[1] LUCE M S, ZIADI N, ZEBARTH B J, GRANT C A, TREMBLAY G F, GREGORICH E G. Rapid determination of soil organic matter quality indicators using visible near infrared reflectance spectroscopy. Geoderma, 2014, 232-234: 449-458.
[2] KODAIRA M, SHIBUSAWA S. Using a mobile real-time soil visible-near infrared sensor for high resolution soil property mapping. Geoderma, 2013, 199: 64-79.
[3] SHI Z, JI W, VISCARRA ROSSEL R A, CHEN S, ZHOU Y. Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis-NIR spectral library. European Journal of Soil Science, 2015, 66(4): 679-687.
[4] DAS B S, SARATHJITH M C, SANTRA P, SAHOO R N, SRIVASTAVA R, ROUTRAY A, RAY S S. Hyperspectral remote sensing: Opportunities, status and challenges for rapid soil assessment in India. Current science, 2015, 108(5): 860-868.
[5] 南锋, 朱洪芬, 毕如田. 黄土高原煤矿区复垦农田土壤有机质含量的高光谱预测. 中国农业科学, 2016, 49(11): 2126-2135.
NAN F, ZHU H F, BI R T. Hyperspectral prediction of soil organic matter content in the reclamation cropland of coal mining areas in the Loess Plateau. Scientia Agricultura Sinica, 2016, 49(11): 2126-2135. (in Chinese)
[6] LIU Y L, JIANG Q H, FEI T, WANG J J, SHI T Z, GUO K, LI X R, CHEN Y Y. Transferability of a visible and near-infrared model for soil organic matter estimation in riparian landscapes. Remote Sensing, 2014, 6(5): 4305-4322.
[7] VOHLAND M, BESOLD J, HILL J, FRUND H C. Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy. Geoderma, 2011, 166(1): 198-205.
[8] MOUAZEN A M, DE BAERDEMAEKER J, RAMON H. Effect of wavelength range on the measurement accuracy of some selected soil constituents using visual-near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 2006, 14(3): 189-199.
[9] JI W J, LI S, CHEN S C, SHI Z, VISCARRA ROSSEL R A, MOUAZEN A M. Prediction of soil attributes using the Chinese soil spectral library and standardized spectra recorded at field conditions. Soil & Tillage Research, 2016, 155: 492-500.
[10] WU C Y, JACOBSON A R, LABA M, BAVEYE P C. Alleviating moisture content effects on the visible near-infrared diffuse- reflectance sensing of soils. Soil Science, 2009, 174(8): 456-465.
[11] NOCITA M, STEVENS A, NOON C, WESEMAEL B V. Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma, 2013, 199: 37-42.
[12] 王超, 冯美臣, 杨武德, 肖璐洁, 李广信, 赵佳佳, 任鹏. 一种降低土壤水分对土壤有机质光谱监测精度的新方法. 光谱学与光谱分析, 2015, 35(12): 3495-3499.
WANG C, FENG M C, YANG W D, XIAO L J, LI G X, ZHAO J J, REN P. A new method to decline the SWC effect on the accuracy for monitoring SOM with hyperspectral technology. Spectroscopy and Spectral Analysis, 2015, 35(12): 3495-3499. (in Chinese)
[13] JI W, VISCARRA ROSSEL R A, SHI Z. Accounting for the effects of water and the environment on proximally sensed vis-NIR soil spectra and their calibrations. European Journal of Soil Science, 2015, 66(3): 555-565.
[14] 陈奕云, 漆锟, 刘耀林, 何建华, 姜庆虎. 顾及土壤湿度的土壤有机质高光谱预测模型传递研究. 光谱学与光谱分析,2015, 35(6): 1705-1708.
