[1]Chang C, Kwok S F, Bleecker A B, Meyerowitz E M. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science, 1993, 262(5133): 539-544.[2]O'Donnell P J, Calvert C, Atzorn R, Wasternack C, Leyser H M O, Bowles D J. Ethylene as a signal mediating the wound response of tomato plants. Science, 1996, 274(5294): 1914-1917.[3]Hoffman T, Schmidt J S, Zheng X, Bent A F. Isolation of ethylene-insensitive soybean mutants that are altered in pathogen susceptibility and gene for gene disease resistance. Plant Physiology, 1999, 119: 935-949.[4]Thomma B P H J, Eggermont K, Tierens K F M J, Broekaert W F. Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiology, 1999, 121: 1093-1101.[5]Knoester M, van Loon L C, van den Heuvel J, Hennig J, Bol J F, Linthorst H J M. Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95: 1933-1937.[6]Balaji V, Mayrose M, Sherf O, Jacob-Hirsch J, Eichenlaub R, Iraki N, Manulis-Sasson S, Rechavi G, Barash I, Sessa G. Tomato transcriptional changes in response to Clavibacter michiganensis subsp. michiganensis reveal a role for ethylene in disease development. Plant Physiology, 2008, 146(4): 1797-1809.[7]Jones M L, Chaffin G S, Eason J R, Clark D G. Ethylene-sensitivity regulates proteolytic activity and cysteine protease gene expression in petunia corollas. Journal of Experimental Botany, 2005, 56(420): 2733-2744.[8]Serek M, Woltering E, Sisler E, Frello S, Sriskandarajah S. Controlling ethylene responses in flowers at the receptor level. Biotechnology Advances, 2006, 24(4): 368-381.[9]Clark D G, Gubrium E K, Barrett J E, Nell T A, Klee H J. Root formation in ethylene-insensitive plants. Plant Physiology, 1999, 121(1): 53-59.[10]Gubrium E K, Clevenger D J, Clark D G, Barrett J E, Nell T A. Reproduction and horticultural performance of transgenic ethylene- insensitive petunias. Journal of America Society of Horticultural Science, 2000, 125(3): 277-281.[11]Wang H, Steir G, Lin J, Gang L, Zhang Z, Chang Y, Reid M S, Jiang C Z. Transcriptome changes associated with delayed flower senescence on transgenic petunia by inducing expression of etr1-1, a mutant ethylene receptor. PLos One, 2013, 8(7): e65800.[12]Cantu D, Vicente A R, Greve L C, Dewey F M, Bennett A B, Labavitch J M, Powell A L T. The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(3): 859-864.[13]Asselbergh B, Curvers K, França S C, Audenaert K, Vuylsteke M, Van Breusegem F, Höfte M. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiology, 2007, 144(4): 1863-1877.[14]Craft J, Samalova M, Baroux C, Townley H, Martinez A, Jepson I, Tsiantis M, Moore I. New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. The Plant Journal, 2005, 41(6): 899-918.[15]Wang H, Liu G, Li C, Powell A L, Reid M S, Zhang Z, Jiang C Z. Defence responses regulated by jasmonate and delayed senescence caused by ethylene receptor mutation contribute to the tolerance of petunia to Botrytis cinerea. Molecular Plant Pathology, 2013, 14(5): 453-469.[16]Benito E P, ten Have A, van’t Klooster J W, van Kan J A L. Fungal and plant gene expression during synchronized infection of tomato leaves by Botrytis cinerea. European Journal of Plant Pathology, 1998, 104(2): 207-220.[17]Díza J, ten Have A, van Kan J A L. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Plant Physiology, 2002, 129: 1341-1351.[18]Swartzberg D, Kirshner B, Rav-David D, Elad Y, Granot D. Botrytis cinerea induces senescence and is inhibited by autoregulated expression of the IPT gene. European Journal of Plant Pathology, 2008, 120(3): 289-297.[19]Ahkami A H, Lischewski S, Haensch K T, Porfirova S, Hofmann J, Rolletschek H, Melzer M, Franken P, Hause B, Druege U, Hajirezaei M R. Molecular physiology of adventitious root formation in Petunia hybrida cuttings: involvement of wound response and primary metabolism. New Phytologist, 2009, 181(3): 613-625.[20]Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. The Plant Journal, 2010, 64(6): 1002-1017.[21]Feys B, Benedetti C E, Penfold C N, Turner J G. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. The Plant Cell, 1994, 6: 751-759.[22]Xie D X, Feys B F, James S, Nieto-Rostro M, Turner J G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science, 1998, 280(5366): 1091-1094.[23]Lorenzo O, Piqueras R, Sanchez-Serrano J J, Solano R. Ethylene Response Factor1 integrates signals from ethylene and jasmonate pathways in plant defense. The Plant Cell, 2003, 15(1): 165-178.[24]Leon-Reyes A, Du Y, Koornneef A, Proietti S, Korbes A P, Memelink J, Pieterse C M, Ritsema T. Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Molucular Plant-Microbe Interaction, 2010, 23(2): 187-197.[25]Broekaert W F, Delaure S L, De Bolle M F, Cammue B P. The role of ethylene in host-pathogen interactions. Annual Review of Phytopathology, 2006, 44: 393-416.[26]Tsuchisaka A, Yu G X, Jin H L, Alonso J M, Ecker J R, Zhang X M, Gao S, Theologis A. A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics, 2009, 183(3): 979-1003.[27]Grbi? V, Bleecker A B. Ethylene regulates the timing of leaf senescence in Arabidopsis. The Plant Journal, 1995, 8(4): 595-602.[28]Kende H. Ethylene biosynthesis. Annual Review of Plant Physiology, 1993, 44(1): 283-307.[29]Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology, 1984, 35(1): 155-189.[30]Penninckx I A M A, Thomma B P H J, Buchala A, Métraux J P, Broekaerta W F. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. The Plant Cell, 1998, 10(12): 2103-2113.[31]Plett J M, Cvetkovska M, Makenson P, Xing T, Regan S. Arabidopsis ethylene receptors have different roles in fumonisin B1-induced cell death. Physiological and Molecular Plant Pathology, 2009, 74(1): 18-26. |