Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Asset specificity and farmers’ intergenerational succession willingness of apple management
ZHANG Qiang-qiang, GAO Xi-xi, Nazir Muhammad ABDULLAHI, WANG Yue, HUO Xue-xi
2023, 22 (8): 2553-2566.   DOI: 10.1016/j.jia.2023.04.016
Abstract153)      PDF in ScienceDirect      
Understanding the factors behind apple farmers’ willingness to pass on the management of their farms to their descendants is crucial to the continuity of apple production. Due to the high specificity of the human capital, physical assets, land assets, and geographical location in apple production, this study used a binary logistic regression and a mediating effect model to explore the impact of asset specificity on farmers’ intergenerational succession willingness of apple management (FISWAM) and to examine the mediating effects of loss aversion in the impact of asset specificity on the FISWAM. The results showed that about 18.68% of the respondents expressed willingness to transfer their apple business between generations, and the FISWAM was generally weak. In addition to the negative impact of geographical location specificity (GLS), human capital specificity (HCS), physical assets specificity (PAS), and land assets specificity (LAS) can enhance the FISWAM. Loss aversion plays a partial mediating role in the impact of PAS, LAS, and GLS on the FISWAM
Reference | Related Articles | Metrics
Volatile metabolome and transcriptome reveal fragrance release rhythm and molecular mechanisms of Rosa yangii
ZHOU Li-jun, HUANG Run-huan, LIU Ting-han, LIU Wei-chao, CHEN Yun-yi, LU Pei-feng, LUO Le, PAN Hui-tang, YU Chao, ZHANG Qi-xiang
2023, 22 (7): 2111-2125.   DOI: 10.1016/j.jia.2023.06.015
Abstract263)      PDF in ScienceDirect      
Rose is a highly significant ornamental plant with substantial edible and medicinal value, cultivated worldwide primarily for perfume production. Recently, Rosa yangii, a new species found in northwestern Yunnan, China, has drawn attention due to its strong sweet scented flowers. In this study, the floral components of R. yangii were extracted at different flowering stages using solid phase micro extraction (SPME) and analyzed through gas chromatography–mass spectrometry (GC–MS). A total of 131 volatile organic compounds (VOCs) were detected from R. yangii, including 69 odor compounds. The production and release of floral VOCs were the highest during the initial-open stage, making it the most suitable time for harvesting as a significant number of floral components were synthesized and preserved. The analysis of the odor activity values (OAV) highlighted several key aromatic ingredients of R. yangii, such as eugenol, methyleugenol, benzeneacetaldehyde and phenylethylalcohol, heptanal, decanal, (E)-2-hexen-1-yl acetate, caryophyllene, and others. Metabolome and time-order gene co-expression networks (TO-GCN) revealed that VOCs and benzenoids/phenylpropanoids, along with associated genes, played a pivotal role in the overall floral regulatory network of R. yangii. MYB and bHLH were identified as the essential regulatory factors governing the regulation of eugenol synthase (EGS) and isoeugenol synthase (IGS), consequently influencing the sweet scent of R. yangii. The findings of this study provide a scientific foundation for enhancing fragrance through molecular breeding of ornamental plants. Furthermore, the study facilitated the development and utilization of this new plant’s essential oil material in various industries, including food storage, aromatherapy, cosmetic, and perfumery.
Reference | Related Articles | Metrics
Effects of the potassium application rate on lipid synthesis and eating quality of two rice cultivars
CHEN Guang-yi, PENG Li-gong, LI Cong-mei, TU Yun-biao, LAN Yan, WU Chao-yue, DUAN Qiang, ZHANG Qiu-qiu, YANG Hong, LI Tian
2023, 22 (7): 2025-2040.   DOI: 10.1016/j.jia.2022.09.020
Abstract180)      PDF in ScienceDirect      
Lipid content has an important effect on rice eating quality, but the effects of fertilizer application rate on the lipid synthesis and eating quality of rice are not well understood. Potassium (K) has a strong influence on rice quality and the requirement for K fertilizer in rice is greater than for nitrogen (N) and phosphorus (P) fertilizers. To investigate the effects of K fertilizer on the lipid synthesis and eating quality of rice, we used Nanjing 9108 (NJ9108, japonica) and IR72 (indica) rice as experimental materials and four K levels: K0 (0 kg ha–1), K1 (90 kg ha–1), K2 (135 kg ha–1) and K3 (180 kg ha–1). The results showed that the lipid content, free fatty acid (FFA) content, unsaturated fatty acid (UFA) content, malonyl-CoA (MCA) content, phosphatidic acid (PA) content, lipid synthesis-related enzyme activities and eating quality first increased and then decreased with increasing K in both cultivars. The maximum values were obtained under K2. However, the saturated fatty acid (SFA) content showed the opposite trend. No significant differences were found in pyruvate (PYR) content among the K treatments. The protein and oxaloacetic acid (OAA) contents and phosphoenolpyruvate carboxylase (PEPCase) activity of NJ9108 first decreased and then increased with increasing K, and the minimum values were obtained under K2; while IR72 showed the opposite trend and the maximum values were obtained under K1. Overall, increasing K optimized the fatty acid components and increased the lipid content and eating quality of rice by enhancing lipid synthesis-related enzyme activities and regulating substrate competition for lipid and protein synthesis. The optimal K application rate for lipid synthesis, eating quality and grain yield was 135 kg ha–1 for both cultivars.
Reference | Related Articles | Metrics
Hole fertilization in the root zone facilitates maize yield and nitrogen utilization by mitigating potential N loss and improving mineral N accumulation
SHI Wen-xuan, ZHANG Qian, LI Lan-tao, TAN Jin-fang, XIE Ruo-han, WANG Yi-lun
2023, 22 (4): 1184-1198.   DOI: 10.1016/j.jia.2022.09.018
Abstract248)      PDF in ScienceDirect      

Reducing environmental impacts and improving N utilization are critical to ensuring food security in China.  Although root-zone fertilization has been considered an effective strategy to improve nitrogen use efficiency (NUE), the effect of controlled-release urea (CRU) applied in conjunction with normal urea in this mode is unclear.  Therefore, a 3-year field experiment was conducted using a no-N-added as a control and two fertilization modes (FF, furrow fertilization by manual trenching, i.e., farmer fertilizer practice; HF: root-zone hole fertilization by point broadcast manually) at 210 kg N ha–1 (controlled-release:normal fertilizer=5:5), along with a 1-year in-situ microplot experiment.  Maize yield, NUE and N loss were investigated under different fertilization modes.  The results showed that compared with FF, HF improved the average yield and N recovery efficiency by 8.5 and 22.3% over three years, respectively.  HF had a greater potential for application than FF treatment, which led to increases in dry matter accumulation, total N uptake, SPAD value and LAI.  In addition, HF remarkably enhanced the accumulation of 15N derived from fertilizer by 17.2% compared with FF, which in turn reduced the potential loss of 15N by 43.8%.  HF increased the accumulation of N in the tillage layer of soils at harvest for potential use in the subsequent season relative to FF.  Hence, HF could match the N requirement of summer maize, sustain yield, improve NUE and reduce environmental N loss simultaneously.  Overall, root-zone hole fertilization with blended CRU and normal urea can represent an effective and promising practice to achieve environmental integrity and food security on the North China Plain, which deserves further application and investigation.

