[1] 周锡跃, 徐春春, 李凤博. 世界水稻产业发展现状趋势及对我国的启示. 农业现代化研究, 2010, 31(5): 525-528.
Zhou X Y, Xu C C, Li F B. Status quo and trends of world’s rice industry development and its enlightenment to China. Research of Agricultural Modernization, 2010, 31(5): 525-528. (in Chinese)
[2] 赵可夫, 李法曾, 樊守金, 冯立田. 中国盐生植物. 植物学通报, 1999, 16(3): 201-207.
Zhao K F, Li F Z, Fan S J, Feng L T. Halophytes in China. Chinese Bulletin of Botany, 1999, 16(3): 201-207. (in Chinese)
[3] Gregorio G B, Senadhira D, Mendoza R D, Manigbas N L, Roxas J P, Guerta C Q. Progress inbreeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Research, 2002, 76: 91-101.
[4] Lin H X, Zhu M Z, Yano M, Gao J P, Liang Z W, Su W A, Hu X H, Ren Z H, Chao D Y. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theoretical and Applied Genetics, 2004, 108: 253-260.
[5] 祁栋灵. 水稻耐碱性数量座位(QTLs)初步分析[D]. 雅安: 四川农业大学, 2006.
Qi D L. Genetic and QTL analysis of alkaline tolerance in rice [D]. Yaan: Sichuan Agricultural University, 2006. (in Chinese)
[6] Thomson M J, de Ocampo M, Egdane J, Rahman M A, Sajise A G, Adorada D L, Tumimbang-Raiz E, Blumwald E, Seraj Z I, Singh R K, Gregorio G B, Ismail A M. Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice, 2010, 3: 148-160.
[7] Yoshida S, Forno D A, Cock J H, Gomez K A. Laboratory Manual for Physiological Studies of Rice. The International Rice Research Institute, Manila, Philippine: IRRI. 1976: 1-83.
[8] Doyle J J, Doyle J I. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 149-151.
[9] McCouch S R, Cho Y G, Yang M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genetics Newsletter, 1997, 14: 11-13.
[10] Flower T J. Improving crop salt tolerance. Journal of Experimental Botany,2004, 55(396): 307-319.
[11] 郑少玲, 严小龙. 盐胁迫下不同水稻基因型根中Na+和Cl-分布情况比较. 华南农业大学学报, 1996, 17(4): 24-28.
Zheng S L, Yan X L. Distribution of Na+ and Cl- in the roots of different rice genotypes under salt stress. Journal of South China Agricultural University, 1996, 17(4): 24-28. (in Chinese)
[12] Sharma S K. Mechanism of tolerance in rice varieties differing in sodicty tolerance. Plant and Soil, 1986, 93: 141-145.
[13] Koyama M L, Levesley A, Koebner R M D, Flowers T J, Yeo A R. Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiology, 2001, 125: 406-422.
[14] Bonilla P, Dvorak J, Mackill D, Deal K, Gregorio G. RFLP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philippine Agricultural Scientist, 2002, 85: 68-76.
[15] Ahmadi N, Negrao S, Katsantonis D, Frouin J, Ploux J, Letourmy P, Droc G, Babo P, Trindade H, Bruschi G, Greco R, Oliveira M M, Piffanelli P. Targeted association analysis identified japonica rice varieties achieving Na+/K+ homeostasis without the allelic make-up of the salt tolerant indica variety NonaBokra. Theoretical and Applied Genetics, 2011, 123: 881-895.
[16] Koyama M L, Levesley A, Koebner R M D, Flowers T J, Yeo A R. Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiology, 2001, 125: 406-422.
[17] Yeo A R, Yeo M E, Flowers T J. Selection of lines with high and low sodium transport from within varieties of an inbreeding species: Rice (Oryza sativa L.). New Phytologist, 1988, 110: 13-19.
