Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Whole-genome resequencing of 391 Chinese donkeys reveals a population structure and provides insights into their morphological and adaptive traits

Ge Yang1*, Yujiang Sun2*, Zhaofei Wang1, Cong Li1, Xiangqin Zhai1, Jiaqiang Zhang1, Halima Jafari1, Gang Ren1, Chuzhao Lei1, Ruihua Dang1#, Shuqin Liu2#

1 Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China

2 College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China

Highlight

l A total of 127, 117, and 169 selective-signal genes related to coat color, body size, and high-altitude adaptation were identified based on 391 whole-genome sequencing (WGS) data of Chinese donkeys.

l By employing PacBio HiFi sequencing data, this study has yielded highly reliable 15,954 structural variations (SVs) between Guanzhong (large-sized) and Sichuan (small-sized) donkeys.

l An 880-bp SV in the TMEM154 gene may play an important role in body size trait of donkey.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

目的:了解中国家驴表型变异背后的遗传变异有助于家驴的遗传改良及繁育工作。然而,中国家驴群体遗传结构以及与形态(毛色和体型)和适应性(高海拔适应)性状相关的关键候选基因目前研究不多,需要进一步挖掘和深入分析

方法:本研究基于391份中国家驴全基因组重测序数据和代表性品种的PacBio HiFi测序数据,全面挖掘其单核苷酸多态性(single nucleotide polymorphisms,SNP)和结构变异(Structural variation,SV)等不同类型遗传变异,研究其频率分布规律,并通过选择信号检测等方法挖掘与形态(毛色和体型)和适应性(高海拔适应)等性状有关的候选突变,最终通过PCR和细胞实验验证变异序列的功能作用。

结果:群体基因组分析显示,中国家驴分化为三个不同的群,西南高原、北方平原和关中平原。本研究鉴定到127个与毛色相关、117个与体型相关以及169个与高海拔适应相关的选择信号基因,其中ARID3B基因可能影响中国家驴的毛色EPAS1是一个高海拔适应基因,但是研究发现FAM184B 基因在中国家驴应对高海拔环境时呈现出更强的信号。选择性信号分析和全基因组关联分析(GWAS)表明,LCORLTMEM154基因可能与中国驴的体型相关。利用关中驴和川驴三代PacBio HiFi测序数据,鉴定了关中驴(大型驴)和川驴(小型驴)之间结构变异。基于此结构变异数据,对来自24个品种的153个二代中国家驴数据进行SV分型,鉴定到了一个关中驴(大型川驴(小型驴)之间TMEM154基因上880bp的缺失,这一结果通过PCR得到了验证,推测其是与体型相关的候选SV。转录组测序数据显示,与川驴(小型驴)相比,TMEM154基因在关中驴(大型驴)的肌肉中表达量高;多物种序列比对分析表明,TMEM154基因区域中880bp序列在马、斑马、藏野驴以及两个大型驴品种(德州驴和关中驴)中存在,在小型驴川驴缺失。此外,将880bp缺失序列转染到3T3-L1HEK293T细胞后,结果显示该突变的相对荧光素酶活性相较于野生型显著降低;综合上述结果表明,TMEM154基因中880bp的缺失序列可能在驴的体型性状方面发挥着重要作用。

结论:研究结果确定了中国家驴的群体遗传结构,挖掘了中国家驴毛色、高海拔适应和体型性状相关的重要候选基因,并推测TMEM154基因上的SV可能在中国家驴体型形成中具有重要作用。这些结果将为开展中国家驴体型性状的标记辅助选择提供参考依据,为中国家驴遗传改良提供参考。