Reference | Related Articles | Metrics
OsPPR9 encodes a DYW-type PPR protein that affects editing efficiency of multiple RNA editing sites and is essential for chloroplast development
CHEN Chang-zhao, WANG Ya-Liang, HE Meng-xing, LI Zhi-wen, SHEN Lan, LI Qing, RE De-yong, HU Jiang, ZHU Li, ZHANG Guang-heng, GAO Zhen-yu, ZENG Da-li, GUO Long-biao, QIAN Qian, ZHANG Qiang
2023, 22 (4): 972-980.   DOI: 10.1016/j.jia.2022.08.026
Abstract333)      PDF in ScienceDirect      

Photosynthesis occurs mainly in chloroplasts, whose development is regulated by proteins encoded by nuclear genes.  Among them, pentapeptide repeat (PPR) proteins participate in organelle RNA editing.  Although there are more than 450 members of the PPR protein family in rice, only a few affect RNA editing in rice chloroplasts.  Gene editing technology has created new rice germplasm and mutants, which could be used for rice breeding and gene function study.  This study evaluated the functions of OsPPR9 in chloroplast RNA editing in rice.  The osppr9 mutants were obtained by CRISPR/Cas9, which showed yellowing leaves and a lethal phenotype, with suppressed expression of genes associated with chloroplast development and accumulation of photosynthetic-related proteins.  In addition, loss of OsPPR9 protein function reduces the editing efficiency of rps8-C182, rpoC2-C4106, rps14-C80, and ndhB-C611 RNA editing sites, which affects chloroplast growth and development in rice.  Our data showed that OsPPR9 is highly expressed in rice leaves and encodes a DYW-PPR protein localized in chloroplasts.  Besides, the OsPPR9 protein was shown to interact with OsMORF2 and OsMORF9.  Together, our findings provide insights into the role of the PPR protein in regulating chloroplast development in rice. 

Reference | Related Articles | Metrics
A multiplex real-time PCR assay for simultaneous detection of classical swine fever virus, African swine fever virus and atypical porcine pestivirus
SONG Xiang-peng, XIA Ying-ju, XU Lu, ZHAO Jun-jie, WANG Zhen, ZHAO Qi-zu, LIU Ye-bing, ZHANG Qian-yi, WANG Qin
2023, 22 (2): 559-567.   DOI: 10.1016/j.jia.2022.08.115
Abstract211)      PDF in ScienceDirect      

With the implementation of the C-strain vaccine, classical swine fever (CSF) has been under control in China, which is currently in a chronic atypical epidemic situation.  African swine fever (ASF) emerged in China in 2018 and spread quickly across the country. It is presently occurring sporadically due to the lack of commercial vaccines and farmers’ increased awareness of biosafety.  Atypical porcine pestivirus (APPV) was first detected in Guangdong Province, China, in 2016, which mainly harms piglets and has a local epidemic situation in southern China.  These three diseases have similar clinical symptoms in pig herds, which cause considerable losses to the pig industry.  They are difficult to be distinguished only by clinical diagnosis.  Therefore, developing an early and accurate simultaneous detection and differential diagnosis of the diseases induced by these viruses is essential.  In this study, three pairs of specific primers and Taq-man probes were designed from highly conserved genomic regions of CSFV (5´ UTR), African swine fever virus (ASFV) (B646L), and APPV (5´ UTR), followed by the optimization of reaction conditions to establish a multiplex real-time PCR detection assay.  The results showed that the method did not cross-react with other swine pathogens (porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), foot-and-mouth disease virus (FMDV), pseudorabies virus (PRV), porcine parvovirus (PPV), and bovine viral diarrhea virus BVDV).  The sensitivity results showed that CSFV, ASFV, and APPV could be detected as low as 1 copy mL–1; the repeatability results showed that the intra-assay and inter-assay coefficient of variation of ASFV, CSFV, and APPV was less than 1%.  Twenty-two virus samples were detected by the multiplex real-time PCR, compared with national standard diagnostic and patented method assay for CSF (GB/T 27540–2011), ASF (GB/T 18648–2020), and APPV (CN108611442A), respectively.  The sensitivity of this triple real-time PCR for CSFV, ASFV, and APPV was almost the same, and the  compliance results were the same (100%).  A total of 451 clinical samples were detected, and the results showed that the positive rates of CSFV, ASFV, and APPV were 0.22% (1/451), 1.3% (6/451), and 0% (0/451), respectively.  This assay provides a valuale tool for rapid detection and accurate diagnosis of CSFV, ASFV, and APPV.

Reference | Related Articles | Metrics
A novel mutation in ACS11 leads to androecy in cucumber
WANG Jie, LI Shuai, CHEN Chen, ZHANG Qi-qi, ZHANG Hui-min, CUI Qing-zhi, CAI Guang-hua, ZHANG Xiao-peng, CHAI Sen, WAN Li, YANG Xue-yong, ZHANG Zhong-hua, HUANG San-wen, CHEN Hui-ming, SUN Jin-jing
2023, 22 (11): 3312-3320.   DOI: 10.1016/j.jia.2023.03.003
Abstract199)      PDF in ScienceDirect      

Sex determination in plants gives rise to unisexual flowers.  A better understanding of the regulatory mechanism underlying the production of unisexual flowers will help to clarify the process of sex determination in plants and allow researchers and farmers to harness heterosis.  Androecious cucumber (Cucumis sativus L.) plants can be used as the male parent when planted alongside a gynoecious line to produce heterozygous seeds, thus reducing the cost of seed production.  The isolation and characterization of additional androecious genotypes in varied backgrounds will increase the pool of available germplasm for breeding.  Here, we discovered an androecious mutant in a previously generated ethyl methanesulfonate (EMS)-mutagenized library of the cucumber inbred line ‘406’.  Genetic analysis, whole-genome resequencing, and molecular marker-assisted verification demonstrated that a nonsynonymous mutation in the ethylene biosynthetic gene 1-AMINOCYCLOPROPANE-1-CARBOXYLATE SYNTHASE 11 (ACS11) conferred androecy.  The mutation caused an amino acid change from serine (Ser) to phenylalanine (Phe) at position 301 (S301F).  In vitro enzyme activity assays revealed that this S301F mutation leads to a complete loss of enzymatic activity.  This study provides a new germplasm for use in cucumber breeding as the androecious male parent, and it offers new insights into the catalytic mechanism of ACS enzymes.

