Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
The Clausena lansium genome provides new insights into alkaloid diversity and the evolution of the methyltransferase family
Yongzan Wei, Yi Wang, Fuchu Hu, Wei Wang, Changbin Wei, Bingqiang Xu, Liqin Liu, Huayang Li, Can Wang, Hongna Zhang, Zhenchang Liang, Jianghui Xie
2024, 23 (10): 3537-3553.   DOI: 10.1016/j.jia.2024.07.043
Abstract101)      PDF in ScienceDirect      
Wampee (Clausena lansium) is an important evergreen fruit tree native to southern China that has a long history of use for medicinal purposes.  Here, a chromosome-level genome of Clansium was constructed with a genome size of 282.9 Mb and scaffold N50 of 30.75 Mb.  The assembled genome contains 48.70% repetitive elements and 24,381 protein-coding genes.  Comparative genomic analysis showed that Clansium diverged from Aurantioideae 15.91–24.95 million years ago.  Additionally, some expansive and specific gene families related to methyltransferase activity and S-adenosylmethionine-dependent methyltransferase activity were also identified.  Further analysis indicated that N-methyltransferase (NMT) is mainly involved in alkaloid biosynthesis and O-methyltransferase (OMT) participates in the regulation of coumarin accumulation in wampee.  This suggested that wampee’s richness in alkaloids and coumarins might be due to the gene expansions of NMT and OMT.  The tandem repeat event was one of the major reasons for the NMT expansion.  Hence, the reference genome of Clansium will facilitate the identification of some useful medicinal compounds from wampee resources and reveal their biosynthetic pathways.


Reference | Related Articles | Metrics
Comprehensive analysis of the full-length transcripts and alternative splicing involved in clubroot resistance in Chinese cabbage
SU He-nan, YUAN Yu-xiang, YANG Shuang-juan, WEI Xiao-chun, ZHAO Yan-yan, WANG Zhi-yong, QIN Liu-yue, YANG Zhi-yuan, NIU Liu-jing, LI Lin, ZHANG Xiao-wei
2023, 22 (11): 3284-3295.   DOI: 10.1016/j.jia.2022.09.014
Abstract197)      PDF in ScienceDirect      

Chinese cabbage is an economically important Brassica vegetable worldwide, and clubroot, which is caused by the soil-borne protist plant pathogen Plasmodiophora brassicae is regarded as a destructive disease to Brassica crops.  Previous studies on the gene transcripts related to Chinese cabbage resistance to clubroot mainly employed RNA-seq technology, although it cannot provide accurate transcript assembly and structural information.  In this study, PacBio RS II SMRT sequencing was used to generate full-length transcriptomes of mixed roots at 0, 2, 5, 8, 13, and 22 days after Pbrassicae infection in the clubroot-resistant line DH40R.  Overall, 39 376 high-quality isoforms and 26 270 open reading frames (ORFs) were identified from the SMRT sequencing data.  Additionally, 426 annotated long noncoding RNAs (lncRNAs), 56 transcription factor (TF) families, 1 883 genes with poly(A) sites and 1 691 alternative splicing (AS) events were identified.  Furthermore, 1 201 of the genes had at least one AS event in DH40R.  A comparison with RNA-seq data revealed six differentially expressed AS genes (one for disease resistance and five for defensive response) that are potentially involved in Pbrassicae resistance.  The results of this study provide valuable resources for basic research on clubroot resistance in Chinese cabbage.