Abstract  

Understanding the genetic changes behind the phenotypic variation of Chinese donkeys is helpful to the genetic improvement and breeding of donkeys. However, the population structure and novel genes associated with morphological (coat color and body size) and adaptive (high-altitude adaptation) traits of Chinese donkeys remain largely unknown. Here, we analyzed 391 whole-genome sequencing (WGS) data of Chinese donkeys. Population genomic analyses showed that Chinese native donkey breeds mainly consist of three distinct populations (Southwest plateau, North plain, and Guanzhong plain), and a newly discovered population (Guanzhong plain) was identified. Moreover, we characterized a high-confidence list of 127, 117, and 169 selective signal genes for coat color, body size, and high-altitude adaptation, respectively. We discovered ARID3B gene with strong signals of selection, which may account for coat color in Chinese donkeys. Our study identified EPAS1 as a high-altitude adaptive gene. However, the FAM184B gene shows a stronger signal in response to high-altitude environments in Chinese donkeys. The selective sweep and GWAS analysis showed that LCORL and TMEM154 genes are potentially associated with body size in Chinese donkeys. Utilizing PacBio HiFi sequencing data, this study presents 15,954 highly reliable structural variations (SVs) between large-sized and small-sized donkeys. Utilizing SV data and a graph-based method, we identified an 880-bp deletion in the TMEM154 gene in Sichuan donkeys (small-sized) compared to Guanzhong donkeys (large-sized), which was verified by PCR and is a candidate SV related to body size. Transcriptome sequencing data showed that the TMEM154 gene is highly expressed in the muscle of Guanzhong donkeys (large-sized) compared to Sichuan donkeys (small-sized). Multi-species alignment analysis revealed that the region surrounding the 880-bp deletion in the TMEM154 gene region is conserved in horse, zebra, kiang, as well as two large-sized donkey breeds (Dezhou and Guanzhong), except in in the small-sized Sichuan donkey. Furthermore, after the 880 bp deletion was transfected into 3T3-L1 and HEK293T cells, it was demonstrated that the relative luciferase activity of the mutation was markedly decreased in comparison with that of the wild type. These results suggest that this 880-bp deletion in the TMEM154 gene may play an important role in body size trait of donkey. This study provides valuable genome resources for donkey breeding and sheds light on the domestication history of Chinese donkeys.

Keywords:  Donkey       selective signalbody size        structural variation        TMEM154 gene  
Online: 17 February 2025  
Fund: 

This work was supported by the Funding for the Third National Census of Livestock and Poultry Genetic Resources (K4050422227), the 2020 Scientist plus Engineer program of Shaanxi Province of China, the Central Guidance on Local Science and Technology Development Fund (K3030922098), and Shaanxi Province Innovation Capability Support Plan (2018XY-021). 

Cite this article: 

Ge Yang, Yujiang Sun, Zhaofei Wang, Cong Li, Xiangqin Zhai, Jiaqiang Zhang, Halima Jafari, Gang Ren, Chuzhao Lei, Ruihua Dang, Shuqin Liu. 2025. Whole-genome resequencing of 391 Chinese donkeys reveals a population structure and provides insights into their morphological and adaptive traits. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.02.016

Alachiotis N, Pavlidis P. 2018. RAiSD detects positive selection based on multiple signatures of a selective sweep and SNP vectors. Communications Biology, 1, 79.

Alexander D H, Lange K. 2011. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics, 12, 246.

Anders S. 2010. Analysing RNA-Seq data with the DESeq package. Molecular biology, 43, 1-17.

Belyeu J R, Chowdhury M, Brown J, Pedersen B S, Cormier M J, Quinlan A R, Layer R M. 2021. Samplot: a platform for structural variant visual validation and automated filtering. Genome Biology, 22, 161.

Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, Wu Y, Zhao L, Liu J, Guo J, Fang S, Cao W, Yi L, Zhao Y, Kong L. 2021. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Research, 49, W317-w325.

Chen Q, Huang B, Zhan J, Wang J, Qu K, Zhang F, Shen J, Jia P, Ning Q, Zhang J, Chen N, Chen H, Lei C. 2020. Whole-genome analyses identify loci and selective signals associated with body size in cattle. Journal of Animal Science, 98, skaa068.