Reference | Related Articles | Metrics
Genome-wide association study for numbers of vertebrae in Dezhou donkey population reveals new candidate genes
SUN Yan, LI Yu-hua, ZHAO Chang-heng, TENG Jun, WANG Yong-hui , WANG Tian-qi, SHI Xiao-yuan, LIU Zi-wen, LI Hai-jing, WANG Ji-jing, WANG Wen-wen, NING Chao, WANG Chang-fa, ZHANG Qin
2023, 22 (10): 3159-3169.   DOI: 10.1016/j.jia.2023.04.038
Abstract284)      PDF in ScienceDirect      

Numbers of vertebrae is an important economic trait associated with body size and meat productivity in animals.  However, the genetic basis of vertebrae number in donkey remains to be well understood.  The aim of this study was to identify candidate genes affecting the number of thoracic (TVn) and the number of lumbar vertebrae (LVn) in Dezhou donkey.  A genome-wide association study was conducted using whole genome sequence data imputed from low-coverage genome sequencing.  For TVn, we identified 38 genome-wide significant and 64 suggestive SNPs, which relate to 7 genes (NLGN1, DCC, SLC26A7, TOX, WNT7A, LOC123286078, and LOC123280142).  For LVn, we identified 9 genome-wide significant and 38 suggestive SNPs, which relate to 8 genes (GABBR2, FBXO4, LOC123277146, LOC123277359, BMP7, B3GAT1, EML2, and LRP5).  The genes involve in the Wnt and TGF-β signaling pathways and may play an important role in embryonic development or bone formation and could be good candidate genes for TVn and LVn.

Reference | Related Articles | Metrics
SNP-based identification of QTLs for thousand-grain weight and related traits in wheat 8762/Keyi 5214 DH lines
HUANG Feng, LI Xuan-shuang, DU Xiao-yu, LI Shun-cheng, LI Nan-nan, LÜ Yong-jun, ZOU Shao-kui, ZHANG Qian, WANG Li-na, NI Zhong-fu, HAN Yu-lin, XING Jie-wen
2023, 22 (10): 2949-2960.   DOI: 10.1016/j.jia.2023.03.004
Abstract312)      PDF in ScienceDirect      

As important yield-related traits, thousand-grain weight (TGW), grain number per spike (GNS) and grain weight per spike (GWS) are crucial components of wheat production.  To dissect their underlying genetic basis, a double haploid (DH) population comprised of 198 lines derived from 8762/Keyi 5214 was constructed.  We then used genechip to genotype the DH population and integrated the yield-related traits TGW, GNS and GWS for QTL mapping.  Finally, we obtained a total of 18 942 polymorphic SNP markers and identified 41 crucial QTLs for these traits.  Three stable QTLs for TGW were identified on chromosomes 2D (QTgw-2D.3 and QTgw-2D.4) and 6A (QTgw-6A.1), with additive alleles all from the parent 8762, explaining 4.81–18.67% of the phenotypic variations.  Five stable QTLs for GNS on chromosomes 3D, 5B, 5D and 6A were identified.  QGns-5D.1 was from parent 8762, while the other four QTLs were from parent Keyi 5214, explaining 5.89–7.08% of the GNS phenotypic variations.  In addition, a stable GWS genetic locus QGws-4A.3 was detected from the parent 8762, which explained 6.08–6.14% of the phenotypic variations.  To utilize the identified QTLs, we developed STARP markers for four important QTLs, Tgw2D.3-2, Tgw2D.4-1, Tgw6A.1 and Gns3D.1.  Our results provide important basic resources and references for the identification and cloning of genes related to TGW, GNS and GWS in wheat.

Reference | Related Articles | Metrics
Transcriptome analysis of the spleen of heterophils to lymphocytes ratio-selected chickens revealed their mechanism of differential resistance to Salmonella
WANG Jie, ZHANG Qi, Astrid Lissette BARRETO SÁNCHEZ, ZHU Bo, WANG Qiao, ZHENG Mai-qing, LI Qing-he, CUI Huan-xian, WEN Jie, ZHAO Gui-ping
2022, 21 (8): 2372-2383.   DOI: 10.1016/S2095-3119(21)63770-X
Abstract169)      PDF in ScienceDirect      

Salmonella is one of the most common food-borne pathogens and its resistance in chicken can be improved through genetic selection.  The heterophils/lymphocytes (H/L) ratio in the blood reflects the immune system status of chicken.  We compared the genome data and spleen transcriptomes between the H/L ratio-selected and non-selected chickens, after Salmonella infection, aiming to identify the key genes participating in the antibacterial activity in the spleen.  The results revealed that, the selected population had stronger (P<0.05) liver resistance to Salmonella typhimurium (ST) than the non-selected population.  In the selected and non-selected lines, the identified differentiation genes encode proteins involved in biological processes or metabolic pathways that included the TGF-beta signaling pathway, FoxO signaling pathway, and Salmonella infection pathway.  The results of the analysis of all identified differentially expressed genes (DEGs) of spleen revealed that the G protein-coupled receptor (GPCR) and insulin-like growth factor (IGF-I) signaling pathways were involved in the Salmonella infection pathway.  Integrated analysis of DEGs and FST (fixation index), identified candidate genes involved in Salmonella infection pathway, such as GPR39, NTRK2, and ANXA1.  The extensive genomic changes highlight the polygenic genetic of the immune response in these chicken populations.  Numerous genes related to the immune performance are differentially expressed in the selected and non-selected lines and the selected lines has a higher resistance to Salmonella. 

Reference | Related Articles | Metrics
Characterization of laccase gene StLAC6 involved in the pathogenicity and peroxisome function in Setosphaeria turcica
LIU Ning, ZHANG Qian-qian, JIA Hui, ZHAO Bin, ZHU Zi-ping , CAO Zhi-yan, DONG Jin-gao
2022, 21 (7): 2019-2030.   DOI: 10.1016/S2095-3119(21)63855-8
Abstract312)      PDF in ScienceDirect      

Laccases, as a kind of multicopper oxidase, play an important role in pigment synthesis and growth in fungi and are involved in their interactions with host plants.  In Setosphaeria turcica, 9 laccase-like multicopper oxidases have been identified, and StLAC2 is involved in the synthesis of the melanin that accumulates in the cell wall.  The function of another major laccase gene, StLAC6, was studied here.  The knockout of StLAC6 had no effect on the growth, morphology or invasion ability of S. turcica, but the morphology and function of peroxisomes of knockout mutants were abnormal.  The knockout of the StLAC6 gene resulted in increased contents of phenolic compounds and melanin and the sensitivity to fungicides increased compared with wild type strains.  In the mutants of StLAC6, there is a significant change of the expression levels of other laccase genes.  This study provides a new insight into laccase functions and the relationship of the laccase gene family in plant pathogenic fungi.   

