Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
The PcERF5 promotes anthocyanin biosynthesis in red-fleshed pear (Pyrus communis) through both activating and interacting with PcMYB transcription factors
CHANG Yao-jun, CHEN Guo-song, YANG Guang-yan, SUN Cong-rui, WEI Wei-lin, Schuyler S. KORBAN, WU Jun
2023, 22 (9): 2687-2704.   DOI: 10.1016/j.jia.2023.07.007
Abstract225)      PDF in ScienceDirect      

As there is a strong interest in red-skinned pears, the molecular mechanism of anthocyanin regulation in red-skinned pears has been widely investigated; however, little is known about the molecular mechanism of anthocyanin regulation in red-fleshed pears due to limited availability of such germplasm, primarily found in European pears (Pyrus communis).  In this study, based on transcriptomic analysis in red-fleshed and white-fleshed pears, we identified an ethylene response factor (ERF) from Pcommunis, PcERF5, of which expression level in fruit flesh was significantly correlated with anthocyanin content.  We then verified the function of PcERF5 in regulating anthocyanin accumulation by genetic transformation in both pear skin and apple calli.  PcERF5 regulated anthocyanin biosynthesis by different regulatory pathways.  On the one hand, PcERF5 can activate the transcription of flavonoid biosynthetic genes (PcDFR, PcANS and PcUFGT) and two key transcription factors encoding genes PcMYB10 and PcMYB114.  On the other hand, PcERF5 interacted with PcMYB10 to form the ERF5-MYB10 protein complex that enhanced the transcriptional activation of PcERF5 on its target genes.  Our results suggested that PcERF5 functioned as a transcriptional activator in regulating anthocyanin biosynthesis, which provides new insights into the regulatory mechanism of anthocyanin biosynthesis.  This new knowledge will provide guidance for molecular breeding of red-fleshed pear.

Reference | Related Articles | Metrics
Development and characterization of a novel common wheat–Mexico Rye T1DL·1RS translocation line with stripe rust and powdery mildew resistance
LI Jiao-jiao, ZHAO Li, LÜ Bo-ya, FU Yu, ZHANG Shu-fa, LIU Shu-hui, YANG Qun-hui, WU Jun, LI Jia-chuang, CHEN Xin-hong
2023, 22 (5): 1291-1307.   DOI: 10.1016/j.jia.2022.08.039
Abstract421)      PDF in ScienceDirect      

Rye (Secale cereale L., 2n=2x=14, RR) is a significant genetic resource for improving common wheat because of its resistance to multiple diseases and abiotic-stress tolerant traits.  The 1RS chromosome from the German cultivated rye variety Petkus is critical in wheat breeding.  However, its weakened disease resistance highlights the need to identify new resources.  In the present study, a novel derived line called D27 was developed from common wheat and Mexico Rye.  Cytological observations characterized the karyotype of D27 as 2n=42=21 II.  Genomic in situ hybridization indicated that a pair of whole-arm translocated Mexico Rye chromosomes were inherited typically in the mitotic and meiosis stages of D27.  Experiments using fluorescence in situ hybridization (FISH) and gliadin electrophoresis showed that D27 lacked wheat 1DS chromosomes.  They were replaced by 1RS chromosomes of Mexico Rye, supported by wheat simple-sequence repeat markers, rye sequence characterized amplified region markers, and wheat 40K SNP array analysis.  The wheat 1DS chromosomes could not be detected by molecular markers and wheat SNP array, but the presence of rye 1RS chromosomes was confirmed.  Agronomic trait assessments indicated that D27 had a higher tiller number and enhanced stripe rust and powdery mildew resistance.  In addition, dough properties analysis showed that replacing 1DS led to higher viscosity and lower dough elasticity in D27, which was beneficial for cake making.  In conclusion, the novel cytogenetically stable common wheat–Mexico Rye T1DL·1RS translocation line D27 offers excellent potential as outstanding germplasm in wheat breeding programs focusing on disease resistance and yield improvement.  Additionally, it can be valuable for researching the rye 1RS chromosome’s genetic diversity. 