Reference | Related Articles | Metrics
Fingerprinting 146 Chinese chestnut (Castanea mollissima Blume) accessions and selecting a core collection using SSR markers
NIE Xing-hua, WANG Ze-hua, LIU Ning-wei, SONG Li, YAN Bo-qian, XING Yu, ZHANG Qing, FANG Ke-feng, ZHAO Yong-lian, CHEN Xin, WANG Guang-peng, QIN Ling, CAO Qing-qin
2021, 20 (5): 1277-1286.   DOI: 10.1016/S2095-3119(20)63400-1
Abstract160)      PDF in ScienceDirect      
Chinese chestnut is an important nut tree around the world.  Although the types of Chinese chestnut resources are abundant, resource utilization and protection of chestnut accessions are still very limited.  Here, we fingerprinted and determined the genetic relationships and core collections of Chinese chestnuts using 18 fluorescently labeled SSR markers generated from 146 chestnut accessions.  Our analyses showed that these markers from the tested accessions are highly polymorphic, with an average allele number (Na) and polymorphic information content (PIC) of 8.100 and 0.622 per locus, respectively.  Using these strongly distinguishing markers, we successfully constructed unique fingerprints for 146 chestnut accessions and selected seven of the SSR markers as core markers to rapidly distinguish different accessions.  Our exploration of the genetic relationships among the five cultivar groups indicated that Chinese chestnut accessions are divided into three regional type groups: group I (North China (NC) and Northwest China (NWC) cultivar groups), group II (middle and lower reaches of the Yangtze River (MLY) cultivar group) and group III (Southeast China (SEC) and Southwest China (SWC) cultivar groups).  Finally, we selected 45 core collection members which represent the most genetic diversity of Chinese chestnut accessions.  This study provides valuable information for identifying chestnut accessions and understanding the phylogenetic relationships among cultivar groups, which can serve as the basis for efficient breeding in the future.
Reference | Related Articles | Metrics
Ultrastructural studies of seed coat and cotyledon during rapeseed maturation
CAO Jian-bo, HE Li-min, Chinedu Charles NWAFOR, QIN Li-hong, ZHANG Chun-yu, SONG Yan-tun, HAO Rong
2021, 20 (5): 1239-1249.   DOI: 10.1016/S2095-3119(20)63189-6
Abstract118)      PDF in ScienceDirect      
Brassica napus L. (B. napus) is an important oil crop worldwide and it rapidly accumulates oil at late stage of seed maturation. However, little is known about the cellular mechanism of oil accumulation and seed color changes during the late stage of rapeseed development.  Here, we analyzed the ultrastructure of seed coat, aleurone and cotyledon in embryos of B. napus from 25 to 70 days after flowering (DAF).  The pigments, which were deposited on the cell wall of palisade cells in seed coat, determined dark black color of rapeseed.  The chloroplasts degenerated into non-photosynthetic plastids which caused the green cotyledon to turn into yellow.  The chloroplasts in aleurone and cotyledon cells respectively degenerated into remnants without inner and outer envelope membranes and ecoplasts with intact inner and outer envelope membranes.  From 40 to 70 DAF, there were degraded chloroplasts without thylakoid, oil bodies contacting with plastids or protein bodies, big starch deposits of chloroplasts degrading into small particles then disappearing, and small endoplasmic reticulum (ER) in aleurone and cotyledon cells.  Additionally, there were decreases of chlorophyll content and dramatic increases of oil content in rapeseed.  These results suggested that the rapid oil accumulation was independent on the NADPH synthesized by photosynthesis of chloroplasts and probably utilized other sources of reductant, such as the oxidative pentose phosphate pathway during the late stage of rapeseed development.  The triacylglycerol assembly presumably utilizes the enzymes in the plastid, cytosol or oil body of cotyledon and aleurone cells.
