[1] Muriuki J G. Deoxynivalenol and nivalenol in pathogenesis of Fusarium head blight in wheat[D]. USA: University of Minnesota, 2001.
[2] Bai G H, Shaner G. Management and resistance in wheat and barley to Fusarium head blight. Annual Review of Phytopathology, 2004, 42(1): 135-161.
[3] Goswami R S, Kistler H C. Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology, 2004, 5(6): 515-525.
[4] 王裕中, J D米勒. 中国小麦赤霉病菌优势种—禾谷镰刀菌产毒素能力的研究. 菌物学报, 1994, 13(3): 229-234.
Wang Y Z, Miller J D. Toxin producing potential of Fusarium graminearum from China. Mycosystema, 1994, 13(3): 229-234. (in Chinese)
[5] O’Donnell K, Kistler H C, Tacke B K, Casper H H. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(14): 7905-7910.
[6] 王琢, 闫培生. 真菌毒素产生菌的分子鉴定研究进展. 中国农业科技导报, 2010, 12(5): 42-50.
Wang Z, Yan P S. Research progress on molecular identification of mycotoxin-producing fungi. Journal of Agricultural Science and Technology, 2010, 12(5): 42-50. (in Chinese)
[7] Cuomo C A, Güldener U, Xu J R, Trail F, Turgeon B G, Di Pietro A, Walton J D, Ma L J, Baker S E, Rep M, Adam G, Antoniw J, Baldwin T, Calvo S, Chang Y L, Decaprio D, Gale L R, Gnerre S, Goswami R S, Hammond-Kosack K, Harris L J, Hilburn K, Kennell J C, Kroken S, Magnuson J K, Mannhaupt G, Mauceli E, Mewes H W, Mitterbauer R, Muehlbauer G, Münsterkötter M, Nelson D, O'donnell K, Ouellet T, Qi W, Quesneville H, Roncero M I, Seong K Y, Tetko I V, Urban M, Waalwijk C, Ward T J, Yao J, Birren B W, Kistler H C. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science, 2007, 317(5843): 1400-1402.
[8] 张大军, 邱德文, 蒋伶活. 禾谷镰刀菌基因组学研究进展. 安徽农业科学, 2009, 37(17): 7892-7894.
Zhang D J, QIu D W, JIang L H. Research progress on the genomics of Fusarium graminearum. Journal of Anhui Agricultural Sciences, 2009, 37(17): 7892-7894. (in Chinese)
[9] Brown D W, Cheung F, Proctor R H, Butchko R A, Zheng L, Lee Y, Utterback T, Smith S, Feldblyum T, Glenn A E, Plattner R D, Kendra D F, Town C D, Whitelaw C A. Comparative analysis of 87,000 expressed sequence tags from the fumonisin-producing fungus Fusarium verticillioides. Fungal Genetics and Biology, 2005, 42(10): 848-861.
[10] Sikhakolli U R, Lopez-Giraldez F, Li N, Common R, Townsend J P, Trail F. Transcriptome analyses during fruiting body formation in Fusarium graminearum and Fusarium verticillioides reflect species life history and ecology. Fungal Genetics and Biology, 2012, 49(8): 663-673.
[11] Lysoe E, Seong K Y, Kistler H C. The transcriptome of Fusarium graminearum during the infection of wheat. Molecular Plant-Microbe Interactions, 2011, 24(9): 995-1000.
[12] Kumaraswamy K G, Kushalappa A C, Choo T M, Dion Y, Rioux S. Mass spectrometry based metabolomics to identify potential biomarkers for resistance in barley against fusarium head blight (Fusarium graminearum). Journal of Chemical Ecology, 2011, 37(8): 846-856.
[13] Ruiz B, Chavez A, Forero A, García-Huante Y, Romero A, Sánchez M, Rocha D, Sánchez B, Rodríguez-Sanoja R, Sánchez S, Langley E. Production of microbial secondary metabolites: regulation by the carbon source. Critical Reviews in Microbiology, 2010, 36(2): 146-167.
[14] Ruijter G J, Visser J. Carbon repression in Aspergilli. Fems Microbiology Letters, 1997, 151(2): 103-114.
[15] Ries L N, Beattie S R, Espeso E A, Cramer R A, Goldman G H. Diverse regulation of the CreA carbon catabolite repressor in Aspergillus nidulans. Genetics, 2016, 203(1): 335-352.