Reference | Related Articles | Metrics
The PcHY5 methylation is associated with anthocyanin biosynthesis and transport in ‘Max Red Bartlett’ and ‘Bartlett’ pears
WEI Wei-lin, JIANG Fu-dong, LIU Hai-nan, SUN Man-yi, LI Qing-yu, CHANG Wen-jing, LI Yuan-jun, LI Jia-ming, WU Jun
2023, 22 (11): 3256-3268.   DOI: 10.1016/j.jia.2023.07.017
Abstract204)      PDF in ScienceDirect      

The red coloring of pear fruits is mainly caused by anthocyanin accumulation.  Red sport, represented by the green pear cultivar ‘Bartlett’ (BL) and the red-skinned derivative ‘Max Red Bartlett’ (MRB), is an ideal material for studying the molecular mechanism of anthocyanin accumulation in pear.  Genetic analysis has previously revealed a quantitative trait locus (QTL) associated with red skin color in MRB.  However, the key gene in the QTL and the associated regulatory mechanism remain unknown.  In the present study, transcriptomic and methylomic analyses were performed using pear skin for comparisons between BL and MRB.  These analyses revealed differential PcHY5 DNA methylation levels between the two cultivars; MRB had lower PcHY5 methylation than BL during fruit development, and PcHY5 was more highly expressed in MRB than in BL.  These results indicated that PcHY5 is involved in the variations in skin color between BL and MRB.  We further used dual luciferase assays to verify that PcHY5 activates the promoters of the anthocyanin biosynthesis and transport genes PcUFGT, PcGST, PcMYB10 and PcMYB114, confirming that PcHY5 not only regulates anthocyanin biosynthesis but also anthocyanin transport.  Furthermore, we analyzed a key differentially methylated site between MRB and BL, and found that it was located in an intronic region of PcHY5.  The lower methylation levels in this PcHY5 intron in MRB were associated with red fruit color during development, whereas the higher methylation levels at the same site in BL were associated with green fruit color.  Based on the differential expression and methylation patterns in PcHY5 and gene functional verification, we hypothesize that PcHY5, which is regulated by methylation levels, affects anthocyanin biosynthesis and transport to cause the variations in skin color between BL and MRB.

Reference | Related Articles | Metrics
Editorial — Germplasm and molecular breeding in horticultural crops
WU Jun, GUAN Qing-mei, WANG Li-rong, LUAN Fei-shi, DUAN Qiao-hong, SONG Chuan-kui
2023, 22 (11): 3237-3243.   DOI: 10.1016/j.jia.2023.10.041
Abstract171)      PDF in ScienceDirect      
Related Articles | Metrics
Rapid identification of Psathyrostachys huashanica Keng chromosomes in wheat background based on ND-FISH and SNP array methods
LI Jia-chuang, LI Jiao-jiao, ZHAO Li, ZHAO Ji-xin, WU Jun, CHEN Xin-hong, ZHANG Li-yu, DONG Pu-hui, WANG Li-ming, ZHAO De-hui, WANG Chun-ping, PANG Yu-hui
2023, 22 (10): 2934-2948.   DOI: 10.1016/j.jia.2023.02.001
Abstract242)      PDF in ScienceDirect      