[18] Garcia A, Rizzo C A, Ud-Din J, Bartos S L, Senadhira D, Flowers T J, Yeo A R. Sodium and potassium transport to the xylem are inherited independently in rice, and the mechanism of sodium: Potassium selectivity differs between rice and wheat. Plant Cell Environment, 1997, 20: 1167-1174.
[19] 孙勇, 藏金萍, 王韵, 朱苓华, Fotokian Mohammadhosein, 徐建龙, 黎志康. 利用回交导入系群体发掘水稻种质资源中的有利耐盐QTL. 作物学报, 2007(10): 1611- 1617.
Sun Y, Zang J P, Wang Y, Zhu L H, Fotokian M, Xu J L, Li Z K. Mining favorable salt tolerant QTL from rice germplasm using a backcrossing introgression line population. Acta Agronomica Sinica, 2007(10): 1611- 1617. (in Chinese)
[20] Veldboom L R, Lee M, Woodman W L. Molecular-marker facilitated studies in an elite maize population: I. Linkage analysis and determination of QTLs for morphological traits. Theoretical and Applied Genetics, 1994, 88: 7-16.
[21] Lin H X, Qian H R, Zhuang J Y, Lu J, Min S K, Xiong Z M, Huang N, Zheng K L. RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theoretical and Applied Genetics, 1996, 92: 920-927.
[22] Xiao J, Yuan L P, Tanksley S D. Identification of QTLs affecting traits of agronomic important in a recombinant inbred population derived from a subspecific rice cross. Theoretical and Applied Genetics, 1996, 92: 230-244.
[23] Temnykh S, Declerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Research, 2001, 11: 1441-1452.
[24] Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio B A, Shomura A, Shimizu T, Lin S Y, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L, Zhong H S, Tamura Y, Wang Z X, Momma T, Umehara Y, Yano M, Sasaki T, Minobe Y. A 300 kilo base interval genetic map of rice including 883 expressed sequences. Nature Genetics, 1994, 8: 365-372.
[25] Ware D, Jaiswal P, Ni J J, Pan X, Chang K. Gramene: A resource for comparative grass genomics. Nucleic Acid Research, 2002, 30: 103-105.
[26] Prasad S R, Bagali P G, Hittalmani S, Shashidhar H E. Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Current Science, 2000, 78: 162-164.
[27] 曲英萍. 水稻耐盐碱性QTLs分析[D]. 北京: 中国农业科学院, 2007.
Qu Y P. Identification of quantitative trait loci for salt and alkaline tolerance in rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2007. (in Chinese)
[28] Ammar M H M, Pandit A, Singh R K, Sameena S, Chauhan M S,Singh A K, Sharma P C, Gaikwad K, Sharma T R, Mohapatra T, Singh N K. Mapping of QTLs controlling Na+, K+ and Cl- ion concentrations in salt tolerant indica rice variety CSR27. Journal of Plant Biochemistry and Biotechnology,2009, 18: 139-150.
[29] Pandit A, Rai V, Bal S, Sinha S, Kumar V, Chauhan M, Gautam R K, Singh R, Sharma P C, Singh A K. Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Molecular Genetics and Genomics,2010, 284: 121-136.
[30] 程海涛, 姜华, 薛大伟, 郭龙彪, 曾大力, 张光恒, 钱前. 水稻芽期与幼苗前期耐碱性状QTL定位. 作物学报, 2008, 34(10): 1719-1727.
Cheng H T, Jiang H, Xue D W, Guo L B, Zeng D L, Zhang G H, Qian Q. Mapping of QTLs underlying tolerance to alkali at germination and early seedling stages in rice. Acta Agronomica Sinica, 2008, 34(10): 1719-1727. (in Chinese)
[31] 梁晶龙. 利用重组自交系群体的水稻耐盐滅性QTL定位分析[D]. 重庆: 重庆师范大学, 2013.
Liang J L. Identification of QTLs associated with salt or alkaline tolerance under salt or alkaline stress based on recombinant inbred line population in rice[D]. Chongqing: Chongqing Normal University, 2013. (in Chinese) |