Chen S, Krusche P, Dolzhenko E, Sherman R M, Petrovski R, Schlesinger F, Kirsche M, Bentley D R, Schatz M C, Sedlazeck F J, Eberle M A. 2019. Paragraph: a graph-based structural variant genotyper for short-read sequence data. Genome Biology, 20, 291.

Cumer T, Boyer F, Pompanon F. 2021. Genome-Wide Detection of Structural Variations Reveals New Regions Associated with Domestication in Small Ruminants. Genome Biology and Evolution, 13, evab165.

Dai X, Bian P, Hu D, Luo F, Huang Y, Jiao S, Wang X, Gong M, Li R, Cai Y, Wen J, Yang Q, Deng W, Nanaei H A, Wang Y, Wang F, Zhang Z, Rosen B D, Heller R, Jiang Y. 2023. A Chinese indicine pangenome reveals a wealth of novel structural variants introgressed from other Bos species. Genome Research, 33, 1284-1298.

Danecek P, Auton A, Abecasis G, Albers C A, Banks E, DePristo M A, Handsaker R E, Lunter G, Marth G T, Sherry S T, McVean G, Durbin R. 2011. The variant call format and VCFtools. Bioinformatics, 27, 2156-2158.

Danecek P, Bonfield J K, Liddle J, Marshall J, Ohan V, Pollard M O, Whitwham A, Keane T, McCarthy S A, Davies R M, Li H. 2021. Twelve years of SAMtools and BCFtools. Gigascience, 10, giab008.

Dierckxsens N, Li T, Vermeesch J R, Xie Z. 2021. A benchmark of structural variation detection by long reads through a realistic simulated model. Genome Biology, 22, 342.

Dong H, Dong Z, Wang F, Wang G, Luo X, Lei C, Chen J. 2022. Whole Genome Sequencing Provides New Insights Into the Genetic Diversity and Coat Color of Asiatic Wild Ass and Its Hybrids. Frontiers in Genetics, 13, 818420.

Fages A, Hanghøj K, Khan N, Gaunitz C, Seguin-Orlando A, Leonardi M, McCrory Constantz C, Gamba C, Al-Rasheid K A S, Albizuri S, Alfarhan A H, Allentoft M, Alquraishi S, Anthony D, Baimukhanov N, Barrett J H, Bayarsaikhan J, Benecke N, Bernáldez-Sánchez E, Berrocal-Rangel L, Biglari F, Boessenkool S, Boldgiv B, Brem G, Brown D, Burger J, Crubézy E, Daugnora L, Davoudi H, de Barros Damgaard P, de Los Ángeles de Chorro Y d V-C M, Deschler-Erb S, Detry C, Dill N, do Mar Oom M, Dohr A, Ellingvåg S, Erdenebaatar D, Fathi H, Felkel S, Fernández-Rodríguez C, García-Viñas E, Germonpré M, Granado J D, Hallsson J H, Hemmer H, Hofreiter M, Kasparov A, Khasanov M, Khazaeli R, Kosintsev P, Kristiansen K, Kubatbek T, Kuderna L, Kuznetsov P, Laleh H, Leonard J A, Lhuillier J, Liesau von Lettow-Vorbeck C, Logvin A, Lõugas L, Ludwig A, Luis C, Arruda A M, Marques-Bonet T, Matoso Silva R, Merz V, Mijiddorj E, Miller B K, Monchalov O, Mohaseb F A, Morales A, Nieto-Espinet A, Nistelberger H, Onar V, Pálsdóttir A H, Pitulko V, Pitskhelauri K, Pruvost M, Rajic Sikanjic P, Rapan Papeša A, Roslyakova N, Sardari A, Sauer E, Schafberg R, Scheu A, Schibler J, Schlumbaum A, Serrand N, Serres-Armero A, Shapiro B, Sheikhi Seno S, Shevnina I, Shidrang S, Southon J, Star B, Sykes N, Taheri K, Taylor W, Teegen W R, Trbojević Vukičević T, Trixl S, Tumen D, Undrakhbold S, Usmanova E, Vahdati A, Valenzuela-Lamas S, Viegas C, Wallner B, Weinstock J, Zaibert V, Clavel B, Lepetz S, Mashkour M, Helgason A, Stefánsson K, Barrey E, Willerslev E, Outram A K, Librado P, Orlando L. 2019. Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series. Cell, 177, 1419-1435.e31.