Psathyrostachys huashanica Keng (2n=2x=14, NsNs) is regarded as a valuable wild relative species for common wheat cultivar improvement because of its abundant beneficial agronomic traits.  However, although the development of many wheat–Phuashanica-derived lines provides a germplasm base for the transfer of excellent traits, the lag in the identification of Phuashanica chromosomes in the wheat background has limited the study of these lines.  In this study, three novel nondenaturing fluorescence in situ hybridization (ND-FISH)-positive oligo probes were developed.  Among them, HS-TZ3 and HS-TZ4 could specifically hybridize with Phuashanica chromosomes, mainly in the telomere area, and HS-CHTZ5 could hybridize with the chromosomal centromere area.  We sequentially constructed a Phuashanica FISH karyotype and idiogram that helped identify the homologous groups of introduced Phuashanica chromosomes.  In detail, 1Ns and 2Ns had opposite signals on the short and long arms, 3Ns, 4Ns, and 7Ns had superposed two-color signals, 5Ns and 6Ns had fluorescent signals only on their short arms, and 7Ns had signals on the intercalary of the long arm.  In addition, we evaluated different ways to identify alien introgression lines by using low-density single nucleotide polymorphism (SNP) arrays and recommended the SNP homozygosity rate in each chromosome as a statistical pattern.  The 15K SNP array is widely applicable for addition, substitution, and translocation lines, and the 40K SNP array is the most accurate for recognizing transposed intervals between wheat and alien chromosomes.  Our research provided convenient methods to distinguish the homologous group of Phuashanica chromosomes in a common wheat background based on ND-FISH and SNP arrays, which is of great significance for efficiently identifying wheat–Phuashanica-derived lines and the further application of Ns chromosomes

Reference | Related Articles | Metrics
Evaluation of the early defoliation trait and identification of resistance genes through a comprehensive transcriptome analysis in pears
SHAN Yan-fei, LI Meng-yan, WANG Run-ze, LI Xiao-gang, LIN Jing, LI Jia-ming, ZHAO Ke-jiao, WU Jun
2023, 22 (1): 120-138.   DOI: 10.1016/j.jia.2022.08.040
Abstract303)      PDF in ScienceDirect      

Early defoliation, which usually occurs during summer in pear trees, is gradually becoming a major problem that poses a serious threat to the pear industry in southern China.  However, there is no system for evaluating the responses of different cultivars to early defoliation, and our knowledge of the potential molecular regulation of the genes underlying this phenomenon is still limited.  In this study, we conducted field investigations of 155 pear accessions to assess their resistance or susceptibility to early defoliation.  A total of 126 accessions were found to be susceptible to early defoliation, and only 29 accessions were resistant.  Among them, 19 resistant accessions belong to the sand pear species (Pyrus pyrifolia).  To identify the resistance genes related to early defoliation, the healthy and diseased samples of two sand pear accessions, namely, the resistant early defoliation accession ‘Whasan’ and the susceptible early defoliation accession ‘Cuiguan’, were used to perform RNA sequencing.  Compared with ‘Cuiguan’, a total of 444 genes were uniquely differentially expressed in ‘Whasan’.  Combined with GO and KEGG enrichment analyses, we found that early defoliation was closely related to the stress response.  Furthermore, a weighted gene co-expression network analysis revealed a high correlation of WRKY and ethylene responsive factor (ERF) transcription factors with early defoliation resistance.  This study provides useful resistant germplasm resources and new insights into potentially essential genes that respond to early defoliation in pears, which may facilitate a better understanding of the resistance mechanism and molecular breeding of resistant pear cultivars