[16] Carlson M. Glucose repression in yeast. Current Opinion in Microbiology, 1999, 2(2): 202-207.
[17] Gancedo J M. Yeast carbon catabolite repression. Microbiology and Molecular Biology Reviews, 1998, 62(2): 334-361.
[18] Johnston M. Feasting, fasting, and fermenting: glucose sensing in yeast and other cells. Trends in Genetics, 1999, 15(1): 29-33.
[19] Trumbly R J. Glucose repression in the yeast Saccharomyces cerevisiae. Molecular Microbiology, 1992, 6(1): 15-21.
[20] Treitel M A, Carlson M. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(8): 3132-3136.
[21] Tzamarias D, Struhl K. Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes & Development, 1995, 9(7): 821-831.
[22] Treitel M A, Kuchin S, Carlson M. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Molecular and Cellular Biology, 1998, 18(11): 6273-6280.
[23] Park S H, Koh S S, Chun J H, Hwang H J, Kang H S. Nrg1 is a transcriptional repressor for glucose repression of STA1 gene expression in Saccharomyces cerevisiae. Molecular and Cellular Biology, 1999, 19(3): 2044-2050.
[24] Zhai Z, Yurimoto H, Sakai Y. Molecular characterization of Candida boidinii MIG1 and its role in the regulation of methanol- inducible gene expression. Yeast, 2012, 29(7): 293-301.
[25] Jonkers W, Rep M. Mutation of CRE1 in Fusarium oxysporum reverts the pathogenicity defects of the FRP1 deletion mutant. Molecular Microbiology, 2009, 74(5): 1100-1113.
[26] Tamayo E N, Villanueva A, Hasper A A, de Graaff L H, Ramón D, Orejas M. CreA mediates repression of the regulatory gene xlnR which controls the production of xylanolytic enzymes in Aspergillus nidulans. Fungal Genetics and Biology, 2008, 45(6): 984-993.
[27] Espeso E A, Fernández-Cañón J, Peñalva M A. Carbon regulation of penicillin biosynthesis in Aspergillus nidulans: a minor effect of mutations in creB and creC. Fems Microbiology Letters, 1995, 126(1): 63-67.
[28] Tudzynski, B, Liu S, Kelly J M. Carbon catabolite repression in plant pathogenic fungi: isolation and characterization of the Gibberella fujikuroi and Botrytis cinerea creA genes. Fems Microbiology Letters, 2000, 184(1): 9-15.
[29] Brown D W, Butchko R A E, Proctor R H. Fusarium genomic resources: Tools to limit crop diseases and mycotoxin contamination. Mycopathologia, 2006, 162(3): 191-199.
[30] Catlett N L, Lee B N, Yoder O C, Turgeon B G. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genetics Newsletter, 2003, 50: 9-11.
[31] Zhao X H, Xu J R. A highly conserved MAPK-docking site in Mst7 is essential for Pmk1 activation in Magnaporthe grisea. Molecular Microbiology, 2007, 63(3): 881-894.
[32] McCormick S P, Harris L J, Alexander N J, OUELLET T, Saparno A, Allard S, Desjardins A E. Tri1 in Fusarium graminearum encodes a P450 oxygenase. Applied and Environmental Microbiology, 2004, 70(4): 2044-2051.
[33] Tokai T, Takahashi-Ando N, Izawa M, Kamakura T, Yoshida M, Fujimura M, Kimura M. 4-O-acetylation and 3-O-acetylation of trichothecenes by trichothecene 15-O-acetyltransferase encoded by Fusarium Tri3. Bioscience, Biotechnology and Biochemistry, 2008, 72(9): 2485-2489.
[34] Menke J, Weber J, Broz K, Kistler H C. Cellular development associated with induced mycotoxin synthesis in the filamentous fungus Fusarium graminearum. Plos One, 2013, 8(5): e63077.
[35] Boenisch M J, Schafer W. Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biology, 2011, 11: 110.
[36] Seong K Y, Pasquali M, Zhou X, Song J, Hilburn K, McCormick S, Dong Y, Xu J R, Kistler H C. Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Molecular Microbiology, 2009, 72(2): 354-367.
[37] Chandler E A, Simpson D R, Thomsett M A, Nicholson P. Development of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes, and characterisation of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiological and Molecular Plant Pathology, 2003, 62(6): 355-367.
