Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (10): 3537-3553    DOI: 10.1016/j.jia.2024.07.043
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
The Clausena lansium genome provides new insights into alkaloid diversity and the evolution of the methyltransferase family

Yongzan Wei1, 4, 7*, Yi Wang3*, Fuchu Hu2*, Wei Wang1, 7*, Changbin Wei4, Bingqiang Xu5, Liqin Liu4, Huayang Li3, Can Wang6, Hongna Zhang6#, Zhenchang Liang3#, Jianghui Xie1, 4, 7#

1 State Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
2 Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou 571100, China
3 Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
4 Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture and Rural Affairs), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
5 Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
6 Sanya Institute of Breeding and Multiplication/School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
7 Sanya Research Academy, Chinese Academy of Tropical Agricultural Sciences, Sanya 572019, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

黄皮(Clausena lansium)是一种重要的常绿果树,原产于我国华南地区,其药用价值具有悠久的历史。本研究构建了黄皮(C. lansium)染色体水平基因组,其大小为282.9 Mbscaffold N50达到30.75 Mb。组装后的基因组包含48.70%的重复元件和24,381个蛋白质编码基因。比较基因组分析表明:黄皮(C. lansium)在约1591 - 2495万年前从柑橘亚科(Aurantioideae)分化而来。在扩张和特有基因中,鉴定出一批与甲基转移酶活性和S-腺苷蛋氨酸依赖性甲基转移酶活性相关的基因。进一步分析表明,N-甲基转移酶(NMT)主要参与生物碱的合成,而O-甲基转移酶(OMT)则参与黄皮香豆素积累的调控,推测黄皮富含生物碱和香豆素的重要原因可能由于NMTOMT的基因扩张所致,其中串联重复事件是NMT扩展的主要原因。因此,黄皮(C. lansium)参考基因组发布将推动黄皮资源药用化合物发掘及其生物合成通路解析



Abstract  
Wampee (Clausena lansium) is an important evergreen fruit tree native to southern China that has a long history of use for medicinal purposes.  Here, a chromosome-level genome of Clansium was constructed with a genome size of 282.9 Mb and scaffold N50 of 30.75 Mb.  The assembled genome contains 48.70% repetitive elements and 24,381 protein-coding genes.  Comparative genomic analysis showed that Clansium diverged from Aurantioideae 15.91–24.95 million years ago.  Additionally, some expansive and specific gene families related to methyltransferase activity and S-adenosylmethionine-dependent methyltransferase activity were also identified.  Further analysis indicated that N-methyltransferase (NMT) is mainly involved in alkaloid biosynthesis and O-methyltransferase (OMT) participates in the regulation of coumarin accumulation in wampee.  This suggested that wampee’s richness in alkaloids and coumarins might be due to the gene expansions of NMT and OMT.  The tandem repeat event was one of the major reasons for the NMT expansion.  Hence, the reference genome of Clansium will facilitate the identification of some useful medicinal compounds from wampee resources and reveal their biosynthetic pathways.


Keywords:  Clausena lansium       genome        evolution        methyltransferase activity        alkaloid biosynthesis        coumarin accumulation  
Received: 13 July 2023   Accepted: 29 April 2024
Fund: 
This work was supported by the Central Public-interest Scientific Institution Basal Research Fund for the Chinese Academy of Tropical Agricultural Sciences (1630062019010 and 1630062020010), and the Fund of Protection of Species Resources for the Ministry of Agriculture and Rural Affairs of China (125A0605).  
About author:  Yongzan Wei, E-mail: wyz4626@163.com; Yi Wang, E-mail: wangyi19881107@163.com; Fuchu Hu, E-mail: hufuchu@163.com; Wei Wang, E-mail: wangwei@itbb.org.cn; #Correspondence Jianghui Xie, Tel: +86-898-66986419, E-mail: xiejianghui@itbb.org.cn; Zhenchang Liang, Tel: +86-10-62836079, E-mail: zl249@ibcas.ac.cn; Hongna Zhang, Tel: +86-898-66218921, E-mail: 13692476979@139.com * These authors contributed equally to this study.