Reference | Related Articles | Metrics
The impact of the New Rural Cooperative Medical Scheme on the “health poverty alleviation” of rural households in China
QIN Li-jian, Chien-ping CHEN, LI Yu-heng, SUN Yan-ming, CHEN Hong
2021, 20 (4): 1068-1079.   DOI: 10.1016/S2095-3119(20)63372-X
Abstract138)      PDF in ScienceDirect      
This study investigates the impact of the New Rural Cooperative Medical Scheme (NRCMS) on rural households to escape poverty.  We employ the instrumental variable method, the IVProbit model, to analyze the national data from the rural-resident field survey by the China Family Panel Studies (CFPS) in 2016.  Based on the large-scale data, we found that, first, the hospitalization of family members is the key factor in increasing the risk of the family falling into poverty.  The NRCMS has significantly reduced the likely risk of falling into poverty.  Second, the impact of the NRCMS on poverty alleviation varies among groups with different levels of income.  There is no impact on the upper-middle and high-income groups; in contrast, the NRCMS has substantially improved the capacity of low-income rural families to prevent poverty due to illness, especially for the lower-middle-income group.  Third, there exist significant regional differences in the impact of NRCMS on the health poverty alleviation of rural households in China.  The NRCMS has successfully reduced the risk of rural households in the western region falling into poverty, simultaneously, no significant impact on those in the eastern and central regions.  In order to diminish and eliminate poverty eventually and boost rural residents’ capacity for income acquisition, we propose the following: raise the actual compensation ratio of the NRCMS, control the rising expense of NRCMS by promoting the payment method reform, construct the comprehensive healthcare system in the western region, strengthen the medical security for the poor in remote area, and enhance the living environment for rural residents. 
Reference | Related Articles | Metrics
Development and characterization of new allohexaploid resistant to web blotch in peanut
WANG Si-yu, LI Li-na, FU Liu-yang, LIU Hua, QIN Li, CUI Cai-hong, MIAO Li-juan, ZHANG Zhong-xin, GAO Wei, DONG Wen-zhao, HUANG Bing-yan, ZHENG Zheng, TANG Feng-shou, ZHANG Xin-you, DU Pei
2021, 20 (1): 55-64.   DOI: 10.1016/S2095-3119(20)63228-2
Abstract101)      PDF in ScienceDirect      
Peanut diseases seriously threaten peanut production, creating disease-resistant materials via interspecific hybridization is an effective way to deal with this problem.  In this study, the embryo of an interspecific F1 hybrid was obtained by crossing the Silihong (Slh) cultivar with Arachis duranensis (ZW55), a diploid wild species.  Seedlings were generated by embryo rescue and tissue culture.  A true interspecific hybrid was then confirmed by cytological methods and molecular markers.  After treating seedlings with colchicine during in vitro multiplication, the established interspecific F1 hybrid produced seeds which were named as Am1210.  With oligonucleotide fluorescence in situ hybridization (Oligo FISH), molecular marker evaluations, morphological and web blotch resistance characterization, we found that: 1) Am1210 was an allohexaploid between Slh and ZW55; 2) the traits of spreading lateral branches, single-seeded or double-seeded pods and red seed coats were observed to be dominant compared to the erect type, multiple-seeded pods and brown seed coats; 3) the web blotch resistance of Am1210 was significantly improved than that of Slh, indicating the contribution of the web blotch resistance from the wild parent A. duranensis.  In addition, 69 dominant and co-dominant molecular markers were developed which could be both used to verify the hybrid in this study and to identify translocation or introgression lines with A. duranensis chromosome fragments in future studies as well.
 
Reference | Related Articles | Metrics
The MADS-box transcription factor CmAGL11 modulates somatic embryogenesis in Chinese chestnut (Castanea mollissima Blume)
GAO Yue-rong, SUN Jia-chen, SUN Zhi-lin, XING Yu, ZHANG Qing, FANG Ke-feng, CAO Qing-qin, QIN Ling
2020, 19 (4): 1033-1043.   DOI: 10.1016/S2095-3119(20)63157-4
Abstract139)      PDF in ScienceDirect      
Somatic embryogenesis (SE) is an effective approach of in vitro regeneration that depends on plant cell totipotency. However, largely unknown of molecular mechanisms of SE in woody plants such as Chinese chestnut (Castanea mollissima Blume), limits the development of the woody plant industry. Here, we report the MADS-box transcription factor CmAGL11 in Chinese chestnut. CmAGL11 transcripts specifically accumulated in the globular embryo. Overexpression of CmAGL11 in chestnut callus enhanced its SE capacity, and the development of somatic embryos occurred significantly faster than in the control. RNA-seq results showed that CmAGL11 affects the expression of several genes related to the gibberellin, auxin, and ethylene pathways. Moreover, the analysis of DNA methylation status indicated that the promoter methylation plays a role in regulation of CmAGL11 expression during SE. Our results demonstrated that CmAGL11 plays an important role in the SE process in Chinese chestnut, possibly by regulating gibberellin, auxin, and ethylene pathways. It will help establish an efficient platform to accelerate genetic improvement and germplasm innovation in Chinese chestnut.