Fuentes-Pardo A P, Ruzzante D E. 2017. Whole-genome sequencing approaches for conservation biology: Advantages, limitations and practical recommendations. Molecular Ecology, 26, 5369-5406.

Gao X, Wang S, Wang Y F, Li S, Wu S X, Yan R G, Zhang Y W, Wan R D, He Z, Song R D, Zhao X Q, Wu D D, Yang Q E. 2022. Long read genome assemblies complemented by single cell RNA-sequencing reveal genetic and cellular mechanisms underlying the adaptive evolution of yak. Nature Communications, 13, 4887.

Godfrey L R, Scroxton N, Crowley B E, Burns S J, Sutherland M R, Pérez V R, Faina P, McGee D, Ranivoharimanana L. 2019. A new interpretation of Madagascar's megafaunal decline: The "Subsistence Shift Hypothesis". Journal of Human Evolution, 130, 126-140.

Guo M, Li S, Zhou Y, Li M, Wen Z. 2021. Comparative Analysis for the Performance of Long-Read-Based Structural Variation Detection Pipelines in Tandem Repeat Regions. Frontiers in Pharmacology, 12, 658072.

Hall B G. 2013. Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution, 30, 1229-1235.

Han L, Zhu S, Ning C, Cai D, Wang K, Chen Q, Hu S, Yang J, Shao J, Zhu H, Zhou H. 2014. Ancient DNA provides new insight into the maternal lineages and domestication of Chinese donkeys. BMC Evolutionary Biology, 14, 246.

Hanaoka M, Droma Y, Basnyat B, Ito M, Kobayashi N, Katsuyama Y, Kubo K, Ota M. 2012. Genetic variants in EPAS1 contribute to adaptation to high-altitude hypoxia in Sherpas. PLoS One, 7, e50566.

Hassan Z M, Manyelo T G, Nemukondeni N, Sebola A N, Selaledi L, Mabelebele M. 2022. The Possibility of Including Donkey Meat and Milk in the Food Chain: A Southern African Scenario. Animals (Basel), 12, 1073.

Heller D, Vingron M. 2019. SVIM: structural variant identification using mapped long reads. Bioinformatics, 35, 2907-2915.

Hernández H G, Aranzazu-Moya G C, Pinzón-Reyes E H. 2023. Aberrant AHRR, ADAMTS2 and FAM184 DNA Methylation: Candidate Biomarkers in the Oral Rinse of Heavy Smokers. Biomedicines, 11, 1797.

Jeffares D C, Jolly C, Hoti M, Speed D, Shaw L, Rallis C, Balloux F, Dessimoz C, Bähler J, Sedlazeck F J. 2017. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nature Communications, 8, 14061.

Jiang L, Kon T, Chen C, Ichikawa R, Zheng Q, Pei L, Takemura I, Nsobi L H, Tabata H, Pan H, Omori Y, Ogura A. 2021. Whole-genome sequencing of endangered Zhoushan cattle suggests its origin and the association of MC1R with black coat colour. Scientific Reports, 11, 17359.

Jiang T, Liu Y, Jiang Y, Li J, Gao Y, Cui Z, Liu Y, Liu B, Wang Y. 2020. Long-read-based human genomic structural variation detection with cuteSV. Genome Biology, 21, 189.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35, 1547-1549.

Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49, W293-w296.