Cite this article: 

Yongzan Wei, Yi Wang, Fuchu Hu, Wei Wang, Changbin Wei, Bingqiang Xu, Liqin Liu, Huayang Li, Can Wang, Hongna Zhang, Zhenchang Liang, Jianghui Xie. 2024. The Clausena lansium genome provides new insights into alkaloid diversity and the evolution of the methyltransferase family. Journal of Integrative Agriculture, 23(10): 3537-3553.

Adebajo A C, Iwalewa E O, Obuotor E M, Ibikunle G F, Omisore N O, Adewunmi C O, Obaparusi O O, Klaes M, Adetogun G E, Schmidt T J, Verspohl E J. 2009. Pharmacological properties of the extract and some isolated compounds of Clausena lansium stem bark: Anti-trichomonal, antidiabetic, anti-inflammatory, hepatoprotective and antioxidant effects. Journal of Ethnopharmacology122, 10–19.

Beier S, Thiel T, Münch T, Scholz U, Mascher M. 2017. MISA-web: A web server for microsatellite prediction. Bioinformatics33, 2583–2585.

De Bie T, Cristianini N, Demuth J P, Hahn M W. 2006. CAFE: A computational tool for the study of gene family evolution. Bioinformatics22, 1269–1271.

Blanc G, Wolfe K H. 2004. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. The Plant Cell16, 1667–1678.

Bruneton J 1995. Pharmacognosy, Phytochemistry, Medicinal Plants. Lavoisier Publishing, France. pp. 225–459.

Burton J N, Adey A, Patwardhan R P, Qiu R, Kitzman J O, Shendure J. 2013. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nature Biotechnolgy31, 1119.

Campbell M A, Haas B J, Hamilton J P, Mount S M, Buell C R. 2006. Comprehensive analysis of alternative splicing in rice and comparative analyses with ArabidopsisBMC Genomics7, 327.

Chen L G, Omura M, Hidaka T. 1991. A study on the taxonomy of citrus with GOT isozymes. Acta Horticulturae Sinica18, 27–32. (in Chinese)

Chen S F, Zhou Y Q, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics34, i884−i890.

Chin C S, Alexander D H, Marks P, Klammer A A, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler E E, Turner S W, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods10, 563–569.

Chow Y L, Sato F. 2013. Metabolic engineering and synthetic biology for the production of isoquinoline alkaloids. In: Biotechnology for Medicinal Plants. Springer, Berlin, Heidelberg. pp. 327–343.

Clark R M, Schweikert G, Toomajian C, Ossowski S, Zeller G, Shinn P, Warthmann N, Hu T T, Fu G, Hinds D A, Chen H, Frazer K A, Huson D H, Schölkopf B, Nordborg M, Rätsch G, Ecker J R, Weigel D. 2007. Common sequence polymorphisms shaping genetic diversity in Arabidopsis thalianaScience317, 338–342.

Cui G F, Li Y, Yi X, Wang J Y , Lin P F, Lu C, Zhang Q J, Gao L Z, Zhong G H. 2023. Meliaceae genomes provide insights into wood development and limonoids biosynthesis. Plant Biotechnology Journal21, 574–590.

Cui X Y, Meng F Q, Pan X, Qiu X X, Zhang S X, Li C L, Lu S F. 2022. Chromosome-level genome assembly of Aristolochia contorta provides insights into the biosynthesis of benzylisoquinoline alkaloids and aristolochic acids. Horticulture Research9, uhac005.

Deng H D, Mei W L, Wang H, Guo Z K, Dong W H, Wang H, Dai H F. 2014. Carbazole alkaloids from the peels of Clausena lansiumJournal of Asian Natural Products Research16, 1024–1028.

Deng X, Zhao L, Fang T, Xiong Y, Ogutu C, Yang D, Vimolmangkang S, Liu Y, Han Y. 2018. Investigation of benzylisoquinoline alkaloid biosynthetic pathway and its transcriptional regulation in lotus. Horticulture Research5, 1–16.