Reference | Related Articles | Metrics
HBP1 inhibits chicken preadipocyte differentiation by activating the STAT3 signaling via directly enhancing JAK2 expression
CHEN Hong-yan, CHENG Bo-han, MA Yan-yan, ZHANG Qi, LENG Li, WANG Shou-zhi, LI Hui
2022, 21 (6): 1740-1754.   DOI: 10.1016/S2095-3119(21)63895-9
Abstract319)      PDF in ScienceDirect      

Obesity presents a serious threat to human health and broiler performance.  The expansion of adipose tissue is mainly regulated by the differentiation of preadipocytes.  The differentiation of preadipocytes is a complex biological process regulated by a variety of transcription factors and signaling pathways.  Previous studies have shown that the transcription factor HMG-box protein 1 (HBP1) can regulate the differentiation of mouse 3T3-L1 preadipocytes by activating the Wnt/β-catenin signaling pathway.  However, it is unclear whether HBP1 involved in chicken preadipocyte differentiation and which signaling pathways it regulates.  The aim of the current study was to explore the biological function and molecular regulatory mechanism of HBP1 in the differentiation of chicken preadipocytes.  The expression patterns of chicken HBP1 in abdominal adipose tissue and during preadipocyte differentiation were analyzed by RT-qPCR and Western blot.  The preadipocyte stably overexpressing HBP1 or knockout HBP1 and their control cell line were used to analyze the effect of HBP1 on preadipocyte differentiation by oil red O staining, RT-qPCR and Western blot.  Cignal 45-Pathway Reporter Array was used to screen the signal pathways that HBP1 regulates in the differentiation of chicken preadipocytes.  Chemical inhibitor and siRNA for signal transducer and activator of transcription 3 (STAT3) were used to analyze the effect of STAT3 on preadipocyte differentiation.  The preadipocyte stably overexpressing HBP1 was transfected by the siRNA of STAT3 or treated with a chemical inhibitor of STAT3 for the rescue experiment.  The results of gene expression analysis showed that the expression of HBP1 was related to abdominal fat deposition and preadipocyte differentiation in chickens.  The results of function gain and loss experiments indicated that overexpression/knockout of HBP1 in chicken preadipocytes could inhibit/promote (P<0.05) lipid droplet deposition and the expression of adipogenesis-related genes.  Mechanismlly, HBP1 activates (P<0.05) the signal transducer and activator of transcription 3 (STAT3) signaling pathway by targeting janus kinase 2 (JAK2) transcription.  The results of functional rescue experiments indicated that STAT3 signaling mediated the regulation of HBP1 on chicken preadipocyte differentiation.  In conclusion, HBP1 inhibits chicken preadipocyte differentiation by activating the STAT3 signaling pathway via directly enhancing JAK2 expression.  Our findings provided new insights for further analysis of the molecular genetic basis of chicken adipose tissue growth and development.


Reference | Related Articles | Metrics
Field mold stress induced catabolism of storage reserves in soybean seed and the resulting deterioration of seed quality in the field
DENG Jun-cai, LI Xiao-man, XIAO Xin-li, WU Hai-jun, YANG Cai-qiong, LONG Xi-yang, ZHANG Qi-hui, Nasir Iqbal, WANG Xiao-chun, YONG Tai-wen, DU Jun-bo, YANG Feng, LIU Wei-guo, ZHANG Jing, WU Xiao-ling, WU Yu-shan, YANG Wen-yu, LIU Jiang
2022, 21 (2): 336-350.   DOI: 10.1016/S2095-3119(20)63594-8
Abstract204)      PDF in ScienceDirect      
Excessive rainfall provides a favorable condition for field mold infection of plants, which triggers field mold (FM) stress.  If FM stress occurs during the late maturation stage of soybean seed, it negatively affects seed yield and quality.  To investigate the responses of soybean seed against FM stress and identify the underlying biochemical pathways involved, a greenhouse was equipped with an artificial rain producing system to allow the induction of mold growth on soybean seed.  The induced quality changes and stress responses were revealed on the levels of both transcriptome and metabolome.  The results showed that soybean seeds produced under FM stress conditions had an abnormal and inferior appearance, and also contained less storage reserves, such as protein and polysaccharide.  Transcriptional analysis demonstrated that genes involved in amino acid metabolism, glycolysis, tricarboxylic acid, β-oxidation of fatty acids, and isoflavone biosynthesis were induced by FM stress.  These results were supported by a multiple metabolic analysis which exhibited increases in the concentrations of a variety of amino acids, sugars, organic acids, and isoflavones, as well as reductions of several fatty acids.  Reprogramming of these metabolic pathways mobilized and consumed stored protein, sugar and fatty acid reserves in the soybean seed in order to meet the energy and substrate demand on the defense system, but led to deterioration of seed quality.  In general, FM stress induced catabolism of storage reserves and diminished the quality of soybean seed in the field.  This study provides a more profound insight into seed deterioration caused by FM stress.
Reference | Related Articles | Metrics
Mapping and predicting a candidate gene for flesh color in watermelon
WANG Chao-nan, LUAN Fei-shi, LIU Hong-yu, Angela R. DAVIS, ZHANG Qi-an, DAI Zu-yun, LIU Shi
2021, 20 (8): 2100-2111.   DOI: 10.1016/S2095-3119(20)63487-6
Abstract177)      PDF in ScienceDirect      
The color of watermelon flesh is an important trait determined by a series of carotenoids.  Herein, we used Cream of Saskatchewan (pale yellow flesh) and PI 186490 (white flesh) as parental materials for an F2 segregation and initial mapping using the bulked segregant analysis sequencing (BSA-seq) strategy.  The BSA results revealed a flesh color-related QTL  that spans approximately 2.45 Mb on chromosome 6.  This region was preliminarily positioned in a 382-kb segment, and then narrowed down into a 66.8-kb segment with 1 260 F2 individuals.  A total of nine candidate genes were in the fine mapping interval, but only Cla007528 (encoding chlorophyllase) had non-synonymous mutations and was significantly expressed between the parental materials throughout flesh development.  We also checked the expression patterns of the carotenoid metabolic pathway genes based on RNA-seq data and qRT-PCR validation.  Three genes in the xanthophyll cycle (ClCHYB, ClNCED-1 and ClNCED-7) exhibited differential expression patterns between the two parental lines at different flesh color formation stages.  ClPSY1, ClPDS, ClZDS, ClCHXE, ClCRTISO and ClLCYB also exhibited clearly different expression patterns accompanied by carotenoid accumulation.
Reference | Related Articles | Metrics
Beneficial rhizobacterium provides positive plant–soil feedback effects to Ageratina adenophora
SUN Yuan-yuan, ZHANG Qiu-xin, ZHAO Yun-peng, DIAO Yue-hui, GUI Fu-rong, YANG Guo-qing
2021, 20 (5): 1327-1335.   DOI: 10.1016/S2095-3119(20)63234-8
Abstract123)      PDF in ScienceDirect      
Rhizosphere microbial communities play important roles in facilitating or inhibiting the establishment of exotic species.  Since some invasive plants interact with soil microbial communities such as rhizosphere bacteria, changes triggered by rhizosphere bacteria may alter competitive interactions between exotic and native plants.  This study compared the Bacillus cereus content in soils with different degrees of Ageratina adenophora invasion, and investigated the effects of A. adenophora allelochemicals on B. cereus growth and soil characteristics and the feedback effects of B. cereus on A. adenophora growth.  Bacillus cereus content in the rhizosphere of A. adenophora increased with intensification of the invasion process, and newly invaded soil contained almost twice as much bacteria as noninvaded soil.  When rhizosphere soil was added to the root exudates of A. adenophora, the contents of B. cereus were twice as much as the control, except on the first day.  Certain soil parameters increased significantly, such as ammonium nitrogen (NH4+-N) and available phosphorus (AP), which were increased by 41 and 27%, respectively.  Soil treatment with B. cereus promoted the degradation of two allelochemicals from the rhizosphere of A. adenophora, amorpha-4,7(11)-dien-8-one and 6-hydroxy-5-isopropy1-3,8-dimethyl-4a,5,6,7,8,8a-hexahydraphthalen-2(1H)-one, to varying degrees; and increased the germination rate by 50%, root length by 117%, shoot length by 48% and fresh weight by 81% for A. adenophora compared to those of untreated soil.  Our results confirmed that the invasion of A. adenophora will promote an increase of B. cereus, a beneficial rhizosphere bacterium, which in turn induces a positive feedback effect on A. adenophora.
Reference | Related Articles | Metrics
High density genetic map and quantitative trait loci (QTLs) associated with petal number and flower diameter identified in tetraploid rose
YU Chao, WAN Hui-hua, Peter M. BOURKE, CHENG Bi-xuan, LUO Le, PAN Hui-tang, ZHANG Qi-xiang
2021, 20 (5): 1287-1301.   DOI: 10.1016/S2095-3119(20)63416-5
Abstract181)      PDF in ScienceDirect      