Reference | Related Articles | Metrics
Comparative transcriptome analysis provides insights into the mechanism of pear dwarfing
TANG Zi-kai, SUN Man-yi, LI Jia-ming, SONG Bo-bo, LIU Yue-yuan, TIAN Yi-ke, WANG Cai-hong, WU Jun
2022, 21 (7): 1952-1967.   DOI: 10.1016/S2095-3119(21)63774-7
Abstract279)      PDF in ScienceDirect      
Dwarfism is an important trait which is closely related to the efficiency of fruit orchard management and production.  However, dwarfing cannot be widely applied in the cultivation of pears, especially Asian pears.  Developing varieties with dwarf characteristics is a goal of paramount importance in pear breeding.  In the present study, dwarf phenotype pears (DPPs) and arborescent phenotype pears (APPs) were obtained from the offspring of a cross between ‘Aiyuxiang’ and ‘Cuiguan’ pear cultivars, which exhibited dwarfed and arborescent statures, respectively.  When compared with APPs, the heights of DPPs showed a 62.8% reduction, and the internode lengths were significantly shorter.  Cross-grafting between DPPs and APPs demonstrated that the dwarfed phenotype of DPPs was primarily induced by the aerial portions of the plant, and independent of the root system.  Observations of stem tissue sections showed that DPP cells were arranged chaotically with irregular shapes, and the average length was larger than that of the APP cells.  A total of 1 401 differently expressed genes (DEGs) in shoot apices between DPPs and APPs were identified by RNA-sequencing (RNA-Seq), and these DEGs were mainly enriched in the ‘phytohormone-related pathways, cell wall metabolism and cell division’ categories.  Moreover, 101 DEGs were identified as transcription factors (TFs).  In DPPs, several brassinosteroids (BR) signaling and cell cycle-related genes were significantly down-regulated, while genes involved in BR and GA degradation were up-regulated.  Comprehensive analysis of RNA-Seq data and stem tissue sections suggested that the dwarfed phenotype of DPPs could be primarily attributed to deficiencies in cell division.  Previous work using simple sequence repeat (SSR) markers narrowed the location of the gene responsible for the dwarf phenotype of ‘Le Nain Vert’.  Through combined analysis of our transcriptomic data with the SSR results, we identified four genes as promising candidates for the dwarf phenotype, among which, a DELLA gene could be the most promising.  The results presented in this study provide a sound foundation for further exploration into the genetic and molecular mechanisms underlying pear dwarfing.
Reference | Related Articles | Metrics
Identification of genetic locus with resistance to take-all in the wheat-Psathyrostachys huashanica Keng introgression line H148
BAI Sheng-sheng, ZHANG Han-bing, HAN Jing, WU Jian-hui, LI Jia-chuang, GENG Xing-xia, LÜ Bo-ya, XIE Song-feng, HAN De-jun, ZHAO Ji-xin, YANG Qun-hui, WU Jun, CHEN Xin-hong
2021, 20 (12): 3101-3113.   DOI: 10.1016/S2095-3119(20)63340-8
Abstract266)      PDF in ScienceDirect      
Take-all is a devastating soil-borne disease of wheat (Triticum aestivum L.).  Cultivating resistant line is an important measure to control this disease.  Psathyrostachys huashanica Keng is a valuable germplasm resource with high resistance to take-all.  This study reported on a wheat-P. huashanica introgression line H148 with improved take-all resistance compared with its susceptible parent 7182.  To elucidate the genetic mechanism of resistance in H148, the F2 genetic segregating population of H148×XN585 was constructed.  The mixed genetic model analysis showed that the take-all resistance was controlled by two major genes with additive, dominant and epistasis effects.  Bulked segregant analysis combined with wheat axiom 660K genotyping array analysis showed the polymorphic SNPs with take-all resistance from P. huashanica alien introgression were mainly distributed on the chromosome 2A.  Genotyping of the F2 population using the KASP marker mapped a major QTL in an interval of 68.8–70.1 Mb on 2AS.  Sixty-two genes were found in the target interval of the Chinese Spring reference genome sequence.  According to the functional annotation of genes, two protein genes that can improve the systematic resistance of plant roots were predicted as candidate genes.  The development of wheat-P. huashanica introgression line H148 and the resistant QTL mapping information are expected to provide some valuable references for the fine mapping of disease-resistance gene and development of take-all resistant varieties through molecular marker-assisted selection.
Reference | Related Articles | Metrics
Performance and transcriptomic response of the English grain aphid, Sitobion avenae, feeding on resistant and susceptible wheat cultivars
LAN Hao, ZHANG Zhan-feng, WU Jun, CAO He-he, LIU Tong-xian
2021, 20 (1): 178-190.   DOI: 10.1016/S2095-3119(20)63349-4
Abstract131)      PDF in ScienceDirect      
Plant resistance against insects mainly depends on nutrient restriction and toxic metabolites, but the relative importance of nutrition and toxins remains elusive.  We examined performance, nutrition ingestion, and transcriptome response of the English grain aphid, Sitobion avenae, feeding on resistant Xiaoyan 22 (XY22) and susceptible Xinong 979 (XN979) wheat cultivars.  Aphids had lower body weight and fecundity when feeding on XY22 than on XN979, although the phloem sap of XY22 had a higher nutritive quality (in terms of amino acid:sucrose ratio).  Aphids feeding on XY22 also had a lower honeydew excretion rate than those on XN979, suggesting that aphids ingested less phloem sap from XY22.  The transcriptome data showed 600 differentially expressed genes (DEGs), and 11 of the top 20 KEGG pathways significantly enriched in DEGs were involved in nutrient metabolism.  We found 81 DEGs associated with the metabolism of sugars, lipids, and amino acids, 59 of which were significantly downregulated in aphids feeding on XY22.  In contrast, there were 18 DEGs related to detoxifying metabolism, namely eight UDP-glucuronosyltransferases, six cytochromes P450 monooxygenases, one glutathione S-transferase, two ATP-binding cassette transporters, and one major facilitator superfamily transporter; 12 of these were upregulated in the aphids feeding on XY22.  Our results indicated that both the quantity and quality of phloem nutrition available to aphids are critical for the growth and development of aphids, and the higher resistance of XY22 is mainly due to the reduction in phloem sap ingested by aphids, rather than toxic metabolites.
 