Do C T, Pollet B, Thévenin J, Sibout R, Denoue D, Barrière Y, Lapierre C, Jouanin L. 2007. Both caffeoyl coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in ArabidopsisPlanta226, 1117–1129.

Fan R Y, Peng C, Zhang X X, Qiu D Y, Mao G L, Lu Y S, Zeng J W. 2020. A comparative UPLC-Q-Orbitrap-MS untargeted metabolomics investigation of different parts of Clausena lansium (Lour.) Skeels. Food Science & Nutrition8, 5811–5822.

Fan Y J, Chen H Q, Mei W L, Kong F D, Li F X, Chen P W, Dai H F. 2018. Nematicidal amide alkaloids from the seeds of Clausena lansiumFitoterapia128, 20–25.

Fan Y N, Sahu S K, Yang T, Mu W X, Wei J P, Cheng L, Yang J L, Liu J, Zhao Y X, Lisby M, Liu H. 2021. The Clausena lansium (Wampee) genome reveal new insights into the carbazole alkaloids biosynthesis pathway. Genomics113, 3696–3704.

Fazal-ur-Rehman M F K, Khan I, Shareef H, Marwat S K. 2014. Analgesic activity of carbazole alkaloid from Murraya paniculata Linn. (Rutaceae). World Applied Sciences Journal32, 1631–1636.

Flynn J M, Hubley R, Goubert C, Rosen J, Clark A G, Feschotte C, Smit A F. 2020. RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences of the United States of America117, 9451–9458.

Fu Y H, Ma Y L, Yan G, Wen Q, Hu S, Jiang Z H, Liu Y P. 2019. Carbazole alkaloids from Clausena emarginata with their potential antiproliferative activities. Natural Product Research33, 3337–3342.

Graser G, Hartmann T. 2000. Biosynthesis of spermidine, a direct precursor of pyrrolizidine alkaloids in root cultures of Senecio vulgaris L. Planta, 211, 239–245.

Gremme G, Brendel V, Sparks M E, Kurtz S. 2005. Engineering a software tool for gene structure prediction in higher organisms. Information and Software Technology47, 965–978.

Guillaume M, Carl K. 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics27, 764–770.

Guo X, Li Y, Li C, Luo H, Wang L, Qian J, Luo X, Xiang L, Song J, Sun C, Xu H, Yao H, Chen S. 2013. Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers. Gene527, 131–138.

Haas B J, Papanicolaou A, Yassour M, Grabherr M, Blood P D, Bowden J, Couger M B, Eccles D, Li B, Lieber M, MacManes M D, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey C N, Henschel R, et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols8, 1494–1512.

Haas B J, Salzberg S L, Zhu W, Pertea M, Allen J E, Orvis J, White O, Buell C R, Wortman J R. 2008. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biology9, R7.

Hagel J M, Facchini P J. 2013. Benzylisoquinoline alkaloid metabolism: A century of discovery and a brave new world. Plant & Cell Physiology54, 647–672.

Hawkins J S, Kim H, Nason J D, Wing R A, Wendel J F. 2006. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in GossypiumGenome Research16, 1252–1261.

Huang L, Feng Z L, Wang Y T, Lin L G. 2017. Anticancer carbazole alkaloids and coumarins from Clausena plants: A review. Chinese Journal of Natural Medicines15, 881–888.

Huang Y, Tan H, Guo Z, Wu X, Zhang Q, Zhang L, Diao Y. 2016. The biosynthesis and genetic engineering of bioactive indole alkaloids in plants. Journal of Plant Biology59, 203–214.

Jaime H C, Kristoffer F, Luis P C, Damian S, Lars J J, Christian V M, Peer B. 2017. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Molecular Biology and Evolution34, 2115–2122.

Jiang Y, Guo Q G, Li C Y, Li X L, Liang G L, Xie J H. 2005. Chromosome karyotype analysis of two species in clausena. Journal of Southwest Agricultural University27, 544–546.