Reference | Related Articles | Metrics
Genetic variation of yellow pigment and its components in foxtail millet (Setaria italica (L.) P. Beauv.) from different eco-regions in China
YANG Yan-bing, JIA Guan-qing, DENG Li-gang, QIN Ling, CHEN Er-ying, CONG Xin-jun, ZOU Renfeng, WANG Hai-lian, ZHANG Hua-wen, LIU Bin, GUAN Yan-an, DIAO Xian-min, YIN Yan-ping
2017, 16 (11): 2459-2469.   DOI: 10.1016/S2095-3119(16)61598-8
Abstract834)      PDF in ScienceDirect      
    Kernel color is an important trait for assessing the commercial and nutritional quality of foxtail millet.  Yellow pigment content (YPC) and carotenoid components (lutein and zeaxanthin) of 270 foxtail millet accessions, including 50 landraces and 220 improved cultivars, from four different eco-regions in China were surveyed using spectrophotometry and high performance liquid chromatography methods.  Results indicated that YPC had rich variance, ranging from 1.91 to 28.54 mg kg–1, with an average value of 17.80 mg kg–1.  The average YPC of improved cultivars (18.31 mg kg–1) was significantly higher than that of landraces (15.51 mg kg–1).  The YPC in cultivars from the Loess Plateau spring sowing region (LPSSR) was the highest (20.59 mg kg–1), followed by the North China summer sowing region (NCSSR, 18.25 mg kg–1), the northeast spring sowing region (NSSR, 17.25 mg kg–1), and the Inner Mongolia Plateau spring sowing region (IMPSSR, 13.92 mg kg–1).  The variation coefficients of YPC in cultivars from NSSR, LPSSR, and IMPSSR were higher than that from NCSSR.  A similar carotenoid profile was also obtained for 270 foxtail millet cultivars.  Lutein and zeaxanthin accounted for approximately 55–65% of YPC in accessions.  The lutein content was higher than zeaxanthin content in all cultivars.  The ratio of lutein to zeaxanthin ranged from 1.51 to 6.06 with an average of 3.34.  YPC was positively correlated with lutein (r=0.935, P<0.01), zeaxanthin (r=0.808, P<0.01), and growth duration (r=0.488, P<0.01), whereas it was negatively correlated with grain protein (r=−0.332, P<0.01) and 1 000-kernel weight (r=−0.153, P<0.05).  Our study is useful for screening and selecting cultivars with high levels of yellow pigment and for enhancing phytochemical concentrations in breeding programs.
Reference | Related Articles | Metrics
Chromosome painting of telomeric repeats reveals new evidence for genome evolution in peanut
DU Pei, LI Li-na, ZHANG Zhong-xin, LIU Hua, QIN Li, HUANG Bing-yan, DONG Wen-zhao, TANG Feng-shou, QI Zeng-jun, ZHANG Xin-you
2016, 15 (11): 2488-2496.   DOI: 10.1016/S2095-3119(16)61423-5
Abstract1287)      PDF in ScienceDirect      
    Interspecific hybridization is an important approach to improve cultivated peanut varieties. Cytological markers such as tandem repeats will facilitate alien gene introgression in peanut. Telomeric repeats have also been frequently used in chromosome research. Most plant telomeric repeats are (TTTAGGG)n that are mainly distributed at the chromosome ends, although interstitial telomeric repeats (ITRs) are also commonly identified. In this study, the telomeric repeat was chromosomally localized in 10 Arachis species through sequential GISH (genomic in situ hybridization) and FISH (fluorescence in situ hybridization) combined with 4’,6-diamidino-2-phenylindole (DAPI) staining. Six ITRs were identified such as in the centromeric region of chromosome Bi5 in Arachis ipaënsis, pericentromeric regions of chromosomes As5 in A. stenosperma, Bho7 in A. hoehnei and Av5 in A. villosa, nucleolar organizer regions of chromosomes As3 in A. stenosperma and Adi3 in A. diogoi, subtelomeric regions of chromosomes Bho9 in A. hoehnei and Adu7 in A. duranensis, and telomeric region of chromosome Es7 in A. stenophylla. The distributions of the telomeric repeat, 5S rDNA, 45S rDNA and DAPI staining pattern provided not only ways of distinguishing different chromosomes, but also karyotypes with a higher resolution that could be used in evolutionary genome research. The distribution of telomeric repeats, 5S rDNA and 45S rDNA sites in this study, along with inversions detected on the long arms of chromosomes Kb10 and Bho10, indicated frequent chromosomal rearrangements during evolution of Arachis species.