Li C, Wu Y, Chen B, Cai Y, Guo J, Leonard A S, Kalds P, Zhou S, Zhang J, Zhou P, Gan S, Jia T, Pu T, Suo L, Li Y, Zhang K, Li L, Purevdorj M, Wang X, Li M, Wang Y, Liu Y, Huang S, Sonstegard T, Wang M S, Kemp S, Pausch H, Chen Y, Han J L, Jiang Y, Wang X. 2022. Markhor-derived Introgression of a Genomic Region Encompassing PAPSS2 Confers High-altitude Adaptability in Tibetan Goats. Molecular Biology and Evolution, 39, msac253.

Li H, Durbin R. 2011. Inference of human population history from individual whole-genome sequences. Nature, 475, 493-496.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078-2079.

Li R, Gong M, Zhang X, Wang F, Liu Z, Zhang L, Yang Q, Xu Y, Xu M, Zhang H, Zhang Y, Dai X, Gao Y, Zhang Z, Fang W, Yang Y, Fu W, Cao C, Yang P, Ghanatsaman Z A, Negari N J, Nanaei H A, Yue X, Song Y, Lan X, Deng W, Wang X, Pan C, Xiang R, Ibeagha-Awemu E M, Heslop-Harrison P J S, Rosen B D, Lenstra J A, Gan S, Jiang Y. 2023. A sheep pangenome reveals the spectrum of structural variations and their effects on tail phenotypes. Genome Research, 33, 463-477.

Li X, Liu Q, Fu C, Li M, Li C, Li X, Zhao S, Zheng Z. 2024. Characterizing structural variants based on graph-genotyping provides insights into pig domestication and local adaption. Journal of Genetics and Genomics, 51, 394-406.

Li X, Yang J, Shen M, Xie X L, Liu G J, Xu Y X, Lv F H, Yang H, Yang Y L, Liu C B, Zhou P, Wan P C, Zhang Y S, Gao L, Yang J Q, Pi W H, Ren Y L, Shen Z Q, Wang F, Deng J, Xu S S, Salehian-Dehkordi H, Hehua E, Esmailizadeh A, Dehghani-Qanatqestani M, Štěpánek O, Weimann C, Erhardt G, Amane A, Mwacharo J M, Han J L, Hanotte O, Lenstra J A, Kantanen J, Coltman D W, Kijas J W, Bruford M W, Periasamy K, Wang X H, Li M H. 2020. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nature Communications, 11, 2815.

Lin Q, Feng X, Li T, Pan X, Diao S, Gao Y, Yuan X, Li J, Ding X, Zhang Z. 2024. Integrating meta-analysis of genome-wide association study with Pig Genotype-Tissue Expression resources uncovers the genetic architecture for age at first farrowing in pigs. Animal Research and One Health, 2, 238-349.

Liu H, Song H, Jiang Y, Jiang Y, Zhang F, Liu Y, Shi Y, Ding X, Wang C. 2021. A Single-Step Genome Wide Association Study on Body Size Traits Using Imputation-Based Whole-Genome Sequence Data in Yorkshire Pigs. Frontiers in Genetics, 12, 629049.

Liu X, Zhang Y, Li Y, Pan J, Wang D, Chen W, Zheng Z, He X, Zhao Q, Pu Y, Guan W, Han J, Orlando L, Ma Y, Jiang L. 2019. EPAS1 Gain-of-Function Mutation Contributes to High-Altitude Adaptation in Tibetan Horses. Molecular Biology and Evolution, 36, 2591-2603.

Lu C J, Xie W M, Su R, Ge Q L, Chen H, Shen S Y, Lei C Z. 2008. African origin of Chinese domestic donkeys. Yi Chuan, 30, 324-328. (in Chiense)

Lyu Y, Wang F, Cheng H, Han J, Dang R, Xia X, Wang H, Zhong J, Lenstra J A, Zhang H, Han J, MacHugh D E, Medugorac I, Upadhyay M, Leonard A S, Ding H, Yang X, Wang M S, Quji S, Zhuzha B, Quzhen P, Wangmu S, Cangjue N, Wa D, Ma W, Liu J, Zhang J, Huang B, Qi X, Li F, Huang Y, Ma Y, Wang Y, Gao Y, Lu W, Lei C, Chen N. 2024. Recent selection and introgression facilitated high-altitude adaptation in cattle. Science Bulletin, 25, S2095-9273(24)00380-3.