Kohany O, Gentles A J, Hankus L, Jurka J. 2006. Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics7, 474.

Koren S, Walenz B P, Berlin K, Miller J R, Bergman N H, Phillippy A M. 2017. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research27, 722–736.

Korf I. 2004. Gene finding in novel genomes. BMC Bioinformatics5, 59.

Kumar S, Stecher G, Suleski M, Hedges S B. 2017. TimeTree: A resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution34, 1812–1819.

Lagesen K, Hallin P, Rødland E A, Staerfeldt H H, Rognes T, Ussery D W. 2007. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research35, 3100–3108.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics25, 1754–1760.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics25, 2078–2079.

Li L, Stoeckert C J, Roos D S. 2003. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Research13, 2178–2189.

Li Y, Tan C, Li Z H, Guo J Z, Li S, Chen X, Wang C, Dai X K, Yang H, Song W, Hou L X, Xu J L, Tong Z Y, Xu A R, Yuan X C, Wang W P , Yang Q Y, Chen L L, Sun Z Y, Wang K, et al. 2022. The genome of Dioscorea zingiberensis sheds light on the biosynthesis, origin and evolution of the medicinally important diosgenin saponins. Horticulture Research9, uhac165.

Lim T K. 2012. Clausena lansium. In: Edible Medicinal and Non-Medicinal Plants. Springer, Dordrecht. pp. 871–883.

Lin J H. 1989. Cinnamamide derivatives from Clausena lansiumPhytochemistry28, 621–622.

Lin Y, Sun X, Yuan Q, Yan Y. 2013. Combinatorial biosynthesis of plant-specific coumarins in bacteria. Metabolic Engineering18, 69–77.

Liscombe D K, Facchini P J. 2008. Evolutionary and cellular webs in benzylisoquinoline alkaloid biosynthesis. Current Opinion in Biotechnology19, 173–180.

Liu J, Shi C, Shi C C, Li W, Zhang Q J, Zhang Y, Li K, Lu H F, Shi C, Zhu S T, Xiao Z Y, Nan H, Yue Y, Zhu X G, Wu Y, Hong X N, Fan G Y, Tong Y, Zhang D, Mao C L, et al. 2020. The chromosome-based rubber tree genome provides new insights into spurge genome evolution and rubber biosynthesis. Molecular Plant13, 336–350.

Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin I A, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang T J, Hu Q, Wang X, Yue Z, Li H, et al. 2014. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nature Communications5, 3930.

Liu Y F, Wang B, Shu S H, Li Z, Song C, Liu D, Niu Y, Liu J X, Zhang J J, Liu H P, Hu Z G, Huang B S, Liu X Y, Liu W, Jiang L P, Alami M M, Zhou Y X, Ma Y T, He X X, Yang Y C, et al. 2021. Analysis of the Coptis chinensis genome reveals the diversification of protoberberine-type alkaloids. Nature Communications12, 3276.

Lu X, Wang H, Liu B, Xiang J. 2013. Three EST-SSR markers associated with QTL for the growth of the clam Meretrix meretrix revealed by selective genotyping. Marine Biotechnology15, 16–25.

Ma Y L, Liu Y P, Zhang C, Zhao W H, Shi S, He D N, Zhang P, Liu X H, Han T T, Fu Y H. 2018. Carbazole alkaloids from Clausena hainanensis with their potential antiproliferative activities. Bioorganic Chemistry76, 359–364.

Mabberley D J. 1997. A classification for edible Citrus (Rutaceae). Telopea7, 167–172.

Majoros W H, Pertea M, Salzberg S L. 2004. TigrScan and GlimmerHMM: Two open source ab initio eukaryotic gene-finders. Bioinformatics20, 2878–2879.

Molino J F. 1994. Révision du genre Clausena Burm. f. (Rutaceae). Adansonia1, 105–153.

Nawrocki E P, Eddy S R. 2013. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics29, 2933–2935.