Reference | Related Articles | Metrics
Pearprocess: A new phenotypic tool  for stone cell trait evaluation in pear fruit
XUE Yong-song, XU Shao-zhuo, XUE Cheng, WANG Run-ze, ZHANG Ming-yue, LI Jia-ming, ZHANG Shao-ling, WU Jun
2020, 19 (6): 1625-1634.   DOI: 10.1016/S2095-3119(20)63193-8
Abstract111)      PDF in ScienceDirect      
The content of stone cells is an important factor for pear breeding as a high content indicates severely reduced fruit quality in terms of fruit taste.  Although the frozen-HCl method is currently a common method used to evaluate stone cell content in pears, it is limited in incomplete separation of stone cell and pulp and is time consuming and complicated.  Computer-aided research is a promising strategy in modern scientific research for phenotypic data collection and is increasingly used in studying crops.  Thus far, we lack a quantitative tool that can effectively determine stone cell content in pear fruit.  We developed a program, Pearprocess, based on an imaging protocol using computer vision and image processing algorithms applied to digital images.  Using photos of hand-cut sections of pear fruit stained with phloroglucin-HCl (Wiesner’s reagent), Pearprocess can extract and analyze image-based data to quantify the stone cell-related traits measured in this study: number, size, area and density of stone cell.  We quantified these traits for 395 pear accessions by Pearprocess and revealed large variation in different pear varieties and species.  The number of stone cells varied greatly from value of 138 to 2 866, the density of stone cells ranged from 0.0019 to 0.0632 cm2 cm–2, the distribution of stone cell area ranged from 0.06 to 2.02 cm2, and the stone cell size was between 2e-4 and 1e-3 cm2.  Moreover, trait data were correlated with fruit taste data.  We found that stone cell density is likely the most important factor affecting the taste of pear fruit.  In summary, Pearprocess is a new cost-effective web-application for semi-automated quantification of two-dimensional phenotypic traits from digital imagery using an easy imaging protocol.  This simpler, feasible and accurate method to evaluate stone cell traits of fruit is a promising new tool for use in evaluating future germplasms for crop breeding programs.
 