Reference | Related Articles | Metrics
Identification of oil content QTL on Arahy12 and Arahy16 and development of KASP markers in cultivated peanut (Arachis hypogaea L.)
HUANG Bing-yan, LIU Hua, FANG Yuan-jin, MIAO Li-juan, QIN Li, SUN Zi-qi, QI Fei-yan, CHEN Lei, ZHANG Feng-ye, LI Shuan-zhu, ZHENG Qing-huan, SHI Lei, WU Ji-hua, DONG Wen-zhao, ZHANG Xin-you
DOI: 10.1016/j.jia.2023.11.010 Online: 10 November 2023
Abstract74)      PDF in ScienceDirect      

Peanut kernels rich in oil, particularly those with oleic acid as their primary fatty acid, are sought after by consumers, the food industry, and farmers due to their superior nutritional content, extended shelf life, and health benefits.  The oil content and fatty acid composition are governed by multiple genetic factors.  Identifying the quantitative trait loci (QTL) related to these attributes would facilitate marker-assisted selection or genomic selection, thus enhancing the quality-focused peanut breeding program.  For this purpose, we developed a population of 521 recombinant inbred lines (RIL) and tested their kernel quality traits across five different environments. We identified two major and stable QTLs for oil content (qOCAh12.1 and qOCAh16.1).  The markers linked to these QTLs were designed by competitive allele-specific PCR (KASP) and were subsequently validated.  Moreover, we found that the superior haplotype of oil content in the qOCAh16.1 region was conserved within the PI germplasm cluster, as evidenced by a diverse peanut accession panel.  In addition, we determined that qAh09 and qAh19.1, which harbor the key gene encoding fatty acid desaturase 2 (FAD2), influence all seven fatty acids, including palmitic, stearic, oleic, linoleic, arachidic, gadoleic, and behenic acids.  As for protein content and the long-chain saturated fatty acid behenic acid, qAh07 emerged as the major and stable QTLs, accounting for over 10% of the phenotypic variation explained (PVE).  These findings would enhance marker-assisted selection in peanut breeding, aiming to improve oil content, and deepen our understanding of the genetic mechanisms that shape fatty acid composition. 