CHEN Y Y, QI K, LIU Y L, HE J H, JIANG Q H. Transferability of hyperspectral model for estimating soil organic matter concerned with soil moisture. Spectroscopy and Spectral Analysis, 2015, 35(6): 1705-1708. (in Chinese)
[15] MINASNY B, MCBRATNEY A B, BELLON-MAUREL V, ROGER J M, GOBRECHT A, FERRAND L, JOALLAND S. Removing the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soilorganic carbon. Geoderma, 2011, 167-168: 118-124.
[16] 陈红艳, 赵庚星, 张晓辉, 王瑞燕, 孙莉, 陈敬春. 去除水分影响提高土壤有机质含量高光谱估测精度. 农业工程学报,2014, 30(8): 91-100.
CHEN H Y, ZHAO G X, ZHANG X H, WANG R Y, SUN L, CHEN J C. Improving estimation precision of soil organic matter content by removing effect of soil moisture from hyperspectra. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(8): 91-100. (in Chinese )
[17] WOLD S, ANTTI H, LINDGREN F, ÖHMAN J. Orthogonal signal correction of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems, 1998, 44(1): 175-185.
[18] SJÖBLOM J, SVENSSON O, JOSEFSON M, KULLBERG H, WOLD S. An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra. Chemometrics and Intelligent Laboratory Systems, 1998, 44: 229-244.
[19] 鲍士旦. 土壤农化分析. 3 版. 北京: 中国农业出版社, 2013: 30-34.
BAO S D. Soil Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2013: 30-34. (in Chinese)
[20] 洪永胜, 于雷, 耿雷, 张薇, 聂艳, 周勇. 应用DS算法消除室内几何测试条件对土壤高光谱数据波动性的影响. 华中师范大学学报(自然科学版). 2016, 50(2): 303-308.
HONG Y S, YU L, GENG L, ZHANG W, NIE Y, ZHOU Y. Using direct standardization algorithm to eliminate the effect of laboratory geometric parameters on soil hyperspectral data fluctuate characteristic. Journal of Central China Normal University (Nature Sciences), 2016, 50(2): 303-308. (in Chinese)
[21] SAVITZKY A, GOLAY M J E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 1964, 36(8): 1627-1639.
[22] ROGER J M, CHAUCHARD F, BELLON-MAUREL V. EPO-PLS external parameter orthogonalisation of PLS application to temperature- independent measurement of sugar content of intact fruits. Chemometrics and Intelligent Laboratory Systems, 2003, 66(2): 191-204.
[23] GE Y, MORGAN C L S, ACKERSON J P. VisNIR spectra of dried ground soils predict properties of soils scanned moist and intact. Geoderma, 2014, 221-222: 61-69.
[24] 褚小立. 化学计量学方法与分子光谱分析技术. 北京: 化学工业出版社, 2011.
CHU X L. Molecular Spectroscopy Analytical Technology Combined with Chemometrics and Its Applications. Beijing: Chemical Industry Press, 2011. (in Chinese)
[25] KRUSE F A, LEFKOFF A B, BOARDMAN J W, HEIDEBRECHT K B, SHAPIRO A T, BARLOON P J, GOETZ A F H. The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 1993, 44(2/3): 145-163.
[26] 于雷, 洪永胜, 周勇, 朱强, 徐良, 李冀云, 聂艳. 高光谱估算土壤有机质含量的波长变量筛选方法. 农业工程学报, 2016, 32(13): 95-102.
YU L, HONG Y S, ZHOU Y, ZHU Q, XU L, LI J Y, NIE Y. Wavelength variable selection methods for estimation of soil organic matter content using hyperspectral technique. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(13): 95-102. (in Chinese)
[27] 刘亚秋, 陈红艳, 王瑞燕, 常春艳, 陈哲. 基于可见/近红外光谱的黄河口区土壤盐分及其主要离子的定量分析. 中国农业科学, 2016, 49(10): 1925-1935.