Reference | Related Articles | Metrics
Insecticide resistance of the field populations of oriental armyworm, Mythimna separata (Walker) in Shaanxi and Shanxi provinces of China
ZHAO Yu-yu, SU Li, LI Shuai, LI Yi-ping, XU Xiang-li, CHENG Wei-ning, WANG Yi, WU Jun-xiang
2018, 17 (07): 1556-1562.   DOI: 10.1016/S2095-3119(17)61787-8
Abstract518)      PDF in ScienceDirect      
Resistance of five field populations of Mythimna separata (Walker) collected from Shaanxi and Shanxi provinces of China to six different insecticides was evaluated by leaf dip method in the laboratory.  The results showed that all populations were relatively sensitive to emamectin benzoate with a resistance ratio (RR) of 0.583–1.583 folds.  All populations showed susceptible or low level resistance to chlorantraniliprole and beta-cypermethrin.  Compared with a relatively susceptible strain of M. separata, the resistance level of the whole populations ranged from susceptible to moderate to chlorpyrifos and lambda-cyhalothrin, moderate to high to phoxim (RR=19.367–70.100) except for population from Sanyuan County (RR=2.567).  Pair-wise correlation analysis among different insecticides indicated that chlorpyrifos has a significantly positive and significant correlation with emamectin benzoate.  Chlorantraniliprole didn’t have significant correlation with emamectin benzoate, chlorpyrifos and phoxim.  Therefore, emamectin benzoate, chlorantraniliprole and beta-cypermethrin are recommended to control oriental armyworm.  Meanwhile, to postpone the occurrence and development of insecticide resistance in Shaanxi and Shanxi provinces, alternative and rotational application of insecticides between chlorantraniliprole and emamectin benzoate or chlorpyrifos is necessary.
 
Reference | Related Articles | Metrics
Effects of constant and stage-specific-alternating temperature on the survival, development and reproduction of the oriental armyworm, Mythimna separata (Walker) (Lepidoptera: Noctuidae)
LI Bo-liao, XU Xiang-li, JI Jia-yue, WU Jun-xiang
2018, 17 (07): 1545-1555.   DOI: 10.1016/S2095-3119(17)61841-0
Abstract479)      PDF in ScienceDirect      
Migratory insects make diverse adaptive strategies in response to changes in external environment.  Temperature has an impact on the survival, development, reproduction, and migration initiation of insects.  Previous research has primarily been focused on the effects of constant temperature on populations, but changing temperature has received less attention.  Three constant temperature treatments (20, 25 and 30°C) and three pupal-alternating temperature treatments (20–25, 25–20 and 25–30°C) were set up to study the relationship between temperature and population development by age-stage, two-sex life table analysis in the oriental armyworm, Mythimna separata Walker, a notorious migratory pest in grain crops.  The 25°C treatment was considered optimal with 20 and 30°C as low suitable temperature and high temperatures, respectively.  The survival rate was relatively low before third instar larvae at  20°C (63.0%) and 20–25°C (70.1%), and extreme low after pupal stage at 30°C (20.6%).  Developmental duration of each stage was negatively correlated with temperature.  The adult pre-oviposition period, when most migratory insects initiate migration, was the shortest at 25°C (2.69 d) but was lengthened at both low suitable (7.48 d for 20°C, 6.91 d for 25–20°C and 4.57 d for 20–25°C) and high temperatures (3.74 d for 25–30°C and 5.00 d for 30°C).  Both low suitable and high temperature decreased lifetime fecundity, net reproductive rate and the intrinsic rate of increase, with variability observed across developmental duration and stage during non-optimal temperature.  The results expand knowledge of the relationship between changing temperature and armyworm population development, and adaptive strategies in complex ambient environment.
Reference | Related Articles | Metrics
Association of host plant growth and weed occurrence with armyworm (Mythimna separata) damage in corn fields
ZHANG Kun-peng, YU Zhi-hao, JIANG Shi-xiong, SUN De-wen, HUI Jun-tao, ZHENG Yu-liang, LI Xiao-zhen, WANG Xing-yun, WU Jun-xiang
2018, 17 (07): 1538-1544.   DOI: 10.1016/S2095-3119(17)61857-4
Abstract279)      PDF in ScienceDirect      
To clarify association between armyworm (Mythimna separata) damage level and the corn growth and weed occurrence, we investigated corn plant height, stem diameter and vigor as well as weed coverage and biomass.  The investigations were conducted at three locations of Shaanxi Province, China which were suffered seriously from armyworm.  Significant correlations were found between the parameters analyzed.  At stunted corn growth and presence of plenty of weeds, the armyworm damage tended to be heavy; oppositely, when corn grew well and weed density were low, armyworm harm was the minimal.  Therefore, corn growing status and weed density can significantly affect armyworm damage level.  Our results imply that promoting corn growth and timely removal of weeds are conducive to reducing armyworm occurrence.
 
