兵,张雄鹏,农向群,曹广春,王广君,张泽华. 两启动子影响egfp在绿僵菌中的荧光表达[J]. 中国农业科学, 2015, 48(S): 23-31. |
[13] | 赵霞,徐春梅,王丹英,陈松,陶龙兴,章秀福. 根际溶氧量对分蘖期水稻生长特性及其氮素代谢的影响[J]. 中国农业科学, 2015, 48(18): 3733-3742. |
[14] | 范晓静1, 杨瑞先1, 2, 邱思鑫3, 胡方平1. 内生芽孢杆菌BS2的β-1,4-内切葡聚糖酶基因与定殖相关性[J]. 中国农业科学, 2014, 47(2): 262-272. |
[15] | 崔文明, 逄晓阳, 张书文, 刘鹭, 李红娟, 吕加平. N-乙酰胞壁质酶缺失对保加利亚乳杆菌LJJ自溶及形态的影响[J]. 中国农业科学, 2014, 47(15): 3058-3068. |
|