[1] 米国华, 陈范骏, 春亮, 郭亚芬, 田秋英, 张福锁. 玉米氮高效品种的生物学特征. 植物营养与肥料学报, 2007, 13(1): 155-159.
Mi G H, Chen F J, Chun L, Guo Y F, Tian Q Y, Zhang F S. Biological characteristics of nitrogen efficient maize genotypes. Plant Nutrition and Fertilizer Science, 2007, 13(1): 155-159. (in Chinese)
[2] Presterl T, Seitz G, Landbeck M, Thiemt E M, Schmidt W, Geiger H H. Improving nitrogen-use efficiency in European maize: estimation of quantitative genetic parameters. Crop Science, 2003, 43(4): 1259-1265.
[3] 何萍, 金继运, 林葆, 王秀芳, 张宽. 不同氮、磷、钾用量下春玉米生物产量及其组分动态与养分吸收模式研究. 植物营养与肥料学报, 1998, 4(2): 123-130.
He P, Jin J Y, Lin B, Wang X F, Zhang K. Dynamics of biomass and its components and models of nutrients absorption by spring maize under different nitrogen, phosphorous and potassium application rates. Plant Nutrition and Fertilizer Science, 1998, 4(2): 123-130. (in Chinese)
[4] 金继运, 何萍. 氮钾营养对春玉米后期碳氮代谢与粒重形成的影响. 中国农业科学, 1999, 32(4): 55-62.
Jin J Y, He P. Effect of N and K nutrition on post metabolism of carbon and nitrogen and grain weight formation in maize. Scientia Agricultura Sinica, 1999, 32(4): 55-62. (in Chinese)
[5] Massignam A M, Chapman S C, Hammer G L, Fukai S. Effects of nitrogen supply on canopy development of maize and sunflower. Crop and Plant Sciences, 2012, 62(12): 1045-1055.
[6] Lawlor D W. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. Journal of Experimental Botany, 2002, 53: 773-787.
[7] 赵营, 同延安, 赵护兵. 不同供氮水平对夏玉米养分累积、转运及产量的影响. 植物营养与肥料学报, 2006, 12(5): 622-627.
Zhao Y, Tong Y A, Zhao H B. Effects of different N rates on nutrients accumulation, transformation and yield of summer maize. Plant Nutrition and Fertilizer Science, 2006, 12(5): 622-627. (in Chinese)
[8] 于天江, 张林, 谷思玉, 李陶, 鄂文弟, 王振华. 种植密度和施氮水平对东清一号青贮玉米生物产量及农艺性状的影响. 中国农学通报, 2005, 21(11): 161-164.
Yu T J, Zhang L, Gu S Y, Li T, E W D, Wang Z H. Effects of different planting density and nitrogen rates on biological yield and agricultural traits of silage maize Dongqing1. Chinese Agricultural Science Bulletin, 2005, 21(11): 161-164. (in Chinese)
[9] 孙年喜, 宗学凤, 王三根. 不同供氮水平对玉米光合特性的影响. 西南农业大学学报: 自然科学版, 2005, 27(3): 389-392.
Sun N X, Zong X F, Wang S G. Effects of nitrogen supply on photo-synthetic traits of maize. Journal of Southwest University: Natural Science Edition, 2005, 27(3): 389-392. (in Chinese)
[10] 汤继华, 谢惠玲, 黄绍敏, 胡彦民, 刘宗华, 季洪强, 寇志安. 缺氮条件下玉米自交系叶绿素含量与光合效率的变化. 华北农学报, 2005, 20(5): 10-12.
Tang J H, Xie H L, Huang S M, Hu Y M, Liu Z H, Ji H Q, Kou Z A. The changes of the content for chlorophyll and photosynthetic productivity in maize inbred lines under the low-nitrogen stress. Acta Agricultural Boreali-Sinica, 2005, 20(5): 10-12. (in Chinese)
[11] 吕丽华, 赵明, 赵久然, 陶洪斌, 王璞. 不同施氮量下夏玉米冠层结构及光合特性的变化. 中国农业科学, 2008, 41(9): 2624-2632.