Reference | Related Articles | Metrics
An InDel in the Promoter of Ribosomal Protein S27-like Gene Regulates Skeletal Muscle Growth in Pigs
Xiaoqin Liu, Xinhao Fan, Junyu Yan, Longchao Zhang, Lixian Wang, Honor Calnan, Yalan Yang, Graham Gardner, Rong Zhou, Zhonglin Tang
DOI: 10.1016/j.jia.2024.05.005 Online: 28 May 2024
Abstract45)      PDF in ScienceDirect      

Genetic improvement of meat production traits has always been the primary goal of pig breeding. Geographical isolation, natural and artificial selection led to significant differences in the phenotypes of meat production traits between Chinese local pigs and Western commercial pigs. Comparative genomics and transcriptomics analysis provided powerful tools to identify genetic variants and genes associated with skeletal muscle growth. However, the number of available genetic variants and genes are still limited. In this study, a comprehensive comparison of transcriptomes showed that ribosomal protein S27-like (RPS27L) gene was highly expressed in skeletal muscle and up-regulated in Chinese local pigs when compared with Western commercial pigs. Functional analysis revealed that overexpression of RPS27L promoted myoblast proliferation and repressed differentiation in pig skeletal muscle cells. Conversely, the knockdown of RPS27L led to the inhibition of myoblast proliferation and the promotion of differentiation. Notably, a 13-bp insertion-deletion (InDel) mutation was identified within the RPS27L promoter, inserted in Chinese local breeds and predominantly deleted in Western commercial breeds. Luciferase reporter assay suggested this InDel modulated RPS27L expression by influencing transcription factor 3 (TCF3) and myogenic differentiation antigen (MYOD) binding to promoter. Furthermore, a positive correlation was observed between the expression of RPS27L expression and backfat thickness. Association studies demonstrated this InDel was significantly associated with the body weight of pigs at the age of 240 days. Together, our results suggested that RPS27L was a regulator of skeletal muscle development and growth, and was a candidate marker for improving meat production traits in pigs. This study not only provided a biomarker for animal breeding, but also was helpful for understanding skeletal muscle development and muscle-related disease in humans.

Reference | Related Articles | Metrics
Whole-genome resequencing of 391 Chinese donkeys reveals a population structure and provides insights into their morphological and adaptive traits
Ge Yang, Yujiang Sun, Zhaofei Wang, Cong Li, Xiangqin Zhai, Jiaqiang Zhang, Halima Jafari, Gang Ren, Chuzhao Lei, Ruihua Dang, Shuqin Liu
DOI: 10.1016/j.jia.2025.02.016 Online: 18 February 2025
Abstract6)      PDF in ScienceDirect      

Understanding the genetic changes behind the phenotypic variation of Chinese donkeys is helpful to the genetic improvement and breeding of donkeys. However, the population structure and novel genes associated with morphological (coat color and body size) and adaptive (high-altitude adaptation) traits of Chinese donkeys remain largely unknown. Here, we analyzed 391 whole-genome sequencing (WGS) data of Chinese donkeys. Population genomic analyses showed that Chinese native donkey breeds mainly consist of three distinct populations (Southwest plateau, North plain, and Guanzhong plain), and a newly discovered population (Guanzhong plain) was identified. Moreover, we characterized a high-confidence list of 127, 117, and 169 selective signal genes for coat color, body size, and high-altitude adaptation, respectively. We discovered ARID3B gene with strong signals of selection, which may account for coat color in Chinese donkeys. Our study identified EPAS1 as a high-altitude adaptive gene. However, the FAM184B gene shows a stronger signal in response to high-altitude environments in Chinese donkeys. The selective sweep and GWAS analysis showed that LCORL and TMEM154 genes are potentially associated with body size in Chinese donkeys. Utilizing PacBio HiFi sequencing data, this study presents 15,954 highly reliable structural variations (SVs) between large-sized and small-sized donkeys. Utilizing SV data and a graph-based method, we identified an 880-bp deletion in the TMEM154 gene in Sichuan donkeys (small-sized) compared to Guanzhong donkeys (large-sized), which was verified by PCR and is a candidate SV related to body size. Transcriptome sequencing data showed that the TMEM154 gene is highly expressed in the muscle of Guanzhong donkeys (large-sized) compared to Sichuan donkeys (small-sized). Multi-species alignment analysis revealed that the region surrounding the 880-bp deletion in the TMEM154 gene region is conserved in horse, zebra, kiang, as well as two large-sized donkey breeds (Dezhou and Guanzhong), except in in the small-sized Sichuan donkey. Furthermore, after the 880 bp deletion was transfected into 3T3-L1 and HEK293T cells, it was demonstrated that the relative luciferase activity of the mutation was markedly decreased in comparison with that of the wild type. These results suggest that this 880-bp deletion in the TMEM154 gene may play an important role in body size trait of donkey. This study provides valuable genome resources for donkey breeding and sheds light on the domestication history of Chinese donkeys.

Reference | Related Articles | Metrics