LIU Y Q, CHEN H Y, WANG R Y, CHANG C Y, CHEN Z. Quantitative analysis of soil salt and its main ions based on visible/near infrared spectroscopy in Estuary Area of Yellow River. Scientia Agricultura Sinica, 2016, 49(10): 1925-1935. (in Chinese)
[28] WANG C K, PAN X Z. Improving the prediction of soil organic matter using visible and near infrared spectroscopy of moist samples. Journal of Near Infrared Spectroscopy, 2016, 24(3): 231-241.
[29] LIU Y L, JIANG Q H, SHI T Z, FEI T, WANG J J, LIU G L, CHEN Y Y. Prediction of total nitrogen in cropland soil at different levels of soil moisture with Vis/NIR spectroscopy. Acta Agriculturae Scandinavica, Section B-Soil and Plant Science, 2014, 64(3): 267-281.
[30] BARBOZA F D, POPPI R J. Determination of alcohol content in beverages using short-wave near-infrared spectroscopy and temperature correction by transfer calibration procedures. Analytical and Bioanalytical Chemistry, 2003, 377(4): 695-701.
[31] FU Q B, WANG J M, LIN G N, SUO H, ZHAO C. Short-wave near-infrared spectrometer for alcohol determination and temperature correction. Journal of Analytical Methods in Chemistry, 2012(1): 728128.
[32] VISCARRA ROSSEL R A, BEHRENS T, BEN-DOR E, BROWN D J, DEMATTÊ J A M, SHEPHERD K D, SHI Z, STENBERG B, STEVENS A, ADAMCHUK V, AICHI H, BARTHÊS B G, BARTHOLOMEUS H M, BAYER A D, BERNOUX M, BOTTCHER K, BRODSKY´ L, DU C W, CHAPPELL A, FOUAD Y, GENOT V, GOMEZ C, GRUNWALD S, GUBLER A, GUERRERO C, HEDLEY C B, KNADEL M, MORRAS H J M, NOCITA M, RAMIREZLOPEZ L, ROUDIER P, RUFASTO CAMPOS E M, SANBORN P, SELLITTO V M, SUDDUTH K A, RAWLINS B G, WALTER C, WINOWIECKI L A, HONG S Y, JI W. A global spectral library to characterize the world’s soil. Earth-Science Reviews, 2016, 155: 198-230.
[33] 史舟, 王乾龙, 彭杰, 纪文君, 刘焕军, 李曦, ROSSEL R A V. 中国主要土壤高光谱反射特性分类与有机质光谱预测模型. 中国科学: 地球科学, 2014, 44(5): 978-988.
SHI Z, WANG Q L, PENG J, JI W J, LIU H J, LI X, ROSSEL R A V. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations. Science China: Earth Sciences, 2014, 44(5): 978-988. (in Chinese)
[34] ZENG R, ZHAO Y G, LI D C, WU D W, WEI C L, ZHANG G L. Selection of “local” models for prediction of soil organic matter using a regional soil Vis-NIR spectral library. Soil Science, 2016, 181(1): 13-19.
[35] 于雷, 洪永胜, 周勇, 朱强. 连续小波变换高光谱数据的土壤有机质含量反演模型构建. 光谱学与光谱分析, 2016, 36(5): 1428-1433.
YU L, HONG Y S, ZHOU Y, ZHU Q. Inversion of soil organic matter content using hyperspectral data based on continuous wavelet transformation. Spectroscopy and Spectral Analysis, 2016, 36(5): 1428-1433. (in Chinese)
[36] JI W, VISCARRA ROSSEL R A, SHI Z. Improved estimates of organic carbon using proximally sensed vis-NIR spectra corrected by piecewise direct standardization. European Journal of Soil Science, 2015, 66(4): 670-678.
[37] LIU Y, PAN X Z, WANG C K, LI Y L, SHI R J. Predicting soil salinity with Vis-NIR spectra after removing the effects of soil moisture using external parameter orthogonalization. PLoS ONE, 2015, 10(10): e0140688. |