Lü L H, Zhao M, Zhao J R, Tao H B, Wang P. Canopy structure and photosynthesis of summer maize under different nitrogen fertilizer application rates. Scientia Agricultura Sinica, 2008, 41(9): 2624-2632. (in Chinese)
[12] 何萍, 金继运, 林葆. 氮肥用量对春玉米叶片衰老的影响及其机理研究. 中国农业科学, 1998, 31(3): 66-71.
He P, Jin J Y, Lin B. Effect of N application rates on leaf senescence and its mechanism in spring maize. Scientia Agricultura Sinica, 1998, 31(3): 66-71. (in Chinese)
[13] 黄高宝, 张恩和, 胡恒觉. 不同玉米品种氮素营养效率差异的生态生理机制. 植物营养与肥料学报, 2001, 7(3): 293-297.
Huang G B, Zhang E H, Hu H J. Eco-physiological mechanism on nitrogen use efficiency difference of corn varieties. Plant Nutrition and Fertilizer Science, 2001, 7(3): 293-297. (in Chinese)
[14] 段巍巍, 赵红梅, 郭程瑾, 肖凯, 李雁鸣. 夏玉米光合特性对氮素用量的反应. 作物学报, 2007, 33(6): 949-954.
Duan W W, Zhao H M, Guo C J, Xiao K, Li Y M. Responses of photosynthesis characteristics to nitrogen application rates in summer maize ( Zea mays L. ). Acta Agronomica Sinica, 2007, 33(6): 949-954. (in Chinese)
[15] 李耕, 高辉远, 刘鹏, 杨吉顺, 董树亭, 张吉旺, 王敬峰. 氮素对玉米灌浆期叶片光合性能的影响. 植物营养与肥料学报, 2010, 16(3): 536-542.
Li G, Gao H Y, Liu P, Yang J S, Dong S T, Zhang J W, Wang J F. Effects of nitrogen fertilization on photosynthetic performance in maize leaf at grain filling stage. Plant Nutrition and Fertilizer Science, 2010, 16(3): 536-542. (in Chinese)
[16] 赵宏伟, 田秀珠, 王波. 差异蛋白质组学研究与应用进展. 医学与哲学: 临床决策论坛版, 2006, 27(4): 45-47.
Zhao H W, Tian X Z, Wang B. Advance in differential proteomics research and application. Medicine and Philosophy:Clinical Decision Making Forum Edition, 2006, 27(4): 45-47. (in Chinese)
[17] Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiology, 1949, 24: 1-15.
[18] Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 1992, 98: 1222-1227.
[19] Giannopolitis C N, Ries S K. Superoxide dismutases I. Occurrence in higher plants. Plant Physiology, 1977, 59: 309-314.
[20] Hodges D M, Delong J M, Forney C F, Prange R K. Improving the thiobarbituric acid-reactive-substances assay for stimating lipid pero-xidation in plant tissues containing anthocyanin and other interfering ompounds. Planta, 1999, 207: 604-611.
[21] Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254.
[22] 张志良, 瞿伟菁. 植物生理学实验指导. 北京: 高等教育出版社, 2003.
Zhang Z L, Qu W J. Laboratory Guide to Plant Physiology. Beijing: Higher Education Press, 2003. (in Chinese)
[23] Neuhoff V, Arnold N, Taube D, Erhardt W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis, 1988, 9: 255-262.
[24] 王宝山. 生物自由基与植物膜伤害. 植物生理学通讯, 1988(2): 12-16.
Wang B S. Biological free radicals and membrane damage of plants. Plant Physiology Communications, 1988(2): 12-16. (in Chinese)
[25] 刘道宏. 植物叶片的衰老. 植物生理学通讯, 1983(2): 14-19.
Liu D H. The senescence of plant leaves. Plant Physiology Communications, 1983(2): 14-19. (in Chinese)
[26] 田华, 段美洋, 王兰. 植物硝酸还原酶功能的研究进展. 中国农学通报, 2009, 25(10): 96-99.