Ou S, Jiang N. 2018. LTR_retriever: A highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiology176, 1410–1422.

Oueslati A, Ollitrault F, Baraket G, Salhi-Hannachi A, Navarro L, Ollitrault P. 2016. Towards a molecular taxonomic key of the Aurantioideae subfamily using chloroplastic SNP diagnostic markers of the main clades genotyped by competitive allele-specific PCR. BMC Genetics17, 118.

Palazón J, Moyano E, Bonfill M, Cusidó R M, Piñol M T, Teixeira da Silva J A. 2006. Tropane alkaloids in plants and genetic engineering of their biosynthesis. FloricultureOrnamental and Plant Biotechnology2, 209–221.

Pan A D. 2010. Rutaceae leaf fossils from the Late Oligocene (27.23 Ma) Guang River flora of northwestern Ethiopia. Review of Palaeobotany and Palynology159, 188–194.

Pfeil B E, Crisp M D. 2008. The age and biogeography of Citrus and the orange subfamily (Rutaceae: Aurantioideae) in Australasia and New Caledonia. American Journal of Botany95, 1621–1631.

Van de Peer Y, Mizrachi E, Marchal K. 2017. The evolutionary significance of polyploidy. Nature Reviews Genetics18, 411–424.

Price A L, Jones N C, Pevzner P A. 2005. De novo identification of repeat families in large genomes. Bioinformatics21, i351–i358.

Ranallo-Benavidez T R, Jaron K S, Schatz M C. 2020. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nature Communications11, 1432.

Rao S S, Huntley M H, Durand N C, Stamenova E K, Bochkov I D, Robinson J T, Sanborn A L, Machol I, Omer A D, Lander E S, Aiden E L. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell159, 1665–1680.

Rizzon C, Ponger L, Gaut B S. 2006. Striking similarities in the genomic distribution of tandemly arrayed genes in Arabidopsis and rice. PLoS Computational Biology2, e115.

Roach M J, Schmidt S A, Borneman A R. 2018. Purge Haplotigs: Allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinformatics19, 460.

Rodrigues S, de Brito E S, de Oliveira Silva E. 2018. Wampee-Clausena lansium, In: Exotic Fruits. Academic Press, Netherlands. pp. 439–441.

Rohde B, Hans J, Martens S, Baumert A, Hunziker P, Matern U. 2008. Anthranilate N-methyltransferase, a branch-point enzyme of acridone biosynthesisPlant Journal53, 541–553.

Salse J. 2016. Ancestors of modern plant crops. Current Opinion in Plant Biology30, 134–142.

Schmidt A W, Reddy K R, Knolker H. 2012. Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids. Chemical Reviews112, 3193–3328.

Simão F A, Waterhouse R M, Ioannidis P, Kriventseva E V, Zdobnov E M. 2015. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics31, 3210–3212.

Skaltsounis A, Mitaku S, Tillequin F. 2000. Acridone alkaloids. Alkaloids Chemistry and Biology54, 259–377.

Song C, Liu Y, Song A, Dong G, Zhao H, Sun W, Ramakrishnan S, Wang Y, Wang S, Li T, Niu Y, Jiang J, Dong B, Xia Y, Chen S, Hu Z, Chen F, Chen S. 2018. The Chrysanthemum nankingense genome provides insights into the evolution and diversification of chrysanthemum flowers and medicinal traits. Molecular Plant11, 1482–1491.

Stamatakis A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics30, 1312–1313.

Stanke M, Waack S. 2003. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics19, ii215–ii225.

Strasburg J L, Rieseberg L H. 2008. Molecular demographic history of the annual sunflowers Helianthus annuus and Hpetiolaris - large effective population sizes and rates of long-term gene flow. Evolution62, 1936–1950.

Swingle W T, Reece P C. 1967. The botany of citrus and its wild relatives. In: Reuther W, Webber H J, Batchelor I D, eds., The Citrus Industry. University of California, Berkeley. pp. 190–430

Tarailo-Graovac M, Chen N. 2004. Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics5, 4–10.

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols7, 562–578.

Vitte C, Panaud O. 2005. LTR retrotransposons and flowering plant genome size: Emergence of the increase/decrease model. Cytogenet & Genome Research110, 91–107.

Walker B J, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo C A, Zeng Q, Wortman J, Young S K, Earl A M. 2014. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE9, e112963.

Wang Y, Tang H, DeBarry J D, Tan X, Li J, Wang X, Kissinger J C, Paterson A H. 2012. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research40, e49.

Wei Y Z, Zhang H N, Li W C, Xie J H, Wang Y C, Liu L Q, Shi S Y. 2013. Phenological growth stages of lychee (Litchi chinensis Sonn.). using the extended BBCH-scale. Scientia Horticulturae161, 273–277.

Wu T S, Huang S C, Wu P L, Teng C M. 1996. Carbazole alkaloids from Clausena excavata and their biological activity. Phytochemistry43,133–140.

Xu M, Fan T Y, Zhang J X, Hao X J, Liu S. 2015. A novel synthesis route to furo [3,2-a] carbazole. Chinese Chemical Letters26, 282–284.

Xu Q, Chen L L, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao W B, Hao B H, Lyon M P, Chen J, Gao S, Xing F, Lan H, Chang J W, Ge X, Lei Y, Hu Q, Miao Y, Wang L, et al. 2013. The draft genome of sweet orange (Citrus sinensis). Nature Genetics45, 59.

Xu X, Xie H, Wei X. 2014. Jasmonoid glucosides, sesquiterpenes and coumarins from the fruit of Clausena lansiumLWT-Food Science and Technology59, 65–69.

Yan G, Qiao Z H, Wu Y J, Zhou J Y, Zhang Y Z, Liu Y P, Fu Y H. 2020. Study on coumarins and alkaloids from stems of Clausena lenisChinese Traditional and Herbal Drugs, 51, 1825–1830.

Yang S M, Shim G Y, Kim B G, Ahn J H. 2015. Biological synthesis of coumarins in Escherichia coliMicrobial Cell Factories14, 65.

Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution24, 1586–1591.

Young N D, Debellé F, Oldroyd G E, Geurts R, Cannon S B, Udvardi M K, Benedito V A, Mayer K F, Gouzy J, Schoof H, Van de Peer Y, Proost S, Cook D R, Meyers B C, Spannagl M, Cheung F, De Mita S, Krishnakumar V, Gundlach H, Zhou S, et al. 2011. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature480, 520–524.

Zhao J, Nan P, Zhong Y. 2004. Chemical composition of the essential oils of Clausena lansium from Hainan Island, China. Zeitschrift Fur Naturforschung Section C - A Journal of Biosciences59, 153–156.

Zhao Q, Yang J, Cui M Y, Liu J, Fang Y, Yan M, Qiu W, Shang H, Xu Z, Yidiresi R, Weng J K, Pluskal T, Vigouroux M, Steuernagel B, Wei Y, Yang L, Hu Y, Chen X Y, Martin C. 2019. The reference genome sequence of Scutellaria baicalensis provides insights into the evolution of wogonin biosynthesis. Molecular Plant12, 935–950.

[1] WANG Jie, LEI Qiu-xia, CAO Ding-guo, ZHOU Yan, HAN Hai-xia, LIU Wei, LI Da-peng, LI Fu-wei, LIU Jie. Whole genome SNPs among 8 chicken breeds enable identification of genetic signatures that underlie breed features[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2200-2212.
[2] XU Xiao-hui, LI Wen-lan, YANG Shu-ke, ZHU Xiang-zhen, SUN Hong-wei, LI Fan, LU Xing-bo, CUI Jin-jie. Identification, evolution, expression and protein interaction analysis of genes encoding B-box zinc-finger proteins in maize[J]. >Journal of Integrative Agriculture, 2023, 22(2): 371-388.
No Suggested Reading articles found!