Rose is one of the most important ornamental and economic plants in the world.  Modern rose cultivars are primarily tetraploid, and during meiosis, they may exhibit double reduction or preferential chromosome pairing.  Therefore, the construction of a high density genetic map of tetraploid rose is both challenging and instructive.  In this study, a tetraploid rose population was used to conduct a genetic analysis using genome sequencing.  A total of 17 382 single nucleotide polymorphism (SNP) markers were selected from 2 308 042 detected SNPs.  Combined with 440 previously developed simple sequence repeats (SSR) and amplified fragment length polymorphism (AFLP) markers, a marker dosage of 6 885 high quality markers was successfully assigned by GATK software in the tetraploid model.  These markers were used in the construction of a high density genetic map, containing the expected seven linkage groups with 6 842 markers, a total map length of 1 158.9 cM, and an average inter-marker distance of 0.18 cM.  Quantitative trait locus (QTL) analysis was subsequently performed to characterize the genetic architecture of petal number and flower diameter.  One major QTL (qpnum-3-1) was detected for petal number in three consecutive years, which explained 20.18–22.11% of the variation in petal number.  Four QTLs were detected for flower diameter; the main locus, qfdia-2-2, was identified in two consecutive years.  Our results will benefit the molecular marker-assisted breeding of modern rose cultivars.  In addition, this study provides a guide for the genetic and QTL analysis of autotetraploid plants using sequencing-based genotyping methods. 

Reference | Related Articles | Metrics
Fingerprinting 146 Chinese chestnut (Castanea mollissima Blume) accessions and selecting a core collection using SSR markers
NIE Xing-hua, WANG Ze-hua, LIU Ning-wei, SONG Li, YAN Bo-qian, XING Yu, ZHANG Qing, FANG Ke-feng, ZHAO Yong-lian, CHEN Xin, WANG Guang-peng, QIN Ling, CAO Qing-qin
2021, 20 (5): 1277-1286.   DOI: 10.1016/S2095-3119(20)63400-1
Abstract160)      PDF in ScienceDirect      
Chinese chestnut is an important nut tree around the world.  Although the types of Chinese chestnut resources are abundant, resource utilization and protection of chestnut accessions are still very limited.  Here, we fingerprinted and determined the genetic relationships and core collections of Chinese chestnuts using 18 fluorescently labeled SSR markers generated from 146 chestnut accessions.  Our analyses showed that these markers from the tested accessions are highly polymorphic, with an average allele number (Na) and polymorphic information content (PIC) of 8.100 and 0.622 per locus, respectively.  Using these strongly distinguishing markers, we successfully constructed unique fingerprints for 146 chestnut accessions and selected seven of the SSR markers as core markers to rapidly distinguish different accessions.  Our exploration of the genetic relationships among the five cultivar groups indicated that Chinese chestnut accessions are divided into three regional type groups: group I (North China (NC) and Northwest China (NWC) cultivar groups), group II (middle and lower reaches of the Yangtze River (MLY) cultivar group) and group III (Southeast China (SEC) and Southwest China (SWC) cultivar groups).  Finally, we selected 45 core collection members which represent the most genetic diversity of Chinese chestnut accessions.  This study provides valuable information for identifying chestnut accessions and understanding the phylogenetic relationships among cultivar groups, which can serve as the basis for efficient breeding in the future.
Reference | Related Articles | Metrics
Utilizing comprehensive decision analysis methods to determine an optimal planting pattern and nitrogen application for winter oilseed rape
DU Ya-dan, CUI Bing-jing, ZHANG Qian, SUN Jun, WANG Zhen, NIU Wen-quan
2020, 19 (9): 2229-2238.   DOI: 10.1016/S2095-3119(19)62870-4
Abstract115)      PDF in ScienceDirect      
Oilseed rape is one of the most important oil crops globally.  Attaining the appropriate cultivation method (planting pattern and nitrogen level) is necessary to achieve high yield, quality and resource utilization efficiency.  However, the optimal method for oilseed rape varies across countries and regions.  The objective of the present study was to determine an appropriate cultivation method, including planting pattern and nitrogen application, for winter oilseed rape in northwestern China.  Two planting patterns: ridge film mulching and furrow planting (RFMF) and flat planting (FP), and six nitrogen (N) amounts: 0 (N0), 60 (N60), 120 (N120), 180 (N180), 240 (N240), and 300 (N300) kg N ha–1 were applied across three growing seasons (2014–2017).  Three comprehensive decision analysis methods: principal component analysis, grey correlation degree analysis and the combined entropy weight and dynamic technique for order preference by similarity to ideal solution method were used to evaluate the growth and physiological indicators, nutrient uptake, yield, quality, evapotranspiration, and water use efficiency of winter oilseed rape.  Planting pattern, nitrogen amount and their interaction significantly affected the indicators aforementioned.  The RFMF pattern significantly increased all indicators over the FP pattern.  Application of N also markedly increased all the indicators except for seed oil content, but the yield, oil production and water use efficiency were decreased when N fertilizer exceeded 180 kg N ha–1 under FP and 240 kg N ha–1 under RFFM.  The evaluation results of the three comprehensive decision analysis methods indicated that RFMF planting pattern with 240 kg N ha–1 is an appropriate cultivation method for winter oilseed rape in northwestern China.  These findings are of vital significance to maximize yield, optimize quality and improve resource use efficiencies of winter oilseed rape.
 