Madhusudan N C, Tramachandra C, Udaykumar N, Sharnagouda H, Nagraj N, Jagjivan R. 2017. Composition, Characteristics, Nutritional value and Health Benefits of Donkey Milk-A Review. Dairy Science & Technology, hal-01538532.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20, 1297-1303.

Miragaya M, Neild D, Alonso A. 2017. A Review of Reproductive Biology and Biotechnologies in Donkeys. Journal of Equine Veterinary Science, S0737080617306809.

Owen L A, Finkel R C, Caffee M W. 2002. A note on the extent of glaciation throughout the Himalaya during the global Last Glacial Maximum. Quaternary Science Reviews, 21, 147-157.

Patterson N, Price A L, Reich D. 2006. Population structure and eigenanalysis. PLoS Genetics, 2, e190.

Peng Y, Cui C, He Y, Ouzhuluobu, Zhang H, Yang D, Zhang Q, Bianbazhuoma, Yang L, He Y, Xiang K, Zhang X, Bhandari S, Shi P, Yangla, Dejiquzong, Baimakangzhuo, Duojizhuoma, Pan Y, Cirenyangji, Baimayangji, Gonggalanzi, Bai C, Bianba, Basang, Ciwangsangbu, Xu S, Chen H, Liu S, Wu T, Qi X, Su B. 2017. Down-Regulation of EPAS1 Transcription and Genetic Adaptation of Tibetans to High-Altitude Hypoxia. Molecular Biology and Evolution, 34, 818-830.

Pickrell J K, Pritchard J K. 2012. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genetics, 8, e1002967.

Plassais J, Kim J, Davis B W, Karyadi D M, Hogan A N, Harris A C, Decker B, Parker H G, Ostrander E A. 2019. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nature Communications, 10, 1489.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A, Bender D, Maller J, Sklar P, de Bakker P I, Daly M J, Sham P C. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81, 559-575.

Quan C, Li Y, Liu X, Wang Y, Ping J, Lu Y, Zhou G. 2021. Characterization of structural variation in Tibetans reveals new evidence of high-altitude adaptation and introgression. Genome Biology, 22, 159.

Sedlazeck F J, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler A, Schatz M C. 2018. Accurate detection of complex structural variations using single-molecule sequencing. Nature Methods, 15, 461-468.

Seyiti S, Kelimu A. 2021. Donkey Industry in China: Current Aspects, Suggestions and Future Challenges. Journal of Equine Veterinary Science, 102, 103642.

Shen J, Yu J, Dai X, Li M, Wang G, Chen N, Chen H, Lei C, Dang R. 2021. Genomic analyses reveal distinct genetic architectures and selective pressures in Chinese donkeys. Journal of Genetics and Genomics, 48, 737-745.

Song S, Yao N, Yang M, Liu X, Dong K, Zhao Q, Pu Y, He X, Guan W, Yang N, Ma Y, Jiang L. 2016. Exome sequencing reveals genetic differentiation due to high-altitude adaptation in the Tibetan cashmere goat (Capra hircus). BMC Genomics, 17, 122.

Tan X, Liu R, Zhao D, He Z, Li W, Zheng M, Li Q, Wang Q, Liu D, Feng F, Zhu D, Zhao G, Wen J. 2024. Large-scale genomic and transcriptomic analyses elucidate the genetic basis of high meat yield in chickens. Journal of Advanced Research, 55, 1-16.

Thorvaldsdóttir H, Robinson J T, Mesirov J P. 2013. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics, 14, 178-192.