Reference | Related Articles | Metrics
Differential expressions among five Waxy alleles and their effects on the eating and cooking qualities in specialty rice cultivars
ZHOU Li-jie, SHENG Wen-tao, WU Jun, ZHANG Chang-quan, LIU Qiao-quan, DENG Qi-yun
2015, 14 (6): 1153-1162.   DOI: 10.1016/S2095-3119(14)60850-9
Abstract2166)      PDF in ScienceDirect      
Eating and cooking qualities (ECQs) of rice are important attributes due to its major influence on consumer acceptability. To better understand the molecular mechanism of the variation in ECQs, we investigated and compared the expressions among different alleles of the Waxy (Wx) gene and its effect on ECQs in specialty rice cultivars. The results showed that the accumulation of amylose was positively and significantly correlated to the level of mature Wx mRNA and granule-bound starch synthase I (GBSS I) in developing rice grain at 12 days after flowering. The amount of GBSS I and its activity together are the main factors controlling amylose synthesis. Differences in ECQs among five Wx allele types were investigated in samples from 15 rice varieties. The apparent amylose content (AAC) and gel consistency (GC) were similar in each type of Wx allele. The AAC followed the order, Wxa type>Wxin type>Wxb type>Wxmq type>wx. Contrary to this, the GC showed an opposite trend compared to AAC. There was a wide variation in rapid visco analyzer (RVA) profile among five Wx allele types, while varieties sharing a specified Wx allele had basically the similar RVA profile, although there was a slight difference in some RVA parameters, peak, hot paste and cool paste viscosities.
Reference | Related Articles | Metrics
Molecular Characterization, Expression Patterns and Binding Properties of Two Pheromone-Binding Proteins from the Oriental Fruit Moth, Grapholita molesta (Busck)
SONG Yue-qin, DONG Jun-feng, QIAO Hui-li , WU Jun-xiang
2014, 13 (12): 2709-2720.   DOI: 10.1016/S2095-3119(13)60686-3
Abstract1459)      PDF in ScienceDirect      
Insect pheromone-binding proteins (PBPs) play important roles in transporting hydrophobic pheromone components across the sensillum lymph to the surface of olfactory receptors (ORs). However, the PBPs of the oriental fruit moth, Grapholita molesta, an important destructive pest of stone fruits worldwide, are not well characterized. In this study, two new putative PBP genes, GmolPBP2 and GmolPBP3, were identified from G. molesta antennae. The deduced amino-acid sequences of these two putative PBP genes are characteristic of the odorant binding protein family, containing six conserved cysteine residues. The genomic DNA sequence of each gene contained two introns. However, the lengths and positions of the introns differed. RT-PCR analyses revealed that the two GmolPBP genes are only expressed in the antennae of female and male moths. Quantitative real-time PCR indicated that the transcription levels of GmolPBP2 are far greater than those of GmolPBP3 in both female and male antennae. GmolPBP3 showed higher transcription levels in female antennae than in male antennae, while GmolPBP2 showed similar transcription levels in both female and male antennae. The transcript levels of both genes were significantly different in premating and post-coitum individuals, implying that mating affects the process of sex pheromone reception. To better understand the functions, two GmolPBPs were expressed in Escherichia coli, and the ligand binding assays were conducted. Results showed that GmolPBP2 has strong binding affinities to two sex pheromone components, E8-12:Ac and Z8-12:Ac, as well as weaker binding affinities to Z8-12:OH and 12:OH. GmolPBP2 also bound some ordinary odor molecules. However, the affinity of GmolPBP3 to both sex pheromones and ordinary odor molecules was very weak. These results show that GmolPBP2 plays the main role in pheromone discrimination and recognition in the oriental fruit moth.
Reference | Related Articles | Metrics