Reference | Related Articles | Metrics
Identification and gene mapping of the starch accumulation and premature leaf senescence mutant ossac4 in rice
ZHU Mao-di, CHEN Xin-long, ZHU Xiao-yan, XING Ya-di, DU Dan, ZHANG Ying-ying, LIU Ming-ming, ZHANG Qiu-li, LU Xin, PENG Sha-sha, HE Guang-hua, ZHANG Tian-quan
2020, 19 (9): 2150-2164.   DOI: 10.1016/S2095-3119(19)62814-5
Abstract140)      PDF in ScienceDirect      
The rice mutant ossac4 (starch accumulating 4) was raised from seeds of the rice (Oryza sativa L.) indica maintainer line Xinong 1B treated with ethyl methanesulfonate.  The distal and medial portions of the second leaf displayed premature senescence in the ossac4 mutant at the four-leaf stage.  Physiological and biochemical analysis, and cytological examination revealed that the ossac4 mutant exhibited the premature leaf senescence phenotype.  At the four-leaf stage, the leaves of the ossac4 mutant exhibited significantly increased contents of starch compared with those of the wild type (WT).  Quantitative real-time PCR analysis showed that the expression levels of photosynthesis-associated genes were down-regulated and the expression levels of glucose metabolism-associated genes were abnormal.  Genetic analysis indicated that the ossac4 mutation was controlled by a single recessive nuclear gene.  The OsSAC4 gene was localized to a 322.7-kb interval between the simple-sequence repeat marker XYH11-90 and the single-nucleotide polymorphism marker SNP5300 on chromosome 11.  The target interval contained 20 annotated genes.  The present results demonstrated that ossac4 represents a novel starch accumulation and premature leaf senescence mutant, and lays the foundation for cloning and functional analysis of OsSAC4.
Reference | Related Articles | Metrics
The MADS-box transcription factor CmAGL11 modulates somatic embryogenesis in Chinese chestnut (Castanea mollissima Blume)
GAO Yue-rong, SUN Jia-chen, SUN Zhi-lin, XING Yu, ZHANG Qing, FANG Ke-feng, CAO Qing-qin, QIN Ling
2020, 19 (4): 1033-1043.   DOI: 10.1016/S2095-3119(20)63157-4
Abstract139)      PDF in ScienceDirect      
Somatic embryogenesis (SE) is an effective approach of in vitro regeneration that depends on plant cell totipotency. However, largely unknown of molecular mechanisms of SE in woody plants such as Chinese chestnut (Castanea mollissima Blume), limits the development of the woody plant industry. Here, we report the MADS-box transcription factor CmAGL11 in Chinese chestnut. CmAGL11 transcripts specifically accumulated in the globular embryo. Overexpression of CmAGL11 in chestnut callus enhanced its SE capacity, and the development of somatic embryos occurred significantly faster than in the control. RNA-seq results showed that CmAGL11 affects the expression of several genes related to the gibberellin, auxin, and ethylene pathways. Moreover, the analysis of DNA methylation status indicated that the promoter methylation plays a role in regulation of CmAGL11 expression during SE. Our results demonstrated that CmAGL11 plays an important role in the SE process in Chinese chestnut, possibly by regulating gibberellin, auxin, and ethylene pathways. It will help establish an efficient platform to accelerate genetic improvement and germplasm innovation in Chinese chestnut.
Reference | Related Articles | Metrics
Breeding of CMS maintainer lines through anther culture assisted by high-resolution melting-based markers
WANG Ping, BAI Yu-lu, WANG Min-xia, HU Bin-hua, PU Zhi-gang, ZHANG Zhi-yong, ZHANG Qiong, XU Deng-wu, LUO Wen-long, CHEN Zhi-qiang
2020, 19 (12): 2965-2973.   DOI: 10.1016/S2095-3119(20)63179-3
Abstract101)      PDF in ScienceDirect      
The integrated use of molecular marker-assisted selection (MAS) and anther culture has potential to significantly increase efficiency in plant breeding; however, reports on this kind of practical use are very limited.  In the present study, we report the development of cytoplasmic male sterile (CMS) maintainers with aroma, disease resistance and red-brown hulls, as an example of integration of MAS and anther culture in rice breeding.  A high-resolution melting (HRM)-based functional molecular marker was developed for the red-brown hull trait caused by a unique mutation (rbh1) in OsCAD2.  Functional molecular markers for genes of rice blast resistance (Pi2), aroma (fgr) and red-brown hull (rbh1) were used for precise genotyping of individual plants in the BC1 and BC2F2 populations derived from a cross between CMS maintainers Huaxiang B (pi2–/rbh1–/fgr–) and Rong 3B (Pi2+/RBH1+/Fgr+).  A total of 89 doubled haploid (DH) lines were generated from selected BC2F2 plants (Pi2+/rbh1–/fgr–) by anther culture.  Seven DH lines were subsequently selected as the potential new CMS maintainers based on their overall performance and high resistance to blast.  Our study demonstrated that integration of MAS and anther culture significantly accelerated the development of CMS maintainers with multiple stacked genes.
Reference | Related Articles | Metrics
Causes of maize density loss in farmers’ fields in Northeast China
ZHAO Ying-jie, XING Sen, ZHANG Qing-song, ZHANG Fu-suo, MA Wen-qi
2019, 18 (8): 1680-1689.   DOI: 10.1016/S2095-3119(18)62101-X
Abstract169)      PDF in ScienceDirect      
Increasing plant density is an effective and important way to reduce maize yield gaps in Northeast China.  However, the fact is that a significant plant density gap exists between optimum plant density and actual plant density in farmers’ fields.  To quantify the density gap between planned planting density and final harvest plant density (HPD), we studied 60 farmers’ fields on three types of soil for three crop seasons from 2015 to 2017 by measuring their plant-plant distance, actual seedlings density (ASD), final HPD and yield.  We also explored the potential causes of density loss by digging the places where the seedlings were missing for two consecutive years in 2016–2017.  Results show that the three-year average HPD in farmers’ fields was 59 699 plants ha–1, which was significantly lower than the planned density, including both the machine setting density (MSD; 67 962 plants ha–1) and theoretical plant density (TPD; 67 467 plants ha–1).  No significant difference was found in HPD between years and soil types.  However, for MSD and TPD, the average value in 2015 was significantly higher than that in 2016 and 2017.  No significant difference between soil types was observed.  Furthermore, the results from 2016 till 2017 indicated that a lack of seeds in the soil, a failure to germinate due to low-quality seeds, and a lack of seedlings breaking out of the soil due to environmental problems explained approximately 60.88, 10.33 and 28.80% of density loss, respectively.  According to our survey, 63% of farmers did not know their own TPD and HPD, and 54% of farmers did not know the density loss.  Therefore, we argue that farmers’ limited knowledge of density and density loss is an urgent problem that needs to be solved in maize production.  These observations will be useful for determining best management practices for maize production and for providing helpful suggestions for machine improvement. 
Reference | Related Articles | Metrics
Spatial-temporal evolution of vegetation evapotranspiration in Hebei Province, China
WANG Qian-feng, TANG Jia, ZENG Jing-yu, QU Yan-ping, ZHANG Qing, SHUI Wei, WANG Wu-lin, YI Lin, LENG Song
2018, 17 (09): 2107-2117.   DOI: 10.1016/S2095-3119(17)61900-2
Abstract422)      PDF in ScienceDirect      
Evapotranspiration (ET) is the sum of soil or water body evaporation and plant transpiration from the earth surface and ocean to the atmosphere, and thus plays a significant role in regulating carbon and water resource cycles.  The time-series data set from the remote sensing MOIDS product (MOD16) was used to study the spatial-temporal evolution of vegetation evapotranspiration in salinized areas during 2000–2014 by analyzing the variability, spatial patterns and Mann-Kendall (MK) nonparametric trends for the time series.  The results indicate that inter-annual and intra-annual variations of ET across various vegetated areas show seasonal changes, with the abnormal months identified.  The cultivated land displays a greater degree of spatial heterogeneity and the spatial pattern of ET in the area covered by broadleaved deciduous forests corresponds to a higher ET rate and increased water consumption.  A widespread decline of ET is observed only in cultivated areas.  However, agricultural cultivation doesn’t worsen water shortage and soil salinization problems in the region, and water shortage problems are worsening for other vegetated areas.  This research provides a basis of reference for the reasonable allocation of water resources and restructuring of vegetation patterns in salinized areas.
 