Wang C, Li H, Guo Y, Huang J, Sun Y, Min J, Wang J, Fang X, Zhao Z, Wang S, Zhang Y, Liu Q, Jiang Q, Wang X, Guo Y, Yang C, Wang Y, Tian F, Zhuang G, Fan Y, Gao Q, Li Y, Ju Z, Li J, Li R, Hou M, Yang G, Liu G, Liu W, Guo J, Pan S, Fan G, Zhang W, Zhang R, Yu J, Zhang X, Yin Q, Ji C, Jin Y, Yue G, Liu M, Xu J, Liu S, Jordana J, Noce A, Amills M, Wu D D, Li S, Zhou X, Zhong J. 2020. Donkey genomes provide new insights into domestication and selection for coat color. Nature Communications, 11, 6014.

Wang G, Wang F, Pei H, Li M, Bai F, Lei C, Dang R. 2022a. Genome-wide analysis reveals selection signatures for body size and drought adaptation in Liangzhou donkey. Genomics, 114, 110476.

Wang K, Li M, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 38, e164.

Wang L, Sheng G, Preick M, Hu S, Deng T, Taron U H, Barlow A, Hu J, Xiao B, Sun G, Song S, Hou X, Lai X, Hofreiter M, Yuan J. 2021. Ancient Mitogenomes Provide New Insights into the Origin and Early Introduction of Chinese Domestic Donkeys. Frontiers in Genetics, 12, 759831.

Wang Q, Lan T, Li H, Sahu S K, Shi M, Zhu Y, Han L, Yang S, Li Q, Zhang L, Deng Z, Liu H, Hua Y. 2022b. Whole-genome resequencing of Chinese pangolins reveals a population structure and provides insights into their conservation. Communications Biology, 5, 821.

Wang X, Liu J, Zhou G, Guo J, Yan H, Niu Y, Li Y, Yuan C, Geng R, Lan X, An X, Tian X, Zhou H, Song J, Jiang Y, Chen Y. 2016. Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Scientific Reports, 6, 38932.

Weldenegodguad M, Popov R, Pokharel K, Ammosov I, Ming Y, Ivanova Z, Kantanen J. 2018. Whole-Genome Sequencing of Three Native Cattle Breeds Originating From the Northernmost Cattle Farming Regions. Frontiers in Genetics, 9, 728.

Wu D D, Yang C P, Wang M S, Dong K Z, Yan D W, Hao Z Q, Fan S Q, Chu S Z, Shen Q S, Jiang L P, Li Y, Zeng L, Liu H Q, Xie H B, Ma Y F, Kong X Y, Yang S L, Dong X X, Esmailizadeh A, Irwin D M, Xiao X, Li M, Dong Y, Wang W, Shi P, Li H P, Ma Y H, Gou X, Chen Y B, Zhang Y P. 2020. Convergent genomic signatures of high-altitude adaptation among domestic mammals. National Science Review, 7, 952-963.

Wu Z, Deng Z, Huang M, Hou Y, Zhang H, Chen H, Ren J. 2019. Whole-Genome Resequencing Identifies KIT New Alleles That Affect Coat Color Phenotypes in Pigs. Frontiers in Genetics, 10, 218.

Xia J, Chang L, Xu D, Jia Y, Ding Y, Cao C, Geng Z, Jin S. 2023a. Next-Generation Sequencing of the Complete Huaibei Grey Donkey Mitogenome and Mitogenomic Phylogeny of the Equidae Family. Animals (Basel), 13, 531.

Xia X, Zhang F, Li S, Luo X, Peng L, Dong Z, Pausch H, Leonard A S, Crysnanto D, Wang S, Tong B, Lenstra J A, Han J, Li F, Xu T, Gu L, Jin L, Dang R, Huang Y, Lan X, Ren G, Wang Y, Gao Y, Ma Z, Cheng H, Ma Y, Chen H, Pang W, Lei C, Chen N. 2023b. Structural variation and introgression from wild populations in East Asian cattle genomes confer adaptation to local environment. Genome Biology, 24, 211.