Tian H, Duan M Y, Wang L. Research progress on nitrate reductase functions in plants. Chinese Agricultural Science Bulletin, 2009, 25(10): 96-99. (in Chinese)
[27] Amunts A, Toporik H, Borovikova A, Nelson N. Structure determination and improved model of plant photosystem I. Journal of Biological Chemistry, 2010, 285: 3478-3486.
[28] Rochaix J. Role of thylakoid protein kinases in photosynthetic acclimation. Federation of European Biochemical Societies,2007, 581: 2768-2775.
[29] Umena Y, Kawakami K, Shen J R, Kamiya N. Crystal structure of oxygenevolving photosystem II at a resolution of 1.9 A. Nature, 2011, 473: 55-60.
[30] Nishiyama Y, Allakhverdiev S I, Murata N. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochimica et Biophysica Acta-Bioenergetics, 2006, 1757: 742-749.
[31] Kanazawa A, Kramer D M. In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 12789-12794.
[32] Ishikawa K, Matsui I, Payan F, Cambillau C, Ishida H, Kawarabayasi Y, Kikuchi H, Roussel A. A hyperthermostable D-ribose-5-phosphate isomerase from Pyrococcus horikoshii characterization and three- dimensional structure. Structure, 2002, 10: 877-886.
[33] Hörtensteiner S, Feller U. Nitrogen metabolism and remobilization during senescence. Journal of Experimental Botany, 2002, 53, 927-937.
[34] Ricardo C P P, Martins I, Francisco R, Sergeant K, Pinheiro C, Campos A, Renaut J, Fevereiro P. Proteins associated with cork formation in Quercus suber L. stem tissues. Journal of Proteomics, 2011, 74: 1266-1278.
[35] Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redoxsignalling in the response of plants to abiotic stress. Plant Cell and Environment, 2012, 35: 259-270.
[36] Torres M A. ROS in biotic interactions. Plant Physiology, 2010, 138: 414-429.
[37] 刘祖贵, 陈金平, 段爱旺, 孟兆江, 张寄阳, 刘战东. 不同土壤水分处理对夏玉米叶片光合等生理特性的影响. 干旱地区农业研究, 2006, 24(1): 90-95.
Liu Z G, Chen J P, Duan A W, Meng Z J, Zhang J Y, Liu Z D. Effects of different soil moisture treatments on physiological characteristics of summer maize leaves. Agricultural Research in the Arid Areas, 2006, 24(1): 90-95. (in Chinese)
[38] 杨淑慎, 高俊凤, 李学俊. 高等植物叶片的衰老. 西北植物学报, 2001, 21(6): 1271-1277.
Yang S S, Gao J F, Li X J. Leaf senescence in higher plant. Acta Botanica Boreali-Occidentalia Sinica, 2001, 21(6): 1271-1277. (in Chinese)
[39] Wang X, Yang P, Zhang X, Xu Y, Kuang T, Shen S, He Y. Proteomic analysis of the cold stress response in the moss, Physcomitrella patens. Proteomics, 2009, 9: 4529-4538.
[40] Ruan S L, Ma H S, Wang S H, Fu Y P, Xin Y, Liu W Z, Wang F, Tong J X, Wang S Z, Chen H Z. Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed. BMC Plant Biology, 2011, 11: 34-48.
[41] Ramakrishnan Y, White S W. Ribosomal protein structures: insights into the architecture, machinery and evolution of the ribosome. Trends in Biochemical Sciences, 1998, 23(6): 208-212.
[42] Cantoni G L. S-adenosylmethionine: a new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. Journal of Biological Chemistry, 1953, 204: 403-416.
[43] Adams D O, Yang S F. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceedings of the National Academy of Sciences of the United States of America,1979, 76: 170-174.
[44] Duressa D, Soliman K M, Taylor R W, Chen D Q. Gene expression profiling in soybean under aluminum stress: genes differentially expressed between Al-tolerant and Al-sensitive genotypes. American Journal of Respiratory Cell and Molecular Biology, 2011, 1: 156-173. |