Reference | Related Articles | Metrics
Carbendazim sensitivity in populations of Colletotrichum gloeosporioides complex infecting strawberry and yams in Hubei Province of China
HAN Yong-chao, ZENG Xiang-guo, XIANG Fa-yun, ZHANG Qing-hua, GUO Cong, CHEN Feng-ying, GU Yu-chen
2018, 17 (06): 1391-1400.   DOI: 10.1016/S2095-3119(17)61854-9
Abstract539)      PDF in ScienceDirect      
The ascomycete fungus Colletotrichum gloeosporioides is a devastating plant pathogen with a wide host range and worldwide distribution.  Carbendazim has been widely used to control anthracnose caused by the C. gloeosporioides complex in China for more than 30 years and resistance to carbendazim has been reported in China.  A total of 125 Colletotrichum isolates of strawberry and yam were collected from different geographical regions in Hubei Province, China.  Approximately 52.8% of Colletotrichum spp. isolates showed resistance to carbendazim.  The isolates tested in this study belong to four species, and the frequencies of resistant isolates differed across Colletotrichum species.  Resistant isolates were found in C. siamense and C. fructicola.  In contrast, all isolates of C. gloeosporioides and C. aenigma were sensitive to carbendazim.  Highly carbendazim-resistant isolates harbored the E198A mutation in the β-tubulin 2 (TUB2) gene, whereas moderately carbendazim-resistant isolates harbored the F200Y mutation in the TUB2 gene.  Carbendazim-sensitive Colletotrichum isolates in this study were not genetically similar enough to form a separate cluster from resistant isolates.  The result of this study emphasizes the importance of knowing which Colletotrichum sp. is present, when strategies for disease control are made.
Related Articles | Metrics
Multivariate analysis between meteorological factor and fruit quality of Fuji apple at different locations in China
ZHANG Qiang, ZHOU Bei-bei, LI Min-ji, WEI Qin-ping, HAN Zhen-hai
2018, 17 (06): 1338-1347.   DOI: 10.1016/S2095-3119(17)61826-4
Abstract453)      PDF in ScienceDirect      
China has the largest apple planting area and total yield in the world, and the Fuji apple is the major cultivar, accounting for more than 70% of apple planting acreage in China.  Apple qualities are affected by meteorological conditions, soil types, nutrient content of soil, and management practices.  Meteorological factors, such as light, temperature and moisture are key environmental conditions affecting apple quality that are difficult to regulate and control.  This study was performed to determine the effect of meteorological factors on the qualities of Fuji apple and to provide evidence for a reasonable regional layout and planting of Fuji apple in China.  Fruit samples of Fuji apple and meteorological data were investigated from 153 commercial Fuji apple orchards located in 51 counties of 11 regions in China from 2010 to 2011.  Partial least-squares regression and linear programming were used to analyze the effect model and impact weight of meteorological factors on fruit quality, to determine the major meteorological factors influencing fruit quality attributes, and to establish a regression equation to optimize meteorological factors for high-quality Fuji apples.  Results showed relationships between fruit quality attributes and meteorological factors among the various apple producing counties in China.  The mean, minimum, and maximum temperatures from April to October had the highest positive effects on fruit qualities in model effect loadings and weights, followed by the mean annual temperature and the sunshine percentage, the temperature difference between day and night, and the total precipitation for the same period.  In contrast, annual total precipitation and relative humidity from April to October had negative effects on fruit quality.  The meteorological factors exhibited distinct effects on the different fruit quality attributes.  Soluble solid content was affected from the high to the low row preface by annual total precipitation, the minimum temperature from April to October, the mean temperature from April to October, the temperature difference between day and night, and the mean annual temperature.  The regression equation showed that the optimum meteorological factors on fruit quality were the mean annual temperature of 5.5–18°C and the annual total precipitation of 602–1 121 mm for the whole year, and the mean temperature of 13.3–19.6°C, the minimum temperature of 7.8–18.5°C, the maximum temperature of 19.5°C, the temperature difference of 13.7°C between day and night, the total precipitation of 227 mm, the relative humidity of 57.5–84.0%, and the sunshine percentage of 36.5–70.0% during the growing period (from April to October).
Reference | Related Articles | Metrics
Nitrous oxide emissions following seasonal freeze-thaw events from arable soils in Northeast China
CHEN Zhe, YANG Shi-qi, ZHANG Ai-ping, JING Xin, SONG Wei-min, MI Zhao-rong, ZHANG Qingwen, WANG Wen-ying, YANG Zheng-li
2018, 17 (01): 231-246.   DOI: 10.1016/S2095-3119(17)61738-6
Abstract614)      PDF in ScienceDirect      
Seasonal soil freeze-thaw events may enhance soil nitrogen transformation and thus stimulate nitrous oxide (N2O) emissions in cold regions.  However, the mechanisms of soil N2O emission during the freeze-thaw cycling in the field remain unclear.  We evaluated N2O emissions and soil biotic and abiotic factors in maize and paddy fields over 20 months in Northeast China, and the structural equation model (SEM) was used to determine which factors affected N2O production during non-growing season.  Our results verified that the seasonal freeze-thaw cycles mitigated the available soil nitrogen and carbon limitation during spring thawing period, but simultaneously increased the gaseous N2O-N losses at the annual time scale under field condition.  The N2O-N cumulative losses during the non-growing season amounted to 0.71 and 0.55 kg N ha–1 for the paddy and maize fields, respectively, and contributed to 66 and 18% of the annual total.  The highest emission rates (199.2–257.4 μg m–2 h–1) were observed during soil thawing for both fields, but we did not observe an emission peak during soil freezing in early winter.  Although the pulses of N2O emission in spring were short-lived (18 d), it resulted in approximately 80% of the non-growing season N2O-N loss.  The N2O burst during the spring thawing was triggered by the combined impact of high soil moisture, flush available nitrogen and carbon, and rapid recovery of microbial biomass.  SEM analysis indicated that the soil moisture, available substrates including NH4+ and dissolved organic carbon (DOC), and microbial biomass nitrogen (MBN) explained 32, 36, 16 and 51% of the N2O flux variation, respectively, during the non-growing season.  Our results suggested that N2O emission during the spring thawing make a vital contribution of the annual nitrogen budget, and the vast seasonally frozen and snow-covered croplands will have high potential to exert a positive feedback on climate change considering the sensitive response of nitrogen biogeochemical cycling to the freeze-thaw disturbance.   
Reference | Related Articles | Metrics
Characterization of salt tolerance and Fusarium wilt resistance of a sweetpotato mutant
ZHANG Huan, ZHANG Qian, WANG Yan-nan, LI Yan, ZHAI Hong, LIU Qing-chang, HE Shao-zhen
2017, 16 (09): 1946-1955.   DOI: 10.1016/S2095-3119(16)61519-8
Abstract720)      PDF in ScienceDirect      