Yang G, Gong M, Yang Q M, Li Y D, Halima J, Lei C Z., Jiang Y, Dang, R H. 2024. Improved chromosome-level donkey (Equus asinus) genome provides insights into genome and chromosome evolution. Journal of Genetics and Genomics, 24, S1673-8527.

Yin L, Zhang H, Tang Z, Xu J, Yin D, Zhang Z, Yuan X, Zhu M, Zhao S, Li X, Liu X. 2021. rMVP: A Memory-efficient, Visualization-enhanced, and Parallel-accelerated Tool for Genome-wide Association Study. Genomics Proteomics Bioinformatics, 19, 619-628.

Yuan Z, Sunduimijid B, Xiang R, Behrendt R, Knight M I, Mason B A, Reich C M, Prowse-Wilkins C, Vander Jagt C J, Chamberlain A J, MacLeod I M, Li F, Yue X, Daetwyler H D. 2021. Expression quantitative trait loci in sheep liver and muscle contribute to variations in meat traits. Genetics Selection Evolution, 53, 8.

Zeng L, Dang R, Dong H, Li F, Chen H, Lei C. 2019. Genetic diversity and relationships of Chinese donkeys using microsatellite markers. Archives Animal Breeding, 62, 181-187.

Zhang G X, Fan Q C, Wang J Y, Zhang T, Xue Q, Shi H Q. 2015. Genome-wide association study on reproductive traits in Jinghai Yellow Chicken. Animal Reproduction Science, 163, 30-34.

Zhang X, Jamwal K, Distl O. 2022a. Tracking footprints of artificial and natural selection signatures in breeding and non-breeding cats. Scientific Reports, 12, 18061.

Zhang Z, Gao X, Faheem M, Wang Y, Wang T, Shi X, Huang B, Zhu M, Wang C. 2022b. Comparative analysis of growth and development characteristics of two Dezhou donkey strains. Livestock Science, 263, 105024.

Zhang Z, Huang B, Wang Y, Zhu M, Liu G, Wang C. 2023. A survey report on the donkey original breeding farms in China: Current aspects and future prospective. Frontiers in Veterinary Science, 10, 1126138.

Zheng W, He Y, Guo Y, Yue T, Zhang H, Li J, Zhou B, Zeng X, Li L, Wang B, Cao J, Chen L, Li C, Li H, Cui C, Bai C, Baimakangzhuo, Qi X, Ouzhuluobu, Su B. 2023. Large-scale genome sequencing redefines the genetic footprints of high-altitude adaptation in Tibetans. Genome Biology, 24, 73.

Zhang C, Zhang Y, Liu C, Wang L, Dong Y, Sun D, Wen H, Zhang K, Qi X, Li Y. 2024. Genome-wide association study and genomic prediction for growth traits in spotted sea bass (Lateolabrax maculatus) using insertion and deletion markers. Animal Research and One Health, 2, 400-416

Zhou C, Zheng X, Peng K, Feng K, Yue B, Wu Y. 2024. Chromosome-level genome assembly of the kiang (Equus kiang) illuminates genomic basis for its high-altitude adaptation. Integrative Zoology, 19, 1199-1210.

Zhou X, Stephens M. 2012. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 44, 821-824.

Zhou Z, Fan Y, Wang G, Lai Z, Gao Y, Wu F, Lei C, Dang R. 2020. Detection of Selection Signatures Underlying Production and Adaptive Traits Based on Whole-Genome Sequencing of Six Donkey Populations. Animals (Basel), 10, 1823.

Zong W, Wang J, Zhao R, Niu N, Su Y, Hu Z, Liu X, Hou X, Wang L, Wang L, Zhang L. 2023. Associations of genome-wide structural variations with phenotypic differences in cross-bred Eurasian pigs. Journal of Animal Science and Biotechnology, 14, 136.

No related articles found!
No Suggested Reading articles found!