[38] McCormick S P, Alexander N J. Fusarium Tri8 encodes a trichothecene C-3 esterase. Applied and Environmental Microbiology, 2002, 68(6): 2959-2964.
[39] Menke J, Dong Y, Kistler H C. Fusarium graminearum Tri12p influences virulence to wheat and trichothecene accumulation. Molecular Plant-Microbe Interactions, 2012, 25(11): 1408-1418.
[40] Garvey G S, McCormick S P, Alexander N J, Rayment I. Structural and functional characterization of TRI3 trichothecene 15-O-acetyltransferase from Fusarium sporotrichioides. Protein Science, 2009, 18(4): 747-761.
[41] Park Y, Cho Y, Lee Y H, Lee Y W, Rhee S. Crystal structure and functional analysis of isocitrate lyases from Magnaporthe oryzae and Fusarium graminearum. Journal of Structural Biology, 2016, 194(3): 395-403.
[42] AndreLeroux G, Tessier D, Bonnin E. Action pattern of Fusarium moniliforme endopolygalacturonase towards pectin fragments: Comprehension and prediction. Biochimica et Biophysica Acta, 2005, 1749(1): 53-64.
[43] Needham P G, Trumbly R J. In vitro characterization of the Mig1 repressor from Saccharomyces cerevisiae reveals evidence for monomeric and higher molecular weight forms. Yeast, 2006, 23(16): 1151-1166.
[44] Qin S, Ji C, Li Y, Wang Z. Comparative transcriptomic analysis of race 1 and race 4 of Fusarium oxysporum f. sp. cubense induced with different carbon sources. G3: Genes, Genomes, Genetics, 2017, 7(7): 2125-2138.
[45] Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney R R, Schmidt M C, Rachidi N, Lee S J, Mah A S, Meng L, Stark M J, Stern D F, De Virgilio C, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki P F, Snyder M. Global analysis of protein phosphorylation in yeast. Nature, 2005, 438(7068): 679-684.
[46] Sharifpoor S, Dyk D V, Costanzo M, Baryshnikova A, Friesen H, Douglas A C, Youn J Y, VanderSluis B, Myers C L, Papp B, Boone C, Andrews B J. Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Research, 2012, 22(4): 791-801.
[47] Zheng D W, Zhang S J, Zhou X Y, Wang C, Xiang P, Zheng Q, Xu J R. The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum. Plos one, 2012, 7(11): e49495.
[48] Wang C, Zhang S, Hou R, Zhao Z, Zheng Q, Xu Q, Zheng D, Wang G, Liu H, Gao X, Ma J W, Kistler H C, Kang Z, Xu J R. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. Plos Pathogen, 2011, 7(12): e1002460.
[49] Jiao F, Kawakami A, Nakajima T. Effects of different carbon sources on trichothecene production and Tri gene expression by Fusarium graminearum in liquid culture. Fems Microbiology Letters, 2008, 285(2): 212-219.
[50] Karunanithi S, Cullen P J. The filamentous growth MAPK pathway responds to glucose starvation through the Mig1/2 transcriptional repressors in Saccharomyces cerevisiae. Genetics, 2012, 192(3): 869-887.
[51] Jenczmionka N J, Maier F J, Losch A P, Schäfer W. Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Current Genetics, 2003, 43(2): 87-95.
[52] Balciunas D, Ronne H. Yeast genes GIS1-4: multicopy suppressors of the Gal- phenotype of snf1 mig1 srb8/10/11 cells. Molecular and General Genetics, 1999, 262(4/5): 589-599.
[53] Jiang C, Zhang C, Wu C, Sun P, Hou R, Liu H, Wang C F, Xu J R. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum. Environmental Microbiology, 2016, 18(11): 3689-3701.
[54] Zaragoza O, Rodríguez C, Gancedo C. Isolation of the MIG1 gene from Candida albicans and effects of its disruption on catabolite repression. Journal of Bacteriology, 2000, 182(2): 320-326.
[55] Cziferszky A, Seiboth B, Kubicek C P. The Snf1 kinase of the filamentous fungus Hypocrea jecorina phosphorylates regulation- relevant serine residues in the yeast carbon catabolite repressor Mig1 but not in the filamentous fungal counterpart Cre1. Fungal Genetics and Biology, 2003, 40(2): 166-175. |