   The variant LM1 was previously obtained using embryogenic cell suspension cultures of sweetpotato variety Lizixiang by gamma-ray induced mutation, and then its characteristics were stably inherited through six clonal generations, thus this mutant was named LM1. In this study, systematic characterization of salt tolerance and Fusarium wilt resistance were performed between Lizixiang and mutant LM1. LM1 exhibited significantly higher salt tolerance compared to Lizixiang. The content of proline and activities of superoxide dismutase (SOD) and photosynthesis were significantly increased, while malonaldehyde (MDA) and H2O2 contents were significantly decreased compared to that of Lizixiang under salt stress. The inoculation test with Fusarium wilt showed that its Fusarium wilt resistance was also improved. The lignin, total phenolic, jasmonic acid (JA) contents and SOD activity were significantly higher, while H2O2 content was significantly lower in LM1 than that in Lizixiang. The expression level of salt stress-responsive and disease resistance-related genes was significantly higher in LM1 than that in Lizixiang under salt and Fusarium wilt stresses, respectively. This result provides a novel and valuable material for improving the salt tolerance and Fusarium wilt resistance of sweetpotato.
Reference | Related Articles | Metrics
Extreme meteorological disaster effects on grain production in Jilin Province, China
XU Lei, ZHANG Qiao, ZHANG Jing, ZHAO Liang, SUN Wei, JIN Yun-xiang
2017, 16 (02): 486-496.   DOI: 10.1016/S2095-3119(15)61285-0
Abstract1094)      PDF in ScienceDirect      
Extreme meteorological disaster effects on grain production is mainly determined by the interaction between danger degree of hazard-induced factors and vulnerability degree of hazard-affected bodies.  This paper treats physical exposure, sensitivity of the response to the impact, and capabilities of disaster prevention and mitigation as a complex system for vulnerability degree of hazard-affected bodies, which included the external shocks and internal stability mechanism.  Hazard-induced factors generate external shocks on grain production systems though exposure and sensitivity of hazard-affected body, and the result can be represented as affected area of grain.  By quantile regression model, this paper depicts the quantitative relationship between hazard-induced factors of extreme meteorological disaster and the affected area in the tail of the distribution.  Moreover, the model of production function have also been utilized to expound and prove the quantitative relationship between the affected area and final grain output under the internal stability mechanism of the agricultural natural resources endowment, the input factors of agricultural production, and the capacity of defending disaster.  The empirical study of this paper finds that impact effects of drought disaster to grain production system presents the basic law of “diminishing marginal loss”, namely, with the constant improvement of the grade of drought, marginal affected area produced by hazard-induced factors will be diminishing.  Scenario simulation of extreme drought impact shows that by every 1% reduction in summer average rainfall, grain production of Jilin Province will fell 0.2549% and cut production of grain 14.69% eventually.  In response to ensure China’s grain security, the construction of the long-term mechanism of agricultural disaster prevention and mitigation, and the innovation of agricultural risk management tools should be also included in the agricultural policy agenda.
Reference | Related Articles | Metrics
Evaluation of selenium and carotenoid concentrations of 200 foxtail millet accessions from China and their correlations with agronomic performance
LIU Min-xuan, ZHANG Zong-wen, REN Gui-xing, ZHANG Qi, WANG Yin-yue, LU Ping
2016, 15 (7): 1449-1457.   DOI: 10.1016/S2095-3119(15)61160-1
Abstract1950)      PDF in ScienceDirect      
    As selenium and carotenoids are essential micronutrients, the determination of their concentrations in different varieties is important in the breeding of foxtail millet (Setaria italica L. P. Beauv.). To identify selenium- and carotenoid-enriched foxtail millet varieties and to analyze correlations between trace elements and agronomic traits, we measured the selenium and carotenoid concentrations of 200 Chinese accessions by high-performance liquid chromatography and atomic fluorescence spectrometry. Our analysis revealed that lutein concentration in 200 foxtail millet accessions followed normal distribution and average was 3.1 μg g–1. The mean value of zeaxanthin concentration in 200 accessions was 8.6 μg g–1. Lutein and zeaxanthin concentrations were higher in the foxtail millet from Liaoning than in varieties from other locations, with averages of 10.0 and 3.5 μg g–1, respectively. The average measured selenium concentration was 100.3 μg kg–1. The highest average selenium concentration, 110.3 μg kg–1, was found in varieties from Shanxi. Varieties from Inner Mongolia had the lowest average selenium concentration, 84.7 μg kg–1, which was significantly lower (P<0.05) than that of Shanxi. Selenium concentrations of 23 varieties were higher than 117.9 μg kg–1, accounting for 11.5% of the total, thereby were considered to be enriched in selenium. In addition, we identified 29 lutein-enriched varieties (>4.27 μg g–1) and 30 zeaxanthin-enriched ones (>12.63 μg g–1), which corresponded to 14.5 and 15% of tested accessions, respectively. Correlation analysis revealed that selenium concentration was significantly positively correlated with spikelet length (P<0.01), while zeaxanthin concentration was significantly correlated with grass weight (P<0.05) and spikelet length (P<0.01). No correlation was found between lutein concentration and agronomic characters, selenium content or zeaxanthin content. Our results should contribute substantially to the selection of suitable varieties for the development of plants with desired levels of these nutritionally important elements. These results will significantly contribute towards selection of the most suitable varieties for obtaining plants with desired levels of these nutritionally important elements.
Reference | Related Articles | Metrics
Identification of the nitrogen-fixing Pseudomonas stutzeri major flagellar gene regulator FleQ and its role in biofilm formation and root colonization
MA Yao, ZHANG Qiu-lei, YANG Zhi-min, LI Yun, YAN Yong-liang, PING Shu-zhen, ZHANG Li-wen, LIN Min, LU Wei
2016, 15 (2): 339-348.   DOI: 10.1016/S2095-3119(15)61132-7
Abstract1871)      PDF in ScienceDirect      
Flagellar biosynthesis and motility are subject to a four-tiered transcriptional regulatory circuit in Pseudomonas, and the master regulator FleQ appears to be the highest-level regulator in this hierarchical regulatory cascade. Pseudomonas stutzeri A1501 is motile by a polar flagellum; however, the motility and regulatory mechanisms involved in this process are unknown. Here, we searched the A1501 genome for flagella and motility genes and found that approximately 50 genes, which were distributed in three non-contiguous chromosomal regions, contribute to the formation, regulation and function of the flagella. The non-polar mutation of fleQ impaired flagellar biosynthesis, motility and root colonization but enhanced biofilm formation. FleQ positively regulates the expression of flagellar class II–IV genes, suggesting a regulatory cascade that is coordinated similar to that of the well-known P. aeruginosa. Based on our results, we propose that flagellar genes in P. stutzeri A1501 are regulated in a cascade regulated by FleQ and that flagellum-driven motility properties may be necessary for competitive rhizosphere colonization.
Reference | Related Articles | Metrics