Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Non-linear responses of the plant phosphorus pool and soil available phosphorus to short-term nitrogen addition in an alpine meadow
Bing Han, Yicheng He, Jun Zhou, Yufei Wang, Lina Shi, Zhenrong Lin, Lu Yu, Wantong Zhang, Yiyi Geng, Xinqing Shao
2025, 24 (3): 815-826.   DOI: 10.1016/j.jia.2024.07.033
Abstract54)      PDF in ScienceDirect      

Nitrogen (N) enrichment is expected to induce a greater phosphorus (P) limitation, despite the acceleration of soil P cycling.  However, the changing patterns in plant P and soil available P after N enrichment, and their regulatory mechanisms, remain poorly understood in alpine meadows.  Here, we conducted a field experiment with four N addition rates (0, 5, 10, and 15 g N m–2 yr–1) in an alpine meadow, and investigated the P in plants, microorganisms, and soil to determine their patterns of change after short-term N addition.  Our results showed that N addition significantly increased plant biomass, and the plant P pool showed a non-linear response to the N addition gradient.  Soil available P initially increased and then declined with increasing N addition, whereas the occluded inorganic P decreased markedly.  The critical factors for soil available P varied with different N addition rates.  At lower N addition levels (0 and 5 g N m–2 yr–1), soil acidification facilitated the mobilization of occluded inorganic P to increase soil available P.  Conversely, at higher N addition levels (10 and 15 g N m–2 yr–1), the elevated soil microbial biomass P intensified the competition with plants for soil P, leading to a decline in soil available P.  This study highlights the non-linear responses of the plant P pool and soil available P concentration to N addition rates.  These responses suggest the need for developing ecosystem models to assess different effects of increasing N rates, which would enable more accurate predictions of the plant P supply and soil P cycling under N enrichment.


Reference | Related Articles | Metrics
Construction of chimeric viruses based on pepper mild mottle virus using a modified Cre/loxP system
YIN Yue-yan, HUA Meng-ying, ZHAO Kuang-jie, WAN Qiong-lian, BU Shan, LU Yu-wen, ZHENG Hong-ying, RAO Shao-fei, YAN Fei, PENG Jie-jun, CHEN Hai-ru, CHEN Jian-ping
2022, 21 (8): 2456-2463.   DOI: 10.1016/S2095-3119(21)63864-9
Abstract156)      PDF in ScienceDirect      

Cre/loxP, a site-specific recombination system, has been widely used for various purposes, including chromosomal translocations, generation of marker-free transgenic plants, tissue-specific activation of a reporter gene and efficient heterologous gene expression in plants.  However, stable or transient expression of Cre recombinase in plants can cause chlorosis or necrosis.  Here, we describe a modified Cre/loxP recombination system using a DNA fragment flanked with loxP sites in the same orientation in which necrosis induced by Cre recombinase in Nicotiana benthamiana leaves was alleviated.  The modified system was successfully used to create functional GFP-tagged pepper mild mottle virus (PMMoV) and a chimeric virus with coat protein (CP) substitution assembled from separate pro-vector modules.  Our results provide a new strategy and flexible technique to construct chimeric virus and infectious clones for plant viruses with large genomes.

Reference | Related Articles | Metrics
Genome-wide identification and transcriptome profiling reveal great expansion of SWEET gene family and their wide-spread responses to abiotic stress in wheat (Triticum aestivum L.)
QIN Jin-xia, JIANG Yu-jie, LU Yun-ze, ZHAO Peng, WU Bing-jin, LI Hong-xia, WANG Yu, XU Sheng-bao, SUN Qi-xin, LIU Zhen-shan
2020, 19 (7): 1704-1720.   DOI: 10.1016/S2095-3119(19)62761-9
Abstract193)      PDF in ScienceDirect      
The Sugars Will Eventually be Exported Transporter (SWEET) gene family, identified as sugar transporters, has been demonstrated to play key roles in phloem loading, grain filling, pollen nutrition, and plant-pathogen interactions.  To date, the study of SWEET genes in response to abiotic stress is very limited.  In this study, we performed a genome-wide identification of the SWEET gene family in wheat and examined their expression profiles under mutiple abiotic stresses.  We identified a total of 105 wheat SWEET genes, and phylogenic analysis revealed that they fall into five clades, with clade V specific to wheat and its closely related species.  Of the 105 wheat SWEET genes, 59% exhibited significant expression changes after stress treatments, including drought, heat, heat combined with drought, and salt stresses, and more up-regulated genes were found in response to drought and salt stresses.  Further hierarchical clustering analysis revealed that SWEET genes exhibited differential expression patterns in response to different stress treatments or in different wheat cultivars.  Moreover, different phylogenetic clades also showed distinct response to abiotic stress treatments.  Finally, we found that homoeologous SWEET genes from different wheat subgenomes exhibited differential expression patterns in response to different abiotic stress treatments.  The genome-wide analysis revealed the great expansion of SWEET gene family in wheat and their wide participation in abiotic stress response.  The expression partitioning of SWEET homoeologs under abiotic stress conditions may confer greater flexibility for hexaploid wheat to adapt to ever changing environments.
Reference | Related Articles | Metrics
Application of droplet digital PCR in detection of seed-transmitted pathogen Acidovorax citrulli
LU Yu, ZHANG Hai-jun, ZHAO Zi-jing, WEN Chang-long, WU Ping, SONG Shun-hua, YU Shuan-cang, Luo Lai-xin, XU Xiu-lan
2020, 19 (2): 561-569.   DOI: 10.1016/S2095-3119(19)62673-0
Abstract158)      PDF in ScienceDirect      
Bacterial fruit blotch caused by Acidovorax citrulli is a serious threat to cucurbit industry worldwide.  The pathogen is seed-transmitted, so seed detection to prevent distribution of contaminated seed is crucial in disease management.  In this study, we adapted a quantitative real-time PCR (qPCR) assay to droplet digital PCR (ddPCR) format for A. citrulli detection by optimizing reaction conditions.  The performance of ddPCR in detecting A. citrulli pure culture, DNA, infested watermelon/melon seed and commercial seed samples were compared with multiplex PCR, qPCR, and dilution plating method.  The lowest concentrations detected (LCD) by ddPCR reached up to 2 fg DNA, and 102 CFU mL–1 bacterial cells, which were ten times more sensitive than those of the qPCR.  When testing artificially infested watermelon and melon seed, 0.1% infestation level was detectable using ddPCR and dilution plating method.  The 26 positive samples were identified in 201 commercial seed samples through ddPCR, which was the highest positive number among all the methods.  High detection sensitivity achieved by ddPCR demonstrated a promising technique for improving seed-transmitted pathogen detection threshold in the future.
 
Reference | Related Articles | Metrics
Higher leaf area through leaf width and lower leaf angle were the primary morphological traits for yield advantage of japonica/indica hybrids
WEI Huan-he, YANG Yu-lin, SHAO Xing-yu, SHI Tian-yi, MENG Tian-yao, LU Yu, TAO Yuan, LI Xin-yue, DING En-hao, CHEN Ying-long, DAI Qi-gen
2020, 19 (2): 483-494.   DOI: 10.1016/S2095-3119(19)62628-6
Abstract143)      PDF in ScienceDirect      
The yield potential of japonica/indica hybrids (JIH) has been achieved over 13.5 t ha–1 in large-scale rice fields, and some physiological traits for yield advantage of JIH over japonica inbred rice (JI) and indica hybrid rice (IH) were also identified.  To date, little attention has been paid to morphological traits for yield advantage of JIH over JI and IH.  For this reason, three JIH, three JI, and three IH were field-grown at East China (Ningbo, Zhejiang Province) in 2015 and 2016.  Compared with JI and IH, JIH had 14.3 and 20.8% higher grain yield, respectively, attributed to its more spikelets per panicle and relatively high percentage of filled grains.  The advantage in spikelets per panicle of JIH over JI and IH was shown in number of grains on the upper, middle, and lower branches.  Compared with JI and IH, JIH had higher leaf area through leaf width and lower leaf angle of upper three leaves, higher leaf area index and leaf area per tiller at heading and maturity stages, higher stem weight per tiller and K and Si concentrations of stem at maturity, higher dry matter weight in leaf, stem, and panicle at heading and maturity stages, and higher biomass accumulation after heading and lower biomass translocation from stem during ripening.  Leaf width of upper three leaves were correlated positively, while leaf angle of upper three leaves were correlated negatively with biomass accumulation after heading, stem weight per tiller, and per unit length.  Our results indicated that the grain yield advantage of JIH was ascribed mainly to the more spikelets per panicle and relatively high percentage of filled grains.  Higher leaf area through leaf width and more erect leaves were associated with improved biomass accumulation and stem weighing during ripening, and were the primary morphological traits underlying higher grain yield of JIH.
 
Reference | Related Articles | Metrics
Morpho-physiological traits contributing to better yield performance of japonica/indica hybrids over indica hybrids under input-reduced practices
WEI Huan-he, MENG Tian-yao, GE Jia-lin, ZHANG Xu-bin, LU Yu, LI Xin-yue, TAO Yuan, DING En-hao, CHEN Ying-long, DAI Qi-gen
2020, 19 (11): 2643-2655.   DOI: 10.1016/S2095-3119(20)63251-8
Abstract122)      PDF in ScienceDirect      
It is widely reported that japonica/indica hybrids (JIH) have superior grain yield over other main varietal groups such as indica hybrids (IH) under sufficient resource inputs.  To date, little attention has been paid to yield performance of JIH under input-reduced practices, and whether JIH could have better grain yield performance over IH under input-reduced practices.  In this study, three JIH varieties and three IH varieties were compared in grain yield and their related morpho-physiological traits under two cultivation modes, i.e., conventional high-yielding method (CHYM) and double reductions in nitrogen rate and planting density (DRNP).  Our results showed that JIH had 8.3 and 13.3% higher grain yield over IH under CHYM and DRNP, respectively.  The superior grain yield of JIH over IH under DRNP was mainly attributed to larger sink size and improved sink filling efficiency.  Three main morpho-physiological traits were concluded for better yield performance of JIH over IH under DRNP.  Firstly, JIH had the reduced unproductive tillers growth, indicated by a higher percentage of productive tillers and the percentage of effective leaf area index (LAI) to total LAI at heading stage.  Secondly, a synergistic increase in biomass accumulation and harvest index were achieved of JIH, supported by higher biomass accumulation and leaf area duration during the main growth periods, and improved non-structural carbohydrate (NSC) remobilization after heading.  Thirdly, JIH had an improved canopy structure, showing as higher leaf area of upper three leaves and lower light extinction coefficient.  Our results suggested that improved morpho-physiological traits of JIH could lead to better grain yield performance over IH under input-reduced practices.
Reference | Related Articles | Metrics
An integrated method of selecting environmental covariates for predictive soil depth mapping
LU Yuan-yuan, LIU Feng, ZHAO Yu-guo, SONG Xiao-dong, ZHANG Gan-lin
2019, 18 (2): 301-315.   DOI: 10.1016/S2095-3119(18)61936-7
Abstract299)      PDF (20438KB)(198)      
Environmental covariates are the basis of predictive soil mapping.  Their selection determines the performance of soil mapping to a great extent, especially in cases where the number of soil samples is limited but soil spatial heterogeneity is high.  In this study, we proposed an integrated method to select environmental covariates for predictive soil depth mapping.  First, candidate variables that may influence the development of soil depth were selected based on pedogenetic knowledge.  Second, three conventional methods (Pearson correlation analysis (PsCA), generalized additive models (GAMs), and Random Forest (RF)) were used to generate optimal combinations of environmental covariates.  Finally, three optimal combinations were integrated to produce a final combination based on the importance and occurrence frequency of each environmental covariate.  We tested this method for soil depth mapping in the upper reaches of the Heihe River Basin in Northwest China.  A total of 129 soil sampling sites were collected using a representative sampling strategy, and RF and support vector machine (SVM) models were used to map soil depth.  The results showed that compared to the set of environmental covariates selected by the three conventional selection methods, the set of environmental covariates selected by the proposed method achieved higher mapping accuracy.  The combination from the proposed method obtained a root mean square error (RMSE) of 11.88 cm, which was 2.25–7.64 cm lower than the other methods, and an R2 value of 0.76, which was 0.08–0.26 higher than the other methods.  The results suggest that our method can be used as an alternative to the conventional methods for soil depth mapping and may also be effective for mapping other soil properties.
Reference | Related Articles | Metrics
Identification and genetic analysis of multiple P chromosomes of Agropyron cristatum in the background of common wheat
CHEN Hong-xin, HAN Hai-ming, LI Qing-feng, ZHANG Jin-peng, LU Yu-qing, YANG Xin-ming, LI Xiuquan, LIU Wei-hua, LI Li-hui
2018, 17 (08): 1697-1705.   DOI: 10.1016/S2095-3119(17)61861-6
Abstract436)      PDF in ScienceDirect      
Agropyron cristatum, a wild relative of common wheat (Triticum aestivum L.), provides many desirable genetic resources for wheat improvement, such as tolerance to cold, drought, and disease.  To transfer and utilize these desirable genes, in this study, two wheat-A. cristatum derivatives II-13 and II-23 were identified and analyzed.  We found that the number of root tip cell chromosomes was 44 in both II-13 and II-23, but there were four and six P genome chromosomes in II-13 and II-23, respectively, based on genomic in situ hybridization (GISH).  The chromosome configurations of II-13 and II-23 were both 2n=22II by the meiotic analysis of pollen mother cells (PMCs) at metaphase I, indicating that there were two and three pairs of P chromosomes in II-13 and II-23, respectively.  Notably, wheat chromosome 7D was absent in derivative line II-13 while II-23 lacked chromosomes 4B and 7A based on SSR analysis combining fluorescence in situ hybridization (FISH) analysis with pAs1 and pSc119.2 as probes.  Chromosomes 2P and 7P were detected in both II-13 and II-23.  Another pair of P genome chromosomes in II-23 was determined to be 4P based on expressed-sequences tags-sequence tagged sites (EST-STS) markers specific to A. cristatum and FISH with probes pAcTRT1 and pAcpCR2.  Overall, these results suggest that II-13 was a 7P (7D) substitution line with one pair of additional 2P chromosomes and II-23 was a multiple 4P (4B), 7P (7A) substitution line with one pair of additional 2P chromosomes.  Moreover, we obtained six alien disomic addition lines and five alien disomic substitution lines by backcrossing.  These new materials will allow desirable genes from A. cristatum to be used in common wheat.
 
Reference | Related Articles | Metrics
Genetic characteristics of a wheat founder parent and a widely planted cultivar derived from the same cross
CHANG Li-fang, LI Hui-hui, WU Xiao-yang, LU Yu-qing, ZHANG Jin-peng, YANG Xin-ming, LI Xiu-quan, LIU Wei-hua, LI Li-hui
2018, 17 (04): 775-785.   DOI: 10.1016/S2095-3119(17)61710-6
Abstract771)      PDF in ScienceDirect      
Founder parents have contributed significantly to the improvement of wheat breeding and production.  In order to investigate the genetic characteristics of founder parents and widely planted cultivars, Mazhamai (M), Biyumai (B) and six sibling lines (BM1–6) derived from the cross M×B were phenotyped for eight yield-related traits over multiple years and locations and genotyped using the the wheat 90K single nucleotide polymorphism (SNP) assay.  BM4 has been used as a founder parent, and BM1 has been widely planted, whereas BM2, 3, 5, and 6 have not been used extensively for breeding or planting in China.  Phenotypic comparisons revealed that BM4 and BM1 displayed a better overall performance than the other sibling lines.  BM1 showed higher thousand-grain weight than BM4, whereas BM4 exhibited lower coefficient of variation for most of the yield-related traits across different years and locations, indicating that BM4 was widely adaptable and more stable in different environments.  SNP analysis revealed that BM4 and BM1 inherited similar proportions of the M genome but are dissimilar to BM2, 3, 5, and 6.  Both BM1 and BM4 have specific alleles that differ from the other BM lines, and most of these alleles are concentrated in specific chromosomal regions that are found to associate with favorable QTLs, these SNPs and their surrounding regions may carry the genetic determinants important for the superior performance of the two lines.  But BM4 has more genetic diversity than BM1 with more specific alleles and pleiotropic regions, indicating that the genome of BM4 may be more complex than the other sibling lines and has more favorable gene resources.  Our results provide valuable information that can be used to select elite parents for wheat and self-pollinating crop breeding.
Reference | Related Articles | Metrics
Novel and favorable genomic regions for spike related traits in a wheat germplasm Pubing 3504 with high grain number per spike under varying environments
CHEN Dan, WU Xiao-yang, WU Kuo, ZHANG Jin-peng, LIU Wei-hua, YANG Xin-ming, LI Xiu-quan, LU Yu-qing, LI Li-hui
2017, 16 (11): 2386-2401.   DOI: 10.1016/S2095-3119(17)61711-8
Abstract607)      PDF in ScienceDirect      
   Grain number per spike (GNPS) is a major factor in wheat yield breeding.  A new wheat germplasm Pubing 3504 shows superior features in spike traits.  To elucidate the genetic basis of spike and yield related traits in Pubing 3504, 282 F2:3 families were generated from the cross Pubing 3504×Jing 4839, and seven spike and yield related traits, including GNPS, spike length (SL), kernel number per spikelet (KPS), spikelet number per spike (SNS), thousand-grain weight (TGW), spike number per plant (SNP), and plant height (HT) were investigated.  Correlation analysis indicated significant positive correlations between GNPS and spike-related traits, including KPS, SNS, and SL, especially KPS.  A genetic map was constructed using 190 polymorphic simple sequence repeat (SSR), expressed sequence tag (EST)-SSR, and sequence-tagged-site (STS) markers.  For the seven traits measured, a total of 37 quantitative trait loci (QTLs) in a single-environment analysis and 25 QTLs in a joint-environment analysis were detected.  Additive effects of 70.3% (in a single environment) and 57.6% (in a joint environment) of the QTLs were positively contributed by Pubing 3504 alleles.  Five important genomic regions on chromosomes 1A, 4A, 4B, 2D, and 4D could be stably detected in different environments.  Among these regions, the marker interval Xmag834–Xbarc83 on the short arm of chromosome 1A was a novel important genomic region that included QTLs controlling GNPS, KPS, SNS, TGW, and SNP with stable environmental repeatability.  This genomic region can improve the spike trait and may play a key role in improving wheat yield in the future.  We deduced that this genomic region was vital to the high GNPS of Pubing 3504.
Reference | Related Articles | Metrics
Cloning, expression, and polymorphism of the ECI1 gene in various pig breeds
LU Yun-feng, CHEN Ji-bao, ZHANG Bo, LI Qing-gang, WANG Zhi-xiu, ZHANG Hao, WU Ke-liang
2017, 16 (08): 1789-1799.   DOI: 10.1016/S2095-3119(16)61624-6
Abstract673)      PDF in ScienceDirect      
    The enzyme Δ32-dienoyl-CoA isomerase (ECI1) plays a crucial role in the mitochondrial β-oxidation of fatty acids with a double-bond in odd and even positions. The ECI1 gene might be a qualified candidate for studies pertaining to lipid deposition and meat quality in swine. In the present study, ECI1 cDNA of the Tibetan pig was obtained by in silico cloning and verified by PCR analysis. Single-nucleotide polymorphisms (SNPs) of ECI1 were screened by PCR-sequencing and genotypes of those SNPs were tested by PCR-restriction fragment length polymorphism (PCR-RFLP) in Diannan small-ear pigs (DSP, n=40), Tibetan pigs (TP, n=60) and Yorkshire pigs (YP, n=30). The expression levels of ECI1 were analyzed by real-time quantitative PCR and Western blotting in tissues of the liver, backfat, and longissimus dorsi (LD) muscle of DSP (n=8), TP (n=8) and YP (n=8). Single factor linear correlation analysis was applied separately for each breed to evaluate correlations between ECI1 gene expression in the LD muscle and intramuscular fat (IMF) content. We obtained an ECI1 gene length of 1 401 bp from the cDNA that contained a full coding region of 909 bp. Three novel SNPs (g.42425337G>A; g.42424666A>G; and g.42422755A>G) were detected, and only g.42424666A>G exhibited three genotypes among the three breeds. The ECI1 expression levels in the LD muscle of DSP and TP were significantly higher than that of YP (P<0.05). Moreover, TP had the highest ECI1 expression in backfat (P<0.01), and a positive correlation was observed between gene expression and IMF content. The results suggest that differences in ECI1 gene expression might be related to lipid deposition and meat quality in pig.
Reference | Related Articles | Metrics
Gene and protein expression profiling analysis of young spike development in large spike wheat germplasms
CHEN Dan, ZHANG Jin-peng, LIU Wei-hua, WU Xiao-yang, YANG Xin-ming, LI Xiu-quan, LU Yu-qing, LI Li-hui
2016, 15 (4): 744-754.   DOI: 10.1016/S2095-3119(15)61179-0
Abstract1705)      PDF in ScienceDirect      
The wheat grain number per spike (GNPS) is a major yield-limiting factor in wheat-breeding programs. Germplasms with a high GNPS are therefore valuable for increasing wheat yield potential. To investigate the molecular characteristics of young spike development in large-spike wheat germplasms with high GNPS, we performed gene and protein expression profiling analysis with three high-GNPS wheat lines (Pubing 3228, Pubing 3504 and 4844-12) and one low-GNPS control variety (Fukuho). The phenotypic data for the spikes in two growth seasons showed that the GNPS of the three large-spike wheat lines were significantly higher than that of the Fukuho control line. The Affymetrix wheat chip and isobaric tags for relative and absolute quantitation-tandam mass spectrometry (iTRAQ-MS/MS) technology were employed for gene and protein expression profiling analyses of young spike development, respectively, at the floret primordia differentiation stage. A total of 598 differentially expressed transcripts (270 up-regulated and 328 down-regulated) and 280 proteins (122 up- regulated and 158 down-regulated) were identified in the three high-GNPS lines compared with the control line. We found that the expression of some floral development-related genes, including Wknox1b, the AP2 domain protein kinase and the transcription factor HUA2, were up-regulated in the high-GNPS lines. The expression of the SHEPHERD (SHD) gene was up-regulated at both the transcript and protein levels. Overall, these results suggest that multiple regulatory pathways, including the CLAVATA pathway and the meristem-maintaining KNOX protein pathway, take part in the development of the high-GNPS phenotype in our wheat germplasms.
Reference | Related Articles | Metrics
Dynamic Change of Genetic Diversity in Conserved Populations with Different Initial Genetic Architectures
LU Yun-feng, LI Hong-wei, WU Ke-liang, WU Chang-xin
2013, 12 (7): 1225-1233.   DOI: 10.1016/S2095-3119(13)60439-6
Abstract1506)      PDF in ScienceDirect      
Maintenance and management of genetic diversity of farm animal genetic resources (AnGR) is very important for biological, socioeconomical and cultural significance. The core concern of conservation for farm AnGR is the retention of genetic diversity of conserved populations in a long-term perspective. However, numerous factors may affect evolution of genetic diversity of a conserved population. Among those factors, the genetic architecture of conserved populations is little considered in current conservation strategies. In this study, we investigated the dynamic changes of genetic diversity of conserved populations with two scenarios on initial genetic architectures by computer simulation in which thirty polymorphic microsatellite loci were chosen to represent genetic architecture of the populations with observed heterozygosity (Ho) and expected heterozygosity (He), observed and mean effective number of alleles (Ao and Ae), number of polymorphic loci (NP) and the percentage of polymorphic loci (PP), number of rare alleles (RA) and number of non-rich polymorphic loci (NRP) as the estimates of genetic diversity. The two scenarios on genetic architecture were taken into account, namely, one conserved population with same allele frequency (AS) and another one with actual allele frequency (AA). The results showed that the magnitude of loss of genetic diversity is associated with genetic architecture of initial conserved population, the amplitude of genetic diversity decline in the context AS was more narrow extent than those in context AA, the ranges of decline of Ho and Ao were about 4 and 2 times in AA compared with that in AS, respectively, the occurrence of first monomorphic locus and the time of change of measure NP in scenario AA is 20 generations and 23 generations earlier than that in scenario AS, respectively. Additionally, we found that NRP, a novel measure proposed by our research group, was a proper estimate for monitoring the evolution of genetic diversity in a closed conserved population. Our study suggested that current managements of conserved populations should emphasize on initial genetic architecture in order to make an effective and feasible conservation scheme.
Reference | Related